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Universal Multiresolution Source Codes
Michelle Effros, Member, IEEE

Abstract—A multiresolution source code is a single code giving
an embedded source description that can be read at a variety of
rates and thereby yields reproductions at a variety of resolutions.
The resolution of a source reproduction here refers to the accu-
racy with which it approximates the original source. Thus, a re-
production with low distortion is a “high-resolution” reproduc-
tion while a reproduction with high distortion is a “low-resolu-
tion” reproduction. This paper treats the generalization of uni-
versal lossy source coding from single-resolution source codes to
multiresolution source codes. Results described in this work in-
clude new definitions for weakly minimax universal, strongly min-
imax universal, and weighted universal sequences of fixed- and
variable-rate multiresolution source codes that extend the corre-
sponding notions from lossless coding and (single-resolution) quan-
tization to multiresolution quantizers. A variety of universal mul-
tiresolution source coding results follow, including necessary and
sufficient conditions for the existence of universal multiresolution
codes, rate of convergence bounds for universal multiresolution
coding performance to the theoretical bound, and a new multires-
olution approach to two-stage universal source coding.

Index Terms—Embedded, multiuser information theory, pro-
gressive transmission, successive refinement, universal source
coding.

I. INTRODUCTION

M ULTIRESOLUTION source codes, also known as pro-
gressive transmission codes, embedded source codes,

and successive refinement codes, are source codes giving em-
bedded data descriptions to allow decoding at a variety of rates
(and hence reproductions at a variety of resolutions). For ex-
ample, Fig. 1 shows a single source description of total length

bits per symbol. Reading only the first bits per
symbol yields a source reproduction with per-symbol average
distortion ; reading an additional bits per symbol, for a
total description of bits per symbol, yields a source
reproduction with per-symbol average distortion such that

; and so on.
Multiresolution source coding systems are useful for a wide

variety of applications where access to source descriptions at
a variety of resolutions enhances system performance. Exam-
ples of such applications include wireless communication sys-
tems, multiuser systems like the World Wide Web, and database
storage and query systems. For example, in a wireless commu-
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Fig. 1. A four-resolution description of a magnetic resonance brain scan.
Decoding the firstR bits per symbol of the binary description yields a
reproduction with distortionD . Decoding an additionalR bits per symbol,
for a total rate ofR +R bits per symbol, yields a reproduction of distortion
D , and so on.

nication system, the rate available for communication may vary
as a function of time. Making full use of all of the available
rate at any given instant requires either extensive buffering (to
spread the rate out evenly across time) or access to a rate-scal-
able source description (to use the maximum rate available at
any particular instant). While the buffering approach guaran-
tees the most consistent quality of performance, it is impractical
for many applications. For example, in real-time communica-
tions systems carrying voice or video, the introduction of the
delays required for buffering is unacceptable. Another family
of applications for multiresolution codes falls under the heading
of multiuser systems. Multiuser systems are characterized by a
variety of users with varying needs and system capabilities ac-
cessing the same information source. For example, on the World
Wide Web, a single image stored on a website may be accessed
by hundreds or thousands of users with vastly different com-
putational capabilities, communications resources, and repro-
duction quality requirements. For these types of applications,
a single-source description that can be decoded at a variety of
rates adds greater flexibility to the system, thereby allowing
each user to access the same data set with the tradeoff between
description length and reproduction quality that is appropriate
for that user’s needs. Finally, in large database storage and query
systems, multiresolution source codes allow queries to be ac-
complished at a variety of resolutions so that fast searches may
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be done on the low-resolution source descriptions while more
thorough analysis of especially promising subsets of the data
may be done using more accurate source reproductions.

Like traditional (single-resolution) source codes, multireso-
lution source codes are data dependent. Thus, the optimal mul-
tiresolution source code for a particular source guarantees good
coding performance on that source, but may achieve poor per-
formance on other sources. Fig. 2 illustrates this point by com-
paring the performance on a magnetic resonance brain scan of
two different families of (locally) optimal multiresolution vector
quantizers (MRVQs) [1], [2]. In each case, the training and test
sets for the MRVQs do not overlap. In one case, the MRVQs are
optimized for a collection of magnetic resonance brain scans,
thereby yielding a code that is well matched to the data to be
compressed. In the other case, the MRVQs are optimized for a
portrait image, yielding a mismatched source code. The perfor-
mance degradation associated with going from a matched code
to a mismatched code in this example is quite severe.

In the interest of designing source-independent multiresolu-
tion source codes to achieve good performance across a broad
class of possible sources, this work, originally presented in
[3], introduces the notion ofuniversalmultiresolution source
coding. Roughly speaking, a sequence of multiresolution
source codes is here defined to be universal if it asymptotically
achieves the best possible performance on every source in some
broad class of possible sources. This performance is achieved
without a priori information about the source in operation.
Thus, universal multiresolution source codes are the natural
multiresolution extension of traditional (single-resolution)
universal quantizers.

While universal single-resolution codes have been studied
quite extensively,1 the notion of universal multiresolution
source coding is entirely new. This work therefore begins,
in Section II, with a brief introduction to multiresolution
source coding definitions and bounds. Definitions for universal
sequences of multiresolution source codes and a proof of their
existence follows in Section III. Section IV gives constructive
arguments for universal source code design, demonstrating
the rates of convergence achievable by universal sequences
of multiresolution source codes, and briefly discussing issues
relevant to practical multiresolution code design.

