Laser heating of an aqueous aerosol particle

Gideon Sageev and John H. Seinfeld

Approximate analytical and full numerical solutions are obtained for the transient response of both a pure
water and solution droplets to both short- and long-time laser heating. The differences in the temperature
and size histories between pure water and solution droplets are elucidated. The validity of of the approxi-
mate analytical solution, extended from that of Armstrong [“Aerosol Heating and Vaporization by Pulsed
Light Beams,” Appl. Opt. 23, 148 (1984)] in pure water droplets, is evaluated by comparison to solution of

the full governing equations.

I. Introduction

Heating an aerosol particle on irradiation with a laser
beam induces temperature gradients in the air sur-
rounding the particle that change the air’s index of re-
fraction in the vicinity of the particle. These changes
may cause the beam to diverge as it passes through the
medium. To estimate the magnitude of this phenom-
enon, called thermal blooming, the particle’s surface
temperature must be known.

The amount of energy a particle absorbs from the
incident light beam depends on the particle’s complex
index of refraction as well as on its optical size (where
the optical size x is given by x = 27rs/\, ry and A being
the particle radius and laser wavelength, respectively).
In this work, the beam wavelengths considered are
much larger than the particle radius; thus the energy
absorbed by the particle can be obtained from Rayleigh
theory.!l As the optical size of the particle increases, the
absorption of energy by the particle may be enhanced
by structure resonance;2 however, in the present work,
this effect is neglected.

The particles considered here are homogeneous liquid
drops containing a solute. When the incident beam
first strikes a volatile particle (which is assumed to be
initially in equilibrium with its environment), all the
absorbed energy goes into raising the particle’s tem-
perature. As the particle’s temperature increases, the
solvent in the particle begins to vaporize, and, at the
same time, energy is lost from the particle by conduction
into the gas phase. The processes of mass and heat
transfer in the air surrounding the drop can be assumed
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to be at a pseudo-steady state as long as the character-
istic times for changes in the temperature and concen-
tration profiles in the gas are much shorter than that for
the temperature of the drop. This is generally a good
assumption for the drops of interest here. The relative
amounts of energy dissipated by conduction and
evaporation depend strongly on the presence of solutes
in the drop. The effect of the solutes is to lower the
vapor pressure of the solvent in the drop, thereby low-
ering the vaporization rate from that in the absence of
solutes. As the vaporization continues, the solution
droplet shrinks and approaches a new steady state size
and temperature, at which point all the absorbed heat
is released by conduction.

In a pure droplet, on the other hand, the evaporation
rate is governed only by the effect of the droplet tem-
perature on its vapor pressure. Since solutes are absent,
the vaporization from the drop continues until the drop
disappears. Thus, in a pure droplet, a fraction of the
absorbed energy is always dissipated by vaporization.

The above description refers to situations in which
either a solvent/solute droplet or a pure solvent droplet
is continually heated with a laser. An alternative sit-
uation of practical interest is that in which a pulsed laser
is used and the particle is heated by the laser for only
a short period of time. When a pure solvent droplet is
subject to a short pulse of laser light, its temperature

‘increases initially before significant evaporation or

conduction into the gas phase can take place. Conse-
quently, in a short heating period, the particle can be
assumed not to shrink due to loss of material by evap-
oration. When the laser is turned off, the droplet is no
longer in equilibrium with its surroundings, and it be-
gins to cool by the combined effects of conduction and
vaporization. Eventually, the drop reaches a new
equilibrium size at which point its temperature returns
to that of its surroundings. The total amount of mass
lost is related to the total energy input into the drop.
When a solution drop is subject to a short-period laser



heating, its temperature also rises quickly before ap-
preciable conduction or evaporation can take place.
After the laser is turned off, the droplet returns to its
original temperature. However, eventually the droplet
also returns to its initial equilibrium size due to re-
plenishment of solvent from the vapor.

The aerosol temperature rise resulting from the
long-time heating of a pure water drop by a laser beam
was investigated numerically by Caledonia and Teare.?
More recently, Armstrong* obtained an analytical so-
lution to the heating of a pure water droplet by making
a number of assumptions. First, Armstrong assumed
that once the laser is turned on, even though conduction
and vaporization are occurring during the heating
process, the radius of the drop remains at its initial
value. Eventually, a steady state is reached where the
absorbed laser energy is balanced by energy losses due
to conduction and vaporization, still assuming the
particle retains its initial size. Once at steady state, the
particle temperature is assumed to stay constant
throughout the remaining heating period. The change
in radius of the drop is then approximated from the
solvent mass flux based on the steady state temperature
of the drop. The assumption of constant particle size
during the short heating times enables an analytical
solution to be obtained.

