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Universal Multiresolution Source Codes

Michelle Effros Member, IEEE

Abstract—A multiresolution source code is a single code giving R, R, R, R,
an embedded source description that can be read at a variety of Lt 1 ml
rates and thereby yields reproductions at a variety of resolutions. :
The resolution of a source reproduction here refers to the accu-
racy with which it approximates the original source. Thus, a re-
production with low distortion is a “high-resolution” reproduc-
tion while a reproduction with high distortion is a “low-resolu- L I
tion” reproduction. This paper treats the generalization of uni-
versal lossy source coding from single-resolution source codes to
multiresolution source codes. Results described in this work in-
clude new definitions for weakly minimax universal, strongly min-
imax universal, and weighted universal sequences of fixed- and
variable-rate multiresolution source codes that extend the corre-
sponding notions from lossless coding and (single-resolution) quan-
tization to multiresolution quantizers. A variety of universal mul-
tiresolution source coding results follow, including necessary and
sufficient conditions for the existence of universal multiresolution
codes, rate of convergence bounds for universal multiresolution
coding performance to the theoretical bound, and a new multires-
olution approach to two-stage universal source coding.

Index Terms—Embedded, multiuser information theory, pro-
gressive transmission, successive refinement, universal source
coding.

original

Fig. 1. A four-resolution description of a magnetic resonance brain scan.
Decoding the firstR; bits per symbol of the binary description yields a
|. INTRODUCTION reproduction with distortiorD,. Decoding an additionak, bits per symbol,

ULTIRESOLUTION source codes, also known as profpratotal rate ofR, + R- bits per symbol, yields a reproduction of distortion
M gressive transmission codes, embedded source cocPeZS,and so on.
and successive refinement codes, are source codes giving em- _ o
bedded data descriptions to allow decoding at a variety of raféi§ation system, the rate available for communication may vary
(and hence reproductions at a variety of resolutions). For €3& @ function of time. Making full use of all of the available
ample, Fig. 1 shows a single source description of total lendi®€ at any given instant requires either extensive buffering (to
>°7_, Ry bits per symbol. Reading only the fir&t; bits per spread the rate out evenly across time) or access to a rate-scal-
symbol yields a source reproduction with per-symbol avera@@'e source dgscription (to.use the maxjmum rate available at
distortion D; ; reading an additionaR, bits per symbol, for a @ny particular instant). While the buffering approach guaran-
total description ofR; + R, bits per symbol, yields a sourcet€es the most consistent quality of performance, itis impractical
reproduction with per-symbol average distortiBa such that for many applications. For example, in real-time communica-
D, < D;: and so on. tions systems carrying voice or video, the introduction of the
Multiresolution source coding systems are useful for a widtelays required for buffering is unacceptable. Another family
variety of applications where access to source descriptionso&t"‘pm'_Cat'onS for muItlresqlunon codes falls under the _headmg
a variety of resolutions enhances system performance. Exathmultiuser systems. Multiuser systems are characterized by a
ples of such applications include wireless communication sy&riety of users with varying needs and system capabilities ac-
tems, multiuser systems like the World Wide Web, and datab£&ssing the same information source. For example, on the World

storage and query systems. For example, in a wireless comM{ide Web, a single image stored on a website may be accessed
by hundreds or thousands of users with vastly different com-
, _ _ o _ g)utational capabilities, communications resources, and repro-
Manuscript received April 13, 1999; revised June 22, 2000. This work Wng . l . h f licati
supported in part by NSF CAREER Award MIP-9501977, NSF Award ccRUCtion quality requirements. For these types of applications,
9909026, under a grant from the Charles Lee Powell Foundation, and a grarsingle-source description that can be decoded at a variety of
from Caltech’s Lee Center for Advanced Networks. The material in this papgstes adds greater flexibility to the system, thereby aIIowing
was presented in part at the 1999 IEEE Information Theory Workshop (DEC&,E1 h h d ith th deoff b
Santa Fe, NM, February 1999. ch user to access the same data set with the tradeoff between
The author is with the Department of Electrical Engineering, MC 136-93, Catlescription length and reproduction quality that is appropriate
itforrr:iadlnftitute of Technology, Pasadena, CA 91125 USA (e-mail: effros@cgpr that user’s needs. Finally, in Iarge database storage and query
ech.edu). . . .
Communicated by N. Merhav, Associate Editor for Source Coding. systems, multiresolution source codes allow queries to be ac-
Publisher Item Identifier S 0018-9448(01)07013-4. complished at a variety of resolutions so that fast searches may