II. PRELIMINARIES AND DEFINITIONS

Consider a stationary random process ,
with alphabet , and let be some jointly distributed random
variable on alphabet . More precisely, assume that
is defined on a standard, measurable space , so that reg-
ular conditional probabilities exist and the ergodic decomposi-
tion holds [13]. For simplicity, we guarantee this standard space
by assuming that is a Polish alphabet (complete, separable
metric space) and either is Polish or is a function of
[13]. (For example, might describe an ergodic mode of .)
Let and denote the marginal distribution of and ,

1See, for example, [4]–[12]. In particular, [12] introduces the “quantization
interpretation” to universal coding upon which this work’s “multiresolution
quantization interpretation” is based.

Fig. 2. A demonstration of the data-dependent nature of multiresolution
source codes. Each curve gives the rate and distortion performance of a single
multiresolution source code on the same brain scan image. The curves differ
in the “priorities” placed on the different resolutions and in the training sets
used for code design. The performance of codes trained on a training set of
portrait images (dashed lines) and brain scans (solid lines) are included. The
penalty for mismatch between the training and test sets is quite severe in this
example, as shown by the large distortion increase of the solid curves relative
to the dashed curves.

respectively, and use to denote the regular conditional distri-
bution of given that . For each , the distribu-
tion is assumed to be stationary but not necessarily ergodic.
For any integer , the addition of a superscript to or

, giving and , denotes the corresponding marginal on
an -block of .

For any fixed integer , let denote the number
of resolutions in a multiresolution source code. For each

let and denote the
abstract reproduction alphabet and nonnegative, measurable
distortion measure (orfidelity criterion), respectively, used
in the th-resolution source reproduction. Assume that for
each and each there exists a refer-
ence letter (possibly dependent on) such that

for all . Further, assume that
for each , is continuous in
for all . Typically, the reproduction alphabets and
distortion measures are the same for allresolutions, in which
case and for all . For any

, , and , is the
additive distortion measure defined by

Define an -resolution binary prefix codeto be any prefix
code giving nested source descriptions, each of which inde-
pendently meets the prefix condition. For example, consider a
set of binary strings such that for each

, has a unique decomposition intofragments; that is,
. For convenience, assume that

for all , where denotes the number of bits
in the th fragment.2 The lengths of the fragments need not be
equal. Each string gives an embedded collection of

2An L-resolution code with a resolution-` description of rate0 can be repre-
sented as an(L� 1)-resolution code.
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binary descriptions ,
. For each , define the set

as

with

If is a binary prefix code for each , then
is an -resolution binary prefix code.

Given an integer , let denote an
-resolution block quantizer with block length, measurable

encoder , and measurable decoder

Thus, the encoder and decoder together map the input
space of possible source vectors to the output space

of -resolution source reproductions by way of an
-resolution binary prefix code .
The -resolution encoder and decoder may be decom-

posed into nested multiresolution encoders
and decoders . For each and
any , the encoder and decoder

together map the input space of possible source vec-

tors to the output space of possible -resolution re-
productions by way of the-resolution binary prefix code .
The notation is used to describe theth increment in the
binary description given by , and the notation is used
to describe the resolution-source reproduction. Thus, for any

and

and

imply and . (Notice that the th de-
coder requires only the first increments of the -resolu-
tion binary source description .)

Given any multiresolution block quantizer the (in-
stantaneous) rate and distortion vectors associated with coding
source vector with quantizer are

Here

and

imply, for each , that an embedded description
of total length bits is used in describing to resolu-
tion with and that the distortion associated with theth

reproduction is . For any , the expected rate and distor-
tion in describing symbols from with code are

Multiresolution block quantizers fall into two subclasses:
fixed-rate codes and variable-rate codes. If is afixed-rate
multiresolution source code, then is finite and there exists
a collection of constants such that for each

, for all . Note that
may vary as a function of. Thus, a fixed-rate -resolution
code uses a fixed rate in each resolution but the rate may
vary from resolution to resolution. If is a variable-rate
multiresolution source code, then may be finite or count-
ably infinite, and the length of binary description is
not determined by the resolution. In the remainder of this
work, and denote the classes of fixed-
and variable-rate block-length-, -resolution source codes,
respectively. Clearly, .

Before appropriate definitions can be given for fixed- and
variable-rate universal multiresolution quantizers, it is nec-
essary to understand the optimal performance theoretically
achievable in each of these scenarios. The discussion that
follows summarizes results from [14] on this topic. Earlier
multiresolution source coding bounds for memoryless sources
appear in [15]–[17]. Since the optimal performances for
fixed- and variable-rate codes differ—and hence the resulting
definitions for universal codes differ as well—the two families
of codes are treated separately in the subsections that follow. A
discussion of the similarities and differences between the two
families of results follows.

A. Fixed-Rate Multiresolution Quantizers

By definition of fixed-rate coding, the rate vector achieved
by a fixed-rate multiresolution quantizer does not vary as
a function of the data being coded. Thus, optimization
of fixed-rate multiresolution quantizers is here performed
for a fixed target rate vector. Given a rate vector , let

denote the class of fixed-rate,
block-length- -resolution quantizers achieving (per-symbol)
rates for all and let

denote the set of distortion vectors achievable (to
arbitrary accuracy) on by some for
any . More formally, is defined as

with
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where for any set , denotes the closure (with respect
to the Euclidean norm) of . Since is convex
for stationary sources [14, Lemma 2] and closed by defini-
tion, it is entirely characterized by its support functional [18,
p. 135] , here called theoperational fixed-rate
distortion-rate function. For any vector of Lagrangian pa-
rameters such that for all

and

(1)

The vector may be interpreted as the planar direction
or “slope” of a tangential hyperplane supporting the space
of achievable -vectors at a single point. Given a source

, the support functional describes the
optimal performance theoretically achievable (the OPTA) by
a quantizer of any dimension.