Both works cited above apply to the heating of a pure
water droplet. However, since atmospheric aerosols
must contain solutes to exist in equilibrium in an envi-
ronment where the relative humidity is <100%, it is
important to investigate the effect of the presence of
solutes on the aerosol heating process.

The main object of the present work is to obtain both
approximate analytical and full numerical solutions to
the transient response of both pure solvent and solution
droplets to both short- and long-time laser heating. We
will examine the differences between the temperature
rise in a solution and that in a pure droplet. Also, by
calculating the temperature rise by solving the full
governing equations numerically, we can evaluate the
validity of the approximate analytical solution.

In Sec. II, we develop the theory of heat and mass
transfer from a droplet subject to internal heating.
Section III is devoted to the thermodynamic data used
in calculation of the droplet temperature rise. In Sec.
1V, the analytical and numerical results based on a short
heating period are shown and discussed. Finally, in
Sec. V we present numerical results based on a long
heating period.

Il. Theory

The equations governing the concentration and
temperature profiles surrounding a volatile particle that
contains an internal heating source are well known.> In
such a situation, when the Biot number in the drop-air
system is much smaller than unity, the drop tempera-
ture can be assumed to be constant. In doing so, the
overall energy balance over the drop is given by

o tfon) o]
or|r=rq or|r=rq

dt rs

where T and ¢ are temperature and time; Y and D, are
the water mass fraction and diffusivity in the air; /o and
« are the incident beam intensity and bulk absorption
coefficient; Cq, Ry, and L are the heat capacity, thermal
conductivity, and heat of vaporization; and pg and r; are
the drop density and radius. The subscripts s, @, and
d refer to conditions of the surface, air, and drop, re-
spectively.

On the right-hand side of Eq. (1), Ipx is the heat
source. The first term inside the brackets is due to
mass transfer across the interface, while the second term
is due to heat conduction from the surface. Both of the
gradients (8Y/dr),=,, and (8T/dr),=,, appearing in Eq.
(1) depend on the boundary conditions at the drop
surface and far away from the drop. When the un-
steady terms are neglected in the equations of mass and
heat transfer outside the drop, the mass and heat fluxes
from the drop surface are given by®

of] Bl

( T)r - _JC(Ts=Te) ®)
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where J is the mass flux, Y. and T are the water mass

fraction and temperature far away from the drop, and

Y, and T are the analogous properties at the surface.
When Eqgs. (2) and (3) are substituted into Eq. (1) one

obtains?

dT Tox _ 3JL
dt pdCa  15paCy

Ca(T = To)
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rsstal
oo 551
For a solution droplet,
Y (T) = aw(T)YXT), (5)

where a,, is the water activity and Y?is the water mass
fraction resulting from the vapor pressure of pure water
at temperature T. Assuming that the vapor at the
surface is at equilibrium with the drop, YO(T') can be
related to Y9(T'..) by using the Clausius-Clapeyron and
the Kelvin equations. The resulting expression is

YUT) = YN(T) exp [— % (}; - Tl )] exp (;;:) ) (6)

where M,, is the water molecular weight and R, v, and
o are the gas constant, the solution molar volume, and
the surface tension, respectively.

The water activity can be expressed in terms of the
solute molality m, the total number of ions the solute
molecule dissociates into », and the molal osmotic
coefficient ¢ (Refs. 7 and 8):

)

a,(T) = exp [~ 7

1000

The osmotic coefficients is related to the solute activity
coefficient y by

1 m
o) =1+ j; md Infy(T)}. ®)
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Finally, the temperature dependence of 7y is obtained
from the Van’t Hoff equation:”
-1
RTE
where H? and H ; are the partial molal enthalpies of the
solute at infinite dilution and molality m, respectively.
By integration of Eq. (9) with respect to T', followed by
differentiation with respect to m and substitution into
Eq. (8), we obtain the following equation for the tem-
perature dependence of the osmotic coefficient:

1 1\1 pm 3 [(H;-H) , ,
o1 = “’(T“’H(T T)_f mam'l e

oV
(ln-—+—- ] f [———(a ) dm’,

where C; and C? are the the partial molal heat capacities
of the solute at molality m and at infinite dilution, re-
spectively. In Eq. (10), we assume that the partial
molal heat capacities remain constant with tempera-
ture. The solution of Eq. (10) requires osmotic coeffi-
cient data as well as thermodynamic data concerning
the partial molal enthalpy and heat capacity. Data on
©(Ts) at T« = 25°C for many salts can be found in a
comprehensive report by Hamer and Wu.® By ex-
pressing the partial molal quantities in power series,’
the integrals in Eq. (10) reduces to the following se-
ries:

- (ln'Yz)P = €)]

(10)

= _1_ (H HO) = n/2
a-mj; ’ ‘=3 4, ( +2)m Ay

_1 (S 30) w2
6-mf [ nngn( +2m ’ (12)

where A, and B,, are flttmg parameters to experimental
data. Once Eq. (10) is solved, the water activity is
found by substitution into Eq. (7). Equation (2) can
now be rewritten as

=921n[ — Y‘”] , (13)

rs £(T)

where f(T') is given by
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and where
=2va’ B=ume , C=LM,,,
Rry 1000 R

Since a numerical solution to Eq. (4) can be obtained
readily, an analytical solution is not an absolute ne-
cessity. The advantages of an analytical solution are
that it allows one to obtain an expression for the char-
acteristic time of the heating process and that it reveals
the major physical contributions leading to the pre-
dicted behavior. To solve Eq. (4) analytically, one must
first linearize Eq. (2) with respect to temperature; the
linearized result is then substituted into Eq. (4), and the
resulting expression is integrated. [Clearly Eqgs. (2) and
(4) are also functions of the radius; however, as shown
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earlier,* for small values of the product (Ioar2), the ef-
fect of small variations in r; on the steady state tem-
perature is negligible.] Analogous to the development
of Armstrong,? an expansion of Eq. (2) in a second-order
Taylor series of the dimensionless temperature X

[where X = (T — T'»)/T] yields for the mass flux
J= % (eX + YX?), (15)
where
.- ( Y. \(—A+Ba+0\
1-Y.) T. |’
poe [(—A+Bo+C) BBT. |
‘I ea-vor. 2(—A + B + 0))

Equation (15) is identical in form to Eq. (9) of
Armstrong,* except that in the latter equation the
constants A, B, §, and 8 do not appear, and the Y., term
does not include the effect of the water activity on the
vapor pressure. Additionally, the droplet density and
heat capacity in Eq. (15) are those of a solution, whereas
the corresponding properties in Ref. 4 apply to a pure
water droplet. In the limit of zero molality and negli-
gible Kelvin effect, the water activity coefficient ap-
proaches unity, and Eq. (15) reduces to that given by
Armstrong.

When the radius does not change appreciably during
the heating period, Eq. (15) can be substituted into Eq.
(4) (after nondimensionalizing the temperature). The
resulting expression is then integrated to yield the
droplet temperature as a function of time:*

2lo74[1 = exp(=t/r5)] ift <tp

X(0) = 14 L7y + (1 — Li7p)[exp(—t/74)] , )
11X (¢p) expl=l1t) Gi>t
p

I+ X (tp)[1 — exp(—11t)]
where £, is the heating period, X(tp) is the dimen-
sionless temperature at the end of the heating period,
and 7, is the characteristic time for the heating process.
The constants in Eq. (16) are given by

_Io
pdCaT
3 [D,L
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! PdCdr?( . € a)
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7h = (13 + 4lplo)~172,

lll. Thermodynamic Data

In the evaluation of Eq. (16) we used activity coeffi-
cient data reported by Hamer and Wu? for NaCl at 298
K. The computation of the temperature dependence
of the activity coefficient requires data on the partial
molal enthalpy and heat capacity. This information
[used in Eqgs. (11) and (12)] was obtained by fitting
tabulated datal® to a power series in terms of molality.
The following expressions were calculated for the rela-
tive apparent partial molal enthalpy and heat capacity
(valid in the range of 0.1 <m < 6.0):



Table I. Summary of the Values of Various Physical Constants used in

the Calculation (at 298 K)

Symbol Value Units
Tw 298.15 K
YO 2.0 X 102 Dimensionless
L 584.0 cal g™t
Iy« 105, 108 Wcem—3
Cq 0.25 calg1 K1
D, 3.0 X 1074 gcm~1sec!
kq 6.2 X105 cal cm~1sec1 K-
M, 28.39 g mole™!
M, 58.45 g mole™!
M, 18.0 g mole™1
Puw 0.997 gcm™3
Cy 1.0 - cal g1 K-t
C9 -23.8 cal mole~1 K-1
o 72.0 dyn cm™!