0018-9448/01$10.00 © 2001 IEEE



2114 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 6, SEPTEMBER 2001

tiresolution source code for a particular source guarantees good
coding performance on that source, but may achieve poor per-
formance on other sources. Fig. 2 illustrates this point by com- aooal-
paring the performance on a magnetic resonance brain scan of
two different families of (locally) optimal multiresolution vector
quantizers (MRVQSs) [1], [2]. In each case, the training and test 000f
sets for the MRVQs do not overlap. In one case, the MRVQs are
optimized for a collection of magnetic resonance brain scans,
thereby yielding a code that is well matched to the data to be
compressed. In the other case, the MRVQs are optimized foFig 2. A demonstration of the data-dependent nature of multiresolution
portrait image, yielding a mismatched source code. The perfa?yrce codes. Each curve gives the rate and distortion performance of a single
e . . . ) (Sﬁdjltiresolution source code on the same brain scan image. The curves differ
mance degradation associated with going from a matched c@fgie “priorities” placed on the different resolutions and in the training sets
to a mismatched code in this example is quite severe. used for code design. The performance of codes trained on a training set of

In the interest of designing source-independent mumresoﬁp_rtrait images (dashed lines) and brain scans (solid lines) are included. The
Ity for mismatch between the training and test sets is quite severe in this

. . pen
tion source Coldes to achieve QOOd perform?‘nce across a b@éﬁiple, as shown by the large distortion increase of the solid curves relative
class of possible sources, this work, originally presented tmthe dashed curves.

[3], introduces the notion ofiniversalmultiresolution source
coding. Roughly speaking, a sequence of multiresolutioaspectively, and usk; to denote the regular conditional distri-
source codes is here defined to be universal if it asymptoticabiytion of { X;} given that®© = 6. For eachy € A, the distribu-
achieves the best possible performance on every source in sgime P is assumed to be stationary but not necessarily ergodic.
broad class of possible sources. This performance is achievea any integern > 1, the addition of a superscriptto P or
without a priori information about the source in operationFy, giving P and P}, denotes the corresponding marginal on
Thus, universal multiresolution source codes are the natuasin-block X™ = (X, X», ..., X,,) of {X;}.
multiresolution extension of traditional (single-resolution) For any fixed integerl. > 1, let L denote the number
universal quantizers. of resolutions in a multiresolution source code. For each
While universal single-resolution codes have been studiédt {1, ..., L}, let A(é) andp(g: A x A(é) — R* denote the
quite extensively, the notion of universal multiresolution abstract reproduction alphabet and nonnegative, measurable
source coding is entirely new. This work therefore begindjstortion measure (ofidelity criterion), respectively, used
in Section Il, with a brief introduction to multiresolutionin the ¢th-resolution source reproduction. Assume that for
source coding definitions and bounds. Definitions for universabch? € {1, ..., L} and eachd € A there exists a refer-
sequences of multiresolution source codes and a proof of theirce Iettery&) € A(é) (possibly dependent o#) such that
existence follows in Section lll. Section IV gives constructivg, p(z, y&)) < ooforallf e {1, ..., L}. Further, assume that
arguments for universal source code design, demonstratfog each? € {1, ..., L}, p()(z, y) is continuous iz € A
the rates of convergence achievable by universal sequenggsall < 121([)_ Typically, the reproduction alphabets and
of multiresolution source codes, and briefly discussing issugstortion measures are the same foratesolutions, in which

be done on the low-resolution source descriptions while more B f
thorough analysis of especially promising subsets of the data 00l
may be done using more accurate source reproductions. “‘;\'
Like traditional (single-resolution) source codes, multireso- oo ‘3‘\ :
lution source codes are data dependent. Thus, the optimal mul- soof L
\\\\\‘Misn;atche'd code

distortion
-3
3

: code’ perfor
H H f N . r n '
) 01 02 03 04 05 08 07 08 09 1
rate (bits per symbol)

relevant to practical multiresolution code design. casejl(é) = A andpy) = pforall £€ {1, ..., L}. For any
2 e A" Le{l, ..., L}, andy”™ € A&), poy(z™, ) is the
Il. PRELIMINARIES AND DEFINITIONS additive distortion measure defined by
Consider a stationary random procdss;}, ¢ = 1, 2, ... n
with alphabet4, and let® be some jointly distributed random py(a", y") = Z pooy (@i, Yi)-
variable on alphabet. More precisely, assume thgtX; }, ©) i=1

is defined on a standard, measurable sgiébel3), so thatreg-  pefine anL-resolution binary prefix codéo be any prefix
ular conditional probabilities exist and the ergodic decompogiyye givingL nested source descriptions, each of which inde-
tion holds [13]. For simplicity, we guarantee this standard spage jently meets the prefix condition. For example, consider a
by assuming that! is a Polish alphabet (complete, separablgy sz {0, 1}* of binary strings such that for eacht €
metric space) and eithéy is Polish or© is a function of{ X, } SL. gL has a unique decomposition infofragments; that is,
[13]. (For example® might describe an ergodic mode{oX;}.) L