For any , let

denote the instantaneous and expected Lagrangians, respec-
tively, associated with coding with code . Then, given
the assumed stationarity of , an alternative to the definition
of given in (1) is

(2)

[14, Lemma 14]. Function describes the
optimal performance theoretically achievable by any quantizer

(the th-order OPTA), here called the
th-order fixed-rate operational distortion-rate functionand

given by

(3)

The “distortion-rate function” for source and rate vector
is defined as

(4)

where

Here denotes, for some fixed “test chan-

nel” from to , a conditional mutual informa-

tion between and given

If is Polish and is ergodic, then (under the earlier de-
scribed constraints on the distortion measures )

(5)

by [14, Theorem 2]. If is not ergodic, then let denote
the ergodic components of . The ergodic component is
equal to the stationary measure induced by the limiting relative
frequencies

on events in a countable generating field for the-field on
which and for each are all defined, and hence the
ergodic decomposition is the same for all, . Then,
under the same conditions as used in (5)

(6)

by [14, Theorem 5]. Notice that if is ergodic, then

Thus, (5) and (6) combine to yield a single result. For any sta-
tionary ergodic or stationary nonergodic source

(7)

provided that: is Polish; for each there exists
a reference letter such that ; and
for each , is continuous in for
all .

B. Variable-Rate Multiresolution Quantizers

Let denote the space of rate-distortion vectors
achievable (to within arbitrary accuracy) through

variable-rate -resolution source coding. More formally

with

Notice that describes the space of rate-distor-
tion vectors achievable byany variable-rate code,
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while the set , discussed earlier, describes
only the subset of distortion vectors achievable by fixed-rate
codes with rate vectors less than .

If is stationary, then the set is convex [14, Lem-
ma 2] and closed, and is thus entirely characterized by its sup-
port functional [18, p. 135] , here called the
operational variable-rate distortion-rate function, where

(8)

For any

and

such that for all and

may be interpreted as the planar direction or “slope”
of a tangential hyperplane supporting the space of
vectors achievable through variable-rate coding. The support
functional describes the optimal performance
theoretically achievable on source by an -resolution quan-
tizer of any dimension (the OPTA).

For any code , let

denote the instantaneous and expected Lagrangians, respec-
tively, associated with coding with variable-rate code

. The equation for given in (8) may
alternatively be given as

(9)

[14, Lemma 14]. The function describes
the optimal performance theoretically achievable by a
block-length- , variable-rate -resolution quantizer on source

(the th-order OPTA), here called the “th-order vari-
able-rate operational distortion-rate function” and given by

(10)

For variable-rate codes, the “distortion-rate function” for
source is given by

(11)

where

If source is ergodic, then

[14, Theorem 3]. If is not ergodic, then, under the conditions
of (5)

since both and admit the er-
godic decomposition [14, Theorems 7 and 8]. Thus, once again,
the results can be summarized in a single equation. For any sta-
tionary-ergodic or stationary-nonergodic source

(12)

provided that: is Polish; for each there exists
a reference letter such that ; and
for each , is continuous in for
all .

III. U NIVERSAL MULTIRESOLUTION QUANTIZERS

A. Definitions

For any , define thefixed-rate- re-
dundancyof as

Likewise, for any , define thevariable-rate
redundancyas

By (2), (3), (9), and (10), both redundancies are nonnegative.
Given a sequence of codes such that

for all

is a universal sequence of fixed-rate multiresolution
quantizers if

as

Similarly, given a sequence of codes such that

for all
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is a universal sequence of variable-rate multiresolution
quantizers if

as

More specifically, a sequence of codes isweakly minimax
universalif the convergence is pointwise in, strongly minimax
universal if the convergence is uniform over , and
weighted universalif the convergence is in expectation with
respect to .

B. Discussion and Proof of Existence

It is interesting to notice that the definitions for the distor-
tion-rate function given in (4) and (11) differ. In particular, for
fixed-rate coding, the surface was parameterized by ,
while for variable-rate coding the surface was parameterized
by . It is therefore important to check that the set of

points described by these two functionals are the
same. This check is easily accomplished as

which together imply that the spaces described by the two
functionals are identical. It is interesting to note, however,
that while meets the ergodic decomposition,

does not[14]. Roughly speaking, the lower
convex hull of the set of achievable vectors for a sta-
tionary nonergodic source is equal to the weighted combination
of the lower convex hulls of achievable vectors for
that source’s stationary ergodic components, where the com-
bination is taken at points of equal “slope” rather than points
of equal rate. This parallels the findings for single-resolution
codes given in [19].