@ Subscripts w and 2 refer to the solvent (water) and solute, re-
spectively.

&y, = Py — PY = 458.95m1/2 — 688.09m + 241.4Tm3/2
— 39.339m2 + 4.3245m5/2 — 0.0449mS3, )

®Bcp — P, =10.201m1/2 - 3.6538m + 13.121m 32
— 10.638m2 + 3.5304m®%2 — 0.4282m?, (18)

where ®5 and ®Y are the apparent partial molal en-
thalpy at molality m and at infinite dilution, respec-
tively. [The termsin Eq. (18) have analogous meaning.|
The units of Egs. (17) and (18) are (cal mole~!) and (cal
mole~! K—1), respectively.

The relative partial molal enthalpy and heat capacity
are then calculated from8

H-H9 =&, —m2L. 19)
om
A similar expression yields the value of the relative
partial molal heat capacity. The heat capacity of the
solution is given by8

Cp = nuCY + nadc,, (20)

where n,, and n, refer to the number of moles of solvent
(water) and the solute, respectively, and C9 is the molar
heat capacity of pure water. Results from Eq. (20)
agree well with the heat capacity data reported by
Bromley et al.1!

The density of a salt solution is given by8

pa = p)+ ﬁ (M; — ®vpl), (21)
where c is the solute concentration (in moles liter—1), &y,
is the solution apparent molal volume, and p$ is the
density of pure solvent. Data for Eq. (21) were taken
from Ref. 8.

IV. Short-Time Heating of an NaCl Droplet

In this section we calculate the droplet temperature
rise resulting from short-time laser heating of an
aqueous NaCl droplet. The parameters used in the
calculations are given in Table I. During short-time
heating the evaporation rate is assumed to be slow
enough that the drop’s radius and concentration do not
change significantly. To compare the drop temperature

rise computed here with that given in the literature, we
consider conditions similar to those used by other au-
thors.3:

In general, the water content of an aerosol particle
depends on both the surrounding relative humidity and
the solutes it contains. In the limit of low water vapor
pressure (at temperature much lower than the boiling
point), the water activity in the drop is approximately
equal to the relative humidity (RH). Thus in the case
of high RH (e.g., in clouds), the effect of solutes is ex-
pected to be minimal. However, at lower RH, or when
the heating causes a significant increase in solute con-
centration, one expects the solute to have an increasing
effect on the vaporization rate and temperature rise in
the drop. Equation (16) was evaluated for the case of
a water drop containing various molalities of sodium
chloride. In all cases considered, the salt concentration
was low enough that the drop was below the saturation
point. (For NaCl the saturation point is reported? to
be m =~ 6.1 at 298 K.)

The temperature rise as a function of the dimen-
sionless heating time predicted by Eq. (16) is shown in
Figs.1and 2. The main difference between Figs. 1 and
2 is in the magnitude of the heating Ipce. Based on
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Fig.1. Temperature rise in a droplet vs dimensionless time at ¢, =
5 pusec; rs = 0.25, 0.5, 1.0, 2.0 um, and Tpa = 105 W cm—3,
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Fig. 2. Temperature rise in a droplet vs dimensionless time at ¢, =
5 usec; rs = 0.10, 0.20, 0.40 um, and oo = 108 W cm 3.
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Fig. 3. Contribution of various parameters to the difference between
the maximum temperature rise in a solution and that in a pure
drop.

index of refraction data in Querry et al.,!? the magni-
tude of « for an NaCl solution (irradiated by a laser
having a wavelength of 9.09 um) ranges from « = 595
cm~1 for 1-M solution to & = 650 cm~1 for 5-M solution
(where M is the molar concentration). Thus Iy was
chosen to make Jyor = 108 and Joex = 105 to simulate the
heating caused by high and moderate beam intensi-
ties.

As seen from Figs. 1 and 2, the main effect of the so-
lute is to increase the drop temperature rise above that
which a pure droplet experiences. In all cases shown
in Figs. 1 and 2 the maximum difference between the
temperature rise of a solution and that in a pure drop
is ~10%, a difference that increases with increasing salt
concentration. As will be shown shortly, this deviation
can be explained in terms of the differences among the
densities, the heat capacities, and the vapor pressures
of a solution and pure water droplet.