, all &19% - st = (s1, 82, ..., s). For convenience, assume that > 0
Let P andW denote the marginal distribution ¢fX; } and®, o 41 ¢ {1,..., L}, where|s,| denotes the number of bits

in the /th fragmeng The lengths of the fragments need not be
equal. Each string” € S gives an embedded collection of
1See, for example, [4]-[12]. In particular, [12] introduces the “quantization

interpretation” to universal coding upon which this work’s “multiresolution 2An L-resolution code with a resolutiohelescription of rat® can be repre-
quantization interpretation” is based. sented as afL. — 1)-resolution code.
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L binary descriptions* = (s1), s> = (s1, s2), ..., s¥ = reproduction isl,. For anyf € A, the expected rate and distor-
(s1, 82, ..., s). Foreach? € {1, ..., L}, define the sets* tion in describing» symbols fromP, with code@*:™ are
as

R(Py, Q%™ = (Ri(Py, Q%™), ..., Rp(Py, Q8T
§¢=1{5 35" e ST withs; = 3, V1 < j < 4}, (B @27) = (FalBy, @57 P @51)

— SN L,n
If S¢is a binary prefix code for eache {1, ..., L}, thenS* = Byr(X", Q7")
is ar_lL—resoIl_Jtion binary prefix code. = (Eo|fu(X™)], ... Eolfr(X™)])
Given an integen > 1, let Q" = g% o f¥ denote an . L -
L-resolution block quantizer with block lengih measurable D(Pe, @%™) = (D1(Ps, Q7), ..., Dr(Ps, Q™))

L. pAn L
encoderf*: A — S*, and measurable decoLder — Bpd(X™, Q1™
gh: 85— APy x Afyy x o Ay = T A%y = (Bopay(X™, g1 (fH(X™)), - ..,
J=1

_ E X" Lx™)).
Thus, the encodef™ and decodep” together map the input o) (X7, g(fHX™))
space A" of possible source vectors to the output space Multiresolution block quantizers fall into two subclasses:
Hf:l A@) of L-resolution source reproductions by way of afixed-rate codes and variable-rate codegf ™ is afixed-rate

L-resolution binary prefix cod&*. multiresolution source code, thé&’| is finite and there exists
The L-resolution encodef” and decodey” may be decom- a collection of constants;, cz, ..., ¢, such that for each

posed intaL nested multiresolution encodefrg!, f2,..., fL} st € S |s] = ¢ forall £€ {1, ..., L}. Note thatc,

and decodergg*, ¢°,...,g%}. For each € {1, ..., L} and may vary as a function of. Thus, a fixed-rateL-resolution

anyz™ € A", the encoder’: A* — S* and decodeg’: S* — code uses a fixed rate in each resolution but the rate may
szl A@) together map the input space of possible source va@ry from resolution to resolution. I)L-™ is avariable-rate

| . . y -
tors to the output SpaCHf»zl A?j) of possible/-resolution re- multiresolution source code, thef“| may be finite or count-

productions by way of thé-resolution binary prefix cod&®. ably infinitg, and the length of .binary descriptigﬁ € s is'
The notation/; is used to describe théth increment in the not detefrmlned by the resolutioh In the remainder of _th|s
binary description given byf”, and the notationy is used WO €*(L, ) and Q™(L, ») denote the classes of fixed-

to describe the resolutiofsource reproduction. Thus, for anyand variable-rate block-lengih, Z-resolution source codes,

" n respectively. ClearlyRQ (L, n) € Q'*(L, n).
A 1,..., L . o . )
e andf € {1, ..., L} Before appropriate definitions can be given for fixed- and