As a result of the above discrepancies, the optimal perfor-
mance theoretically achievable by block multiresolution source
coding in general differs for fixed- and variable-rate source
codes. In particular, if is nonergodic, then

and, thus, the space of distortion-rate vectors achievable through
fixed-rate coding is a subset of the space of distortion-rate vec-
tors achievable through variable-rate coding, as shown in [14].
Thus, a sequence of fixed-rate codes that is “optimal” for source

in the sense that it asymptotically achieves the fixed-rate
OPTA is not necessarily optimal for source

from a variable-rate coding perspective. As a result, while all
fixed-rate multiresolution quantizers are also variable-rate mul-
tiresolution quantizers, auniversalsequence of fixed-rate mul-
tiresolution quantizers is not necessarily auniversalsequence of
variable-rate multiresolution quantizers. (Notice that the same
observation holds also in the single-resolution case.)

The relationship between weakly minimax universal,
strongly minimax universal, and weighted universal sequences
of single-resolution source codes is discussed at some length in
[12]. The conclusion of that argument, which applies equally
well to sequences ofmultiresolution codes, is that from a
practical coding perspective, the differences between the three
types of universality seem rather minor. For example, the
existence of a weighted universal sequence of codes implies,
for any , the existence of a strongly minimax universal
sequence of codes on some set with .
Thus, the existence of the “weakest” form of universal code
in some sense implies the existence of the “strongest” form
of universal code. The remainder of this work includes results
on all three forms of universality but emphasizes the weighted
universal case.

The first step in the study of universal sequences of multires-
olution quantizers is a proof of their existence. The following
theorem gives a necessary and sufficient condition for the exis-
tence of weighted universal sequences of multiresolution quan-
tizers under the assumption that describes a stationary, er-
godic source for each . The proof of Theorem 1 appears
in the Appendix.

Theorem 1: Assume that is stationary and ergodic for
each . Weighted universal codes exist for if
and only if the OPTA has an ergodic decomposition.

Thus, under the conditions of Theorem 1, weighted universal
sequences of multiresolution quantizers exist for the fixed-rate
case if and only if

and, for the variable-rate case, if and only if

Both of these ergodic decompositions are satisfied under
the following three conditions: is Polish; for each

there exists a reference letter such that
; and for each ,

is continuous in for all . Theorem 1 justifies
the differences between the parameterizations of the fixed- and
variable-rate redundancies. In particular, fixed-rate codesmust
be compared at the same rate rather than across rates at the
same Lagrangian parameter since the Lagrangian

does not have an ergodic decomposition [14].
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The rate at which the expected redundancy of a universal
sequence of multiresolution quantizers converges to zero
serves as a comparative performance measure for competing
algorithms. The redundancies and

may each be broken into a sum of
two nonnegative terms, where the first term describes the
difference between the performance of a particular code and the

th-order OPTA and the second term describes the difference
between the th-order OPTA and the OPTA. This work follows
the lead of [12] by focusing exclusively on the first term,
called the th-order redundancyand given, for the fixed- and
variable-rate cases, respectively, by

The th-order redundancy describes the price paid for uni-
versality and is the only part of the redundancy that varies
from quantizer to quantizer. The rate of convergence of the

th-order OPTA to the OPTA, which describes the penalty
associated with finite dimensionality, has been studied for
single-resolution quantizers in works such as [20], [21], [9],
[22]; for multiresolution quantizers, this rate of convergence
remains an interesting open topic for future investigation.

To simplify the following discussion on rates of convergence,
the notation for fixed- and variable-rate coding are here com-
bined into a single notation

(13)

For variable-rate coding

and is exactly the th-order redun-
dancy of code . For fixed-rate coding

Strictly speaking, this redundancy should be calculated only for
quantizers in the class of fixed-rate quantizers
with

for all

However, for any sequence of quantizers such that
for all but

for one or more , if
is bounded above by some sequence that converges to
zero, then there exists another sequence of fixed-rate quan-
tizers such that and

likewise converges to zero for any
appropriately chosen. A formal statement and proof of this

result appear in Lemma 1 in the Appendix. This argument,
which parallels an argument given for single-resolution codes,
justifies the use of the same form of redundancy term in both
fixed- and variable-rate multiresolution quantizers.

IV. TWO-STAGE UNIVERSAL MULTIRESOLUTION QUANTIZERS

A two-stage single-resolution quantizer (e.g., [23]–[25],
[12]) is a source code that describes a data sequence in two
stages. The first-stage description encodes the choice of a single
block-length- quantizer from some collection of available
block-length- source codes. The second-stage description
encodes a data vector using the chosen code. The discus-
sion that follows treats the rate of convergence of weighted
universal sequences of two-stage multiresolution quantizers.
The two-stage multiresolution quantizers introduced here
generalize the two-stage approach to universal lossy source
coding described in [12] from the single-resolution case to the
multiresolution case.

An interesting question arises in the generalization of two-
stage coding from single-resolution quantization to multires-
olution quantization. In which resolution of a multiresolution
source description should the first-stage source description be
given? Clearly, one possible answer to this question is that the
first-stage description can be given entirely in the first-resolu-
tion data description. One possible justification for this choice
arises from the fact that of the incremental descriptions, only
the first-resolution source description is used by all decoders

. Thus, only by incorporating the first-stage
coding information into the first-resolution source description
can this choice be fully known to all of the incremental decoders
in . This choice is also reasonable because the length of the
first-stage description, when amortized over the lengthof the
data sequence to which it pertains, is asymptotically equal to
zero for any universal code.