The deviations between the temperature rise in a
solution droplet and that in a pure drop, shown in Figs.
1 and 2, are controlled by different parameters de-
pending on the radius and concentration of the drop.
To examine the effects of the vapor pressure Y, the
partial molal quantities (C; and H;), the solution density
and heat capacity (pg and Cyg), and the Kelvin correc-
tion term, we define the quantity n as

% — T0
- Ts — TO
where 70 and T¢ are the maximum temperatures
achieved in a pure water drop and in a solution, re-
spectively, while T* is the maximum temperature cal-
culated by including only one of the parameters above
in the equation for the temperature rise in a pure
droplet. The parameters pg and C4 were lumped to-
gether because they appear together in Eq. (4).

The values of 5 at various radii and molalities are
shown in Fig. 3. It is evident that for large drops the
difference between the density and heat capacity of a
solution droplet and those of a pure droplet is respon-
sible for the extra temperature rise of the solution. This

" X 100%, (22)
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effect occurs because the second term on the right-hand
side of Eq. (4) is proportional to 1/r2, so as rs increases
the second term becomes less significant relative to the
first term. Ina NaClsolution the product of the density
and heat capacity is smaller than the corresponding
product in a pure drop; thus when the first term in Eq.
(4) dominates (i.e., at large radii), the larger temperature
rise in a solution is expected.

It is also apparent that the contribution of the solute
partial molal enthalpy to the drop temperature rise is
at most 1.0%. The effect of the partial molal heat ca-
pacity was <0.1%; therefore, it was omitted from Fig.
3. These results show that neglecting the partial molal
terms in Eq. (14) does not lead to a serious error in the
calculated temperature rise of the drop.

At the small radii in Fig. 3 the solution vapor pressure
is responsible for the increased temperature rise. This
pattern occurs because the interaction of solute mole-
cules with the solvent lowers the vapor pressure of the
solution. Since the initial vapor pressure over the drop
is lower, the change in the vapor pressure during heating
is lower. Because the mass flux from the drop is pro-
portional to the change in the vapor pressure (to a
first-order approximation), a solution droplet will
evaporate less than a pure droplet for the same energy
input. As aresult of the smaller evaporation, the effi-
ciency of evaporative cooling in a solution is lowered.
The heat not dissipated by evaporation must then be
removed by conduction; thus the drop’s temperature
must increase to raise the conduction driving force.

At very small radii (i.e., rs << 0.1 um) the Kelvin effect
is expected to control the temperature rise in the drop.
However, at these small radii the mean free path of the
air molecules becomes comparable with the drop’s ra-
dius; thus the solution presented here does not apply in
that regime.

It should be pointed out that even in the case of a pure
droplet the results presented here are slightly different
from those reported by Armstrong,? because some of the
parameters (mainly L and Y?) were chosen differently.
We used data on the heat of vaporization at the ambient
temperature rather than at 373 K. We also used a dif-
ferent value of Y° because at the value used earlier* (Y°
was 0.0138 at T, = 296 K), the relative humidity was
~T78%. However, for a pure water droplet to exist in
equilibrium (at 298 K), the relative humidity must be
100% at which point Y° = 0.020.

Clearly, as the energy input (/pc) increases for a given
drop size, the effects of the large temperature rise in the
drop become increasingly important. To evaluate the
validity of the analytical solution, we solved the full si-
multaneous heat and mass transfer equations numeri-
cally. A comparison of the analytical and numerical
solutions for a 0.8-um drop is shown in Fig. 4. Itisev-
ident from Fig. 4 that the discrepancy between the nu-
merical and analytical solutions increases as the ra-
diation intensity is increased. The top curve in Fig. 4
reveals that large deviations between the analytical and
numerical solutions occur when Igar? = 0.64 W cm™1,
At Iy = 107 the deviations occur mainly during the
cooling period (at £, > 1.0). It was pointed out by
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Fig. 4. Discrepancy between the analytical and numerical solutions
for the short-time heating of a droplet of m = 3.0 and r = 0.8 um.

Armstrong? that the analytical solution for a pure
droplet is valid when the magnitude of the product Ioar?
is < 0.5. The results of Fig. 4 indicate that the devia-
tions in a solution begin to occur at a smaller value of the
product above.

The differences between the heating of a solution and
a pure droplet become more pronounced as the heating
period increases. In the next section the temperature
and radius changes a solution droplet undergoes when
heated for a long time period will be discussed.