FHa™) = (s1, 89, ..., 51) € S© variable-rate universal multiresolution quantizers, it is nec-
and essary to understand the optimal performance theoretically
o . N L . achievable in each of these scenarios. The discussion that

g (s") = (9(1)7 Yy - y(L)) € HA(j) follows summarizes results from [14] on this topic. Earlier
j=1 multiresolution source coding bounds for memoryless sources

imply fe(z") = s; andge(s*) = Y(o)- (Notice that the/th de- appear in [15]-[17]. Since the optimal performances for
coderg, requires only the first incrementss® of the L-resolu- fixed- and variable-rate codes differ—and hence the resulting
tion binary source descriptios”.) definitions for universal codes differ as well—the two families
Given any multiresolution block quantiz&p™™ the (in- of codes are treated separately in the subsections that follow. A
stantaneous) rate and distortion vectors associated with codifigcussion of the similarities and differences between the two

source vector™ with quantizerQ™- " are families of results follows.
r(z", QM ™) = (r(2"™, QY™), ..., rr(a", QB™) A. Fixed-Rate Multiresolution Quantizers
_ n n By definition of fixed-rate coding, the rate vector achieved
= (1", -, [fel@™)]) : . . _
by a fixed-rate multiresolution quantizer does not vary as
d(z", Q™) = (di(z", Q%™), ..., dp(z", QY™)) a function of the data being coded. Thus, optimization
" 1/ n of fixed-rate multiresolution quantizers is here performed
= (py (=", i (fH (@), - -,

for arfixed target rate vector. Given a rate vectgf, let
oy, gr(FE@™))) . QB (L.n) S QF(L,n) denote the class of fixed-rate,
block-lengthn L-resolution quantizers achieving (per-symbol)

Here rates(1/n)r(z™, QL") < R, forall £ € {1, ..., L} and let
o DE(RF, Py) denote the set of distortion vectors achievable (to
r(a”, QW) =(ry, - rr) arbitrary accuracy) o’ by someQL:m € Q" (L p) for
and anyn > 1. More formally, D (R, P,) is defined as

d(z", Q%™ = (dy, ..., dr)
. - DE(RE, Pg):{D’/:anl, Ql-ne Qi B[, n) with
imply, for each? € {1, ..., L}, that an embedded description
of total Iengchf:1 ; bits is used in describing” to resolu-

tion £ with Q™™ and that the distortion associated with #tie

lDé(Pev QL7n)SDéV£€{17 ey L}}
n
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where for any sef” C R”, I’ denotes the closure (with respecHerengqn (Xm, Y4|Yé_1) denotes, for some fixed “test chan-
to the Euclidean norm) of”. Since D™(R", P;) is convex nel” 4" from A" to Hf:1 AE})' a conditional mutual informa-
for stationary sources [14, Lemma 2] and closed by definiy\ potweeny™ c An A

C T . , : . andY, € A7, given
tion, it is entirely characterized by its support functional [18,

p. 135]J% (o, RL, Py), here called theperational fixed-rate 1
distortion-rate function For any vector of Lagrangian pa- Y&le H Ay
rametersa” = (ay, az, ..., ar) such thate, > 0 for all j=1
te{l,...,L}and0 < 37, ar < o0 If Ais Polish andP; is ergodic, then (under the earlier de-
I scribed constraints on the distortion measyies) }le)
vy L L :
JHa”, R, Py) = chpl"ler(llf;e?RL) Z Qg dg. (1) J(at, RY, Py) = J(o", R", Py) )

£=1

The vectora™ may be interpreted as the planar directioRY [14, Theorem 2]. Iff% is not ergodic, then lef P, } denote

or “slope” of a tangential hyperplane supporting the spad@e €rgodic components @%. The ergodic componer, is
of achievableDZ-vectors at a single point. Given a sourc&dual to the stationary measure induced by the limiting relative
Py, the support functionali® (o, RE, P,) describes the frequencies

optimal performance theoretically achievable (the OPTA) by Ty
a quantizer of any dimepsion. P,(F)= lim — Z 1p(ig1, Tiga, --.)
For anyQl™ € QR (L, n), let e 0
L on eventsF in a countable generating field for thefield on
Pk, 2™, QB ) = Z aede(z™, QL ™), which P and P, for eachf € A are all defined, and hence the
=1 ergodic decomposition is the same for &, # € A. Then,

JP(L, Py, QF ) = ByjP(al, X7, QL under the same conditions as used in (5)

3 JE (ol RY Py) = / JE (o RY P,)dPy(x)
= Z arD(Py, Q%)
{=1

=/J(aL,RL,Pm)dP9(a:)
denote the instantaneous and expected Lagrangians, respec-

tively, associated with coding™ with codeQ%-™. Then, given = J(o¥, RY, Py) (6)

the assumed stationarity 8%, an alternative to the definition . o )

of J¥(a®, R, Py) givenin (1) is by [14, Theorem 5]. Notice that iy is ergodic, then
J¥(ak, RE, P)) = inf J%(ab, RE