Yet placing the entire first-stage description in the first-reso-
lution source description also has drawbacks. In particular, for
practical coding, the coding dimensionmay be quite small. In
this case, the optimal per-symbol rate needed to give the first-
stage description may represent a significant portion of (or even
exceed) the available first-resolution coding rate. Placing the
entire first-stage description in the first resolution may therefore
place an undue burden on the first-resolution source code.

One alternative for alleviating the burden on the first-resolu-
tion code, at least in part, is to spread the cost of the first-stage
description over all resolutions. This approach is motivated
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not only from a practical coding perspective, as described above,
but also from an optimal universal coding perspective. In partic-
ular, for single-resolution codes, the optimal first-stage coding
rate for any dimension may vary (by a constant factor) as
a function of the target source coding rate (see, for example,
[12, Sec. III, Case 1]. Since each resolution in a multiresolu-
tion source code has a different target rate, it seems reasonable
to postulate that the optimal first-stage coding rate for the first
resolution may differ from the optimal first-stage coding rate for
later resolutions, making the idea of spreading the first-stage de-
scription over multiple resolutions even more attractive. This ap-
proach generalizes the quantization interpretation of two-stage
universal source codes from single-resolution to multiresolution
first-stage codes. That is, just as the first-stage encoder and de-
coder of a single-resolution source code may be viewed as a
quantizer quantizing the space of dimension-single-resolution
quantizers, the first-stage encoder and decoder of a multireso-
lution quantizer may be viewed as a multiresolution quantizer
quantizing—first coarsely and then to higher and higher resolu-
tions—the space of dimension-multiresolution quantizers.

This section includes descriptions of a variety of rate of con-
vergence results for weakly minimax and weighted universal se-
quences of multiresolution quantizers. The arguments appearing
in this section give upper bounds on the optimal rate of conver-
gence using constructive proofs with two-stage multiresolution
quantizers. The use of single-resolution first-stage source de-
scriptions leads to arguments similar to those resulting from the
quantization interpretation of two-stage coding given in [12]. As
a result, the proofs of results using single-resolution first-stage
descriptions are excluded for the sake of brevity. The use of mul-
tiresolution first-stage source descriptions requires additional
care, and, thus, the multiresolution first-stage source coding re-
sults are included in their entirety.

Let be a measurable mapping from the source
alphabet to some -resolution binary prefix code , and let

, be a collection of block-length- -resolution
quantizers. For each , the quantizer
has measurable-resolution encoder

and decoder

Thus, for each , the th incremental encoder
and decoder are indexed by the first increments

of the description of . A multiresolution quantizer
is a two-stage multiresolution quantizer if its encoder

and decoder
take the following forms:

and

Here indicates that is formed by concate-
nating binary strings and and

The case where the entire first-stage source description is given
in the first resolution (using a single-resolution first-stage code)
may be treated by setting to the empty string for all
and all . (Rate- descriptions in the second-stage code are
again disallowed.)

Now suppose that for each , is a product code
created by using some block-length-multiresolution quan-
tizer times. (For simplicity, assume that divides

evenly.) Then for any and any

and

The first stage of our multiresolution quantizer may itself
be thought of as a multiresolution quantizer

with encoder as described above and de-
coder , where

Thus, the first-stage quantizer maps the input space of pos-
sible data vectors to the output space of multiresolution quan-
tizers by way of a binary multiresolution prefix code .

Given a two-stage multiresolution quantizer with first-
stage multiresolution quantizer , the (instantaneous) rate
and distortion of the two-stage code are
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where

denotes the (instantaneous) rate of the first-stage en-
coder . Combining these two results, the redundancy

of the two-stage code equals

(14)

The first-stage encoder that minimizes (14) minimizes the inte-
grand pointwise, giving the following result.

Nearest Neighbor First-Stage Multiresolution Encoders:For
any two-stage multiresolution source code with
first- stage quantizer , there exists a
two-stage multiresolution source code with first-stage
quantizer such that

(15)

for all . The first-stage encoder is given by

(16)

for each and is called an “optimal” or “nearest
neighbor” first-stage multiresolution encoder with respect to
first-stage multiresolution decoder . When is countably
infinite, a proof is required to demonstrate that the minimum
in (16) is always achieved. This proof appears in Lemma 2 in
the Appendix.

The nearest neighbor first-stage multiresolution encoder de-
fined above gives a two-stage coding analogy to the nearest
neighbor multiresolution quantizer defined in [1], [2] and used

Fig. 3. Experimental results for single- and multiresolution nonuniversal
and universal codes. Three sets of curves are included. The squares show the
performance of a collection of VQs (connected by a dashed line to note that
the performances are achieved bydifferent codes) and a family of MRVQs.
The circles and triangles show corresponding results for WUVQ (dashed line)
and WUMRVQ (solid lines) with two different first-stage coding rates. The
weighted universal codes give up to 6 dB of performance improvement over
their nonuniversal counterparts on the collection of medical brain scans used
in these experiments.

there for practical multiresolution vector quantizer (MRVQ) de-
sign. Just as single-resolution vector quantization (VQ) gener-
alizes to weighted universal vector quantization (WUVQ) using
an iterative descent design technique [23], [12], MRVQ likewise
generalizes to weighted universal multiresolution vector quan-
tization (WUMRVQ) using a similar approach. Results demon-
strating the experimental performance benefits of WUMRVQ
over MRVQ appear in Fig. 3.