V. Long-Time Heating of a NaCl Droplet

When a droplet is heated for an extended time period,
its radius and molality change with time. As will be
shown shortly, the drop pseudo-steady state tempera-
ture also changes with time. The initial increase in the
drop temperature increases the surface vapor pressure
of the drop, thereby inducing a net mass flux from the
drop which lowers the drop’s water activity. This
process continues until a new equilibrium state, deter-
mined by Eq. (5), is reached. Hence, during long-time
heating, the analytical solution developed earlier is no
longer valid. To evaluate the temperature and radius
of the drop, the following relation between the mass flux
from the drop and the drop radius is used:

L —l-J. (23)

ot pq
The temperature changes for various salt concen-
trations and heating rates were obtained by solving Egs.
(4) and (23) numerically, results of which are shown in
Fig. 5. The quantity 74 used in the nondimensional-
ization of the temperature corresponds to the time
constant for vaporization of a pure water droplet; it is
given by*
_3paL(ha+ 1)

24
I()OZI‘ ( )

Td

where
_ L2DaM,Y°
R1—-YOTZ?

The parameter 74 was chosen to scale the heating time
to facilitate the comparison of the long-time heating of
a solution droplet with that of a pure droplet.

As seen from Fig. 5, the temperature rise in a solution
is quite different from the constant steady state tem-
perature predicted by the analytical solution. This
behavior results from the combination of two opposing
effects. The first effect on the temperature rise is due
to the decrease in the drop radius as a result of evapo-
ration. Equation (16) shows that the temperature rise
is proportional to 75 ; however, 7}, is proportional to the
drop radius. Therefore, as the drop radius decreases
due to evaporation the magnitude of the temperature
rise the drop undergoes is expected to decrease as well.
The decrease in the temperature during the heating
period is also in agreement with results of Caledonia and
Teare.3
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Fig. 5. Temperature rise vs dimensionless heating time for long-time
heating of a droplet of initial radius ro = 1.0 um, 74 = 0.9435 sec (at
Toa = 105 W cm™3), and 74 = 0.009435 sec (at Joax = 107 W ¢cm~3),
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Fig. 6. Dimensionless radius vs dimensionless heating time for ro
= 1.0 um, and 74 = 0.9435 sec (at Joo = 10° W cm™3).
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The second effect on the drop temperature results
from the decrease in the vaporization rate from the drop
as it approaches a new equilibrium state. Since at
equilibrium the net evaporation from the drop is zero,
all the heat absorbed by the drop must be dissipated by
conduction. The temperature of the drop must,
therefore, increase to allow the larger conduction of heat
away from the drop.

The two effects above oppose each other, thereby
giving rise to the maximum observed in Fig. 5. The
vaporization rate effect dominates when the changes in
the radius are small and during the initial stage of the
heating period. The effect of the decrease in radius
begins to dominate only after sufficiently long heating
times. The radius effect is less significant for the more
concentrated drops simply because these drops undergo
a smaller change in radius.

The variation of the drop radius with heating time,
shown in Fig. 6, describes the approach of the droplet
to its new equilibrium state. Also included in Fig. 6 is
the radius change in a pure water droplet calculated
from the analytical solution of Armstrong.4 The radius
of the pure droplet decreases continuously, and the
process is eventually governed by the Kelvin effect.

As evident from Fig. 6 the dimensionless pure droplet
evaporation time constant 7, is larger than the corre-
sponding time constant in a solution droplet. Addi-
tionally, for a given heating rate and drop size, the time
required for the solution droplet to reach a new equi-
librium size decreases as its salt concentration increases.
This occurs because in the more concentrated drops less
water needs to evaporate to lower the water activity to
the point where a new equilibrium state is established.
The smaller fractional change of radius in the more
concentrated drops is also clearly demonstrated in Fig.
6.

VI. Conclusions

The laser-induced heating of both a pure water
droplet and one containing various concentrations of
NaCl has been determined both for short and long
heating periods. For the case of short heating times,
in which the drop radius does not change appreciably,
an analytical solution for the drop temperature rise has

been developed. This solution is an extension to
Armstrong’s? analytical solution to the temperature rise
in a pure water droplet.

The full governing equations to the heating process
were also solved numerically for the case of long heating
periods. It was shown that the temperature and radial
changes in the drop are strongly influenced by the in-
cident beam intensity and the salt concentration in the
drop.

The calculations here were done in terms of the pa-
rameter Joee. In a more general solution, the explicit
concentration dependence of the bulk absorption
coefficient o would be included.
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