While the optimal encoder is easily implemented in prac-
tical weighted universal multiresolution vector quantizers, for
the purpose of theoretical analysis, the optimal encoder is more
difficult to analyze than is the omniscient multiresolution first-
stage encoder defined next and used through the remainder of
this work.

Omniscient First-Stage Multiresolution Encoders:Con-
sider a two-stage multiresolution source code with
first-stage quantizer . The first-stage encoder

is called an omniscient first-stage encoder if it works
directly on rather than on . Thus, the omniscient
first-stage encoder chooses a second-stage code
based on the true underlying source in operation (rather than the
vector produced by that source). The omniscient first-stage
encoder, like the original first-stage encoder, is assumed to be
measurable. For any omniscient first-stage encoder

for all by (15). Thus, the omniscient multiresolution
first-stage encoder, while not achievable in practice, does no
better than the optimal (nearest neighbor) multiresolution first-
stage encoder, which can be achieved in practice. As a result,
the redundancy of the best two-stage multiresolution quantizer
with an omniscient first-stage encoder gives an upper bound on
the redundancy for the best two-stage multiresolution quantizer.
The remainder of this section focuses on the derivation of such
a bound.
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Given a two-stage multiresolution quantizer with omni-
scient first-stage quantizer , the (instantaneous)
rate and distortion of the two-stage code are

where denotes the (instantaneous) rate of the om-
niscient first-stage encoder . Thus, the redundancy of the
two-stage code equals

The resulting redundancy can be broken into two terms, the
first of which compares the given code’s performance to
the th-order OPTA and the second of which compares the

th-order OPTA to the th-order OPTA. The focus of this
work is on the first of those terms, called the “ th-order
redundancy” and defined as

Thus,

By convention, the th-order redundancy will only be cal-
culated for codes with second-stage coding dimension.

The th-order redundancy is of particular interest for
practical multiresolution source coding. For practical codes, the
code dimension cannot be allowed to grow without bound due
the complexity implications of such unrestricted growth. When
the coding dimension is fixed at some finite value, the asymp-
totic performance of the th-order redundancy asgrows
without bound describes the behavior of the given code on ar-
bitrarily large data sequences. If as , then
the given code’s performance using a code of dimensionap-
proaches the th-order OPTA for the source in operation. Thus,
the code’s performance is asymptotically optimal subject to the
fixed constraint on the code’s dimension.

Bounding the performance of two-stage multiresolution
quantizers with omniscient first-stage encoders leads to bounds
on the redundancy achievable in two-stage multiresolution
coding. Theorems 2 and 3 use single-resolution first-stage
quantizers. The coding strategy involves first describing the
source parameter and then describing the data using a
multiresolution code matched to the described source. The
parameter description is treated as part of the first-resolution
description. Proof of universality involves demonstrating, for
a particular set of possible sources, that the rate cost of
describing and the Lagrangian performance penalty for any
inaccuracies in that description are asymptotically negligible.
Theorems 2 and 3 give two such scenarios. The proofs follow
similar arguments to the corresponding proofs for single-reso-
lution codes [12, Theorems 3, 4] and are, therefore, omitted.

Theorem 2: Consider a space of possible distribution pa-
rameters such that . The set is assumed to be bounded
for fixed-rate coding but may be unbounded for variable-rate
coding. For each , suppose that there exists a multireso-
lution quantizer achieving the th-order OPTA on source

. Further, assume that the cost, inth-order redundancy, as-
sociated with coding source with quantizer is locally
quadratic in . That is, for each and , there exists a
neighborhood of and constant such that

for all . Then, for any and any that divides evenly,
there exists a two-stage multiresolution quantizer such
that

where is a constant dependent onand . Further, if
and are independent of for each , then is independent
of for each and, setting , there exists a weakly min-
imax sequence of multiresolution quantizers such
that
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Theorem 2 is interesting only if there exist collections of
sources satisfying the locally quadratic prop-
erty assumed there. In [12], the corresponding property for
single-resolution quantizers is shown to hold for any collection
of random processes parameterized by the vector

describing the sources with unknown meanand
standard deviation. The same result holds for multiresolution
quantizers, as shown in Lemma 3 in the Appendix.

Theorem 3: Consider a discrete spaceof possible distribu-
tion parameters. For fixed-rate coding, assume thatis finite.
For variable-rate coding, may be countably infinite. For each

, suppose that there exists a multiresolution quantizer
achieving the th-order OPTA on source . Then, for

any and any that divides evenly, there exists a two-stage
multiresolution quantizer such that

where is a constant dependent on. Thus, setting
, there exists a weakly minimax sequence of multiresolution

quantizers with

For finite, the codes are strongly minimax universal as well.

The use of multiresolution first-stage quantizers complicates
the story considerably. Given a two-stage multiresolution code
with a multiresolution, omniscient first-stage quantizer, the
first-stage quantizer’s description of is a multiresolution
description. Thus, only the first-resolution description ofis
used in choosing the code for the first-resolution description of

; only the first- and second-resolution descriptions
of are used in choosing the code for the second-resolution
description of ; and so on.

Multiresolution first-stage quantizers are motivated by uni-
versal coding problems where the accuracy required in the de-
scription of varies as a function of the second-stage coding
rate. In such examples, the only hope for achieving optimal
rates of convergence lies in using a multiresolution first-stage
quantizer. Only by using a multiresolution first-stage quantizer
can the first-stage description rate (and thus the resulting redun-
dancy) vary as a function of the resolution.

A variety of results on multiresolution first-stage quantization
follow. These results treat weighted universal codes. In weighted
universal multiresolution source coding, the goal is to minimize
the expected th-order redundancy

The first component of this expression treats the expected rate
spent in providing a (multiresolution) description of random
variable . The other describes the expected “distortion”—ac-
tually a redundancy—achieved by this description. Thus, min-
imization of the expected redundancy requires optimization of

some sort of “rate–distortion” tradeoff. The following defini-
tions help make these ideas concrete.

Define the rates of the multiresolution first-stage quantizer as

for each , and define the corresponding
(weighted) “distortion” as

The operational “distortion-rate” function captures
the tradeoff between rate and distortion as

By definition of , for any for all
, any , and any , there exists an omni-

scient first-stage quantizer such that

for all and

The expected redundancy of the two-stage multiresolution code
with the multiresolution first-stage quantizer is

If, for each , as for all
, then the expected th-order redundancy

can be made arbitrarily small
by appropriate choice of , , , and . In particular,
choosing sufficiently large makes the difference between

and
small; then choosing sufficiently large makes

small; next choosing sufficiently large makes
small; and, finally, choosing small gives

the desired result.
The above discussion demonstrates the existence of

weighted universal codes for sources where, for each,
decays to zero as grows without bound.

More careful examination yields insight into the rate of
convergence of for these uni-
versal codes. Finding the optimal rate of convergence for

involves finding the value of
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at which is minimized. Note
that may be interpreted as a
Lagrangian for the minimization of subject to a
collection of constraints on , . Note further
that as grows, the Lagrangian constants
decay to zero, thereby loosening the constraints on.

If is differentiable with respect to for each
, then the optimal for any can be found

by taking partial derivatives of
with respect to for each and setting those
partial derivatives equal to zero. In the case where is
not differentiable, a convex, differentiable, decreasing upper
bound on can be used as a replacement for
in the minimization. The optimal performance with respect
to this upper bound provides an upper bound to the optimal
performance with respect to .

Theorem 4: Let be a convex, differentiable upper
bound on the “distortion-rate” function for first-stage
omniscient multiresolution quantizers .
Further, assume that, for each, as
for each . Then, for each and each dividing

, for any there exists a two-stage multiresolution source
code with

where satisfies

(17)

for each . Further, if is independent of
, so that for all , then (setting )

there exists a weighted universal sequence of multiresolution
source codes such that

Proof: By definition of and the given properties
of , for any and any , there exists an
omniscient first-stage quantizer such that
for all and

Thus, there exists a two-stage multiresolution code with
an omniscient first-stage quantizer such that

If for all , then, setting

Since approaches as for each
, can be made arbitrarily

small by first choosing the components of to be large
enough such that is small, and then choosing large
enough so that is small. Thus, since
is the -vector that minimizes
for each , must approach
zero as grows without bound. Hence there exists a sequence
of two-stage multiresolution source codes with

approaching zero at the given
rate.

The following corollary demonstrates the implications of
Theorem 4 under a variety of conditions on .

Corollary 1: If

and as , then for any , there
exists a sequence of multiresolution source codes
such that

where . In particular, we have the fol-
lowing conditions.

• When has finite dimension

(see Lemma 4 in the Appendix). Since is inde-
pendent of , setting and allowing to grow
without bound gives a weighted universal sequence of
multiresolution source codes with performance that con-
verges to the th-order OPTA as

• For fixed-rate- coding

where (see Lemmas 5 and 6 in the
Appendix). Thus, for any , there exists a sequence of



EFFROS: UNIVERSAL MULTIRESOLUTION SOURCE CODES 2125

multiresolution source codes with performance that con-
verges to the th-order OPTA as

Allowing to grow with at the optimal rate gives a
weighted universal code with con-
vergence.
Proof: Given

Hence may be found as the solution to theequations
described in (17), giving

and

Combining these results as

gives the desired result.

Corollary 2: If

when for each , then for any ,
there exists a sequence of multiresolution source
codes such that

In particular, we have the following condition.

• If is countable and is finite, then

for all since bits in the
first resolution of the first-stage source description suf-
fices to describe perfectly. In this case, there exists a
sequence of two-stage multiresolution source
codes such that

Proof: Given for any , by Theorem
4, there exists a sequence of multiresolution source
codes such that

which gives the desired result.

V. SUMMARY

This work introduces the concept of universal multiresolution
source coding and considers the existence, rate of convergence,
and design of universal multiresolution codes. Central to the dis-
cussion is a generalization of the quantization interpretation of
two-stage universal source coding from single- to multiresolu-
tion source coding. Two ways of achieving the generalization
are considered. When the rate required for the code descrip-
tion in the first-stage description is independent of the desired
coding rate, then a single-resolution first-stage quantizer is used
with a multiresolution second-stage code. The single-resolution
first-stage quantizer’s role in quantizing the space of possible
sources (or, equivalently, the space of possible multiresolution
codes) is a straightforward extension of the role played by the
first-stage quantizer in traditional two-stage codes. When the
rate required for the code description in the first-stage descrip-
tion is a function of the desired coding rate, then the single-res-
olution first-stage quantizer is replaced with a multiresolution
first-stage quantizer. In this case, in resolutionthe first-stage
quantizer may describe the source or code to the accuracy re-
quired for the resolution-data description. The first-stage de-
scription may then be refined in future resolutions if greater ac-
curacy in the source description is required. Proof of existence
and redundancy results are given under both scenarios.

APPENDIX

Theorem 1: Assume that is stationary and ergodic for
each . Weighted universal multiresolution codes exist for

if and only if the OPTA has an ergodic decomposi-
tion.

Proof: By the definition of weighted universal coding for
fixed-rate multiresolution quantizers, a sequence
of quantizers with for all is a
weighted universal sequence of fixed-rate multiresolution quan-
tizers if and only if

as
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where

Thus, if the ergodic decomposition

(18)

holds, then, because there exists such that
for all and

(18) implies that for the same
sequence of fixed-rate multiresolution quantizers.
On the other hand, notice that for any and any

and

so can only approach zero if (18)
holds.

The argument for variable-rate coding is similar. In particular,
a sequence of quantizers with

for all

is a weighted universal sequence of variable-rate multiresolu-
tion quantizers if and only if
as , where

Thus, by an argument similar to the one given above,
if and only if the following

ergodic decomposition holds:

(19)

Lemma 1: Suppose that is a sequence of -di-
mensional real vectors such that for all
and as for each . Sup-
pose further that for each , is a sequence
of positive numbers that converges to zero asgrows without
bound. If for each rate vector there exists a sequence of mul-
tiresolution quantizers such that for each

and

for each , then for each positive rate vector there exists
a sequence of quantizers such that for each

and

for sufficiently large, provided that the planar direction de-
scribed by satisfies the constraints

for all .
Proof: Since is convex in (by a

simple time-sharing argument) [14] and given the condition
on , there exists a rate vector with for all

such that for any with
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Consider sufficiently large so that

for all

Then there exists a

such that

giving the desired result.

Lemma 2: For each and any such that
for all and , the infimum

is achieved.
Proof: Pick any , and let

Since is a multiresolution prefix code, the number of strings
that satisfy must be finite. Thus,

since for all and all ,
the infimum is achieved.

Lemma 3: Let be an arbitrary real-valued random
process with measure , such that describes the
source’s mean and standard deviation . For any

, let be the optimal dimension- multiresolution
quantizer for source . If the th-resolution distortion measure

for all , then

for all and all .
Proof: For any , the quantizer can be

obtained from the quantizer by first scaling each compo-

nent of by and then translating by. Thus,

Lemma 4: Consider a space of possible source parame-
ters such that for some fixed integer . In the case of
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fixed-rate coding, assume thatis bounded. In the case of vari-
able-rate coding, may be unbounded if the differential entropy

Suppose that for each , there exists a code that
achieves the th-order OPTA for source . Suppose further
that for all and each , there exists a constant
such that

Then there is a constant dependent on such that

Further, if there exists a constantsuch that for all ,
then does not depend on .

Proof: This result uses a single-resolution first-stage
quantizer. Designing that first-stage quantizer involves break-
ing into nested hypercubes—each with a representative
value—and using the description of the hypercube in which
lies as an approximate description of. Since the first-stage
code is a single-resolution code, the argument is similar to the
corresponding argument for weighted universal single-resolu-
tion codes [12, Lemma 7].

Lemma 5: Fix integer and rate vector such that

is an integer for each , and suppose
that almost surely- . Then, for fixed-rate-
coding under the squared-error distortion criterion

for some , where equals the number
of parameters in theth resolution of a fixed-rate- code.

Proof: Let be the optimal fixed-rate-
multiresolution quantizer for . Since the optimal encoder

must be a nearest neighbor encoder, describing for each

the -dimensional, resolution-
codewords suffices to completely describe . Further,
since the codewords of are the only information about
that is required by the decoder, describing to the decoder
is equivalent to describing to the decoder. Thus, there is no
loss of generality associated with treatingas the vector of
dimension

that describes the full multiresolution codebook. Since
almost surely, under this treatment

almost surely.

For each , partition uniformly into
bins by partitioning each dimension into bins and

then taking the cross product. Taking the cross product of these

partitions gives a ( )-bin partition of .
Now consider an omniscient two-stage multiresolution quan-
tizer that describes by describing the bin into which

falls. (If , then the first-stage quantizer en-
coder describes the bin whose center is closest to.) Let the
second-stage multiresolution quantizer be ,

where is a representative value at the center of the chosen bin,
is the multiresolution quantizer decoder described by, and
is the corresponding nearest neighbor encoder. Notice that

decoding the th-resolution description of data vector re-
quires only the th-resolution codewords. Thus, an-resolution
description of suffices, where for each ,
is a rate- description of the resolution-codewords of .
Notice that

for almost all . Thus,

giving the desired result.

Lemma 6: Choose an integer and rate vector such that

is an integer for each . Suppose that
for some . Then, for fixed-rate-

coding under the squared-error distortion criterion

for some , where .
Proof: Given that , by [12, Lemma 9]
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for each and each of the
fixed-length- binary strings . Thus, by [26,
Theorem 2], for each such there exists a constant
and a collection containing -vectors such that

Let be the collection of

fixed-rate- codes achieved by taking the cross
product of the sets for a fixed value of. Finally, let be
the collection of

-resolution source codes achieved by using a codebook from
in resolution for each .

By the above code construction, for any , there exists an
-resolution source code such that for each

and each fixed-rate- binary descrip-
tion

Let be the first-stage multiresolution quantizer
such that and . Then

giving the desired result.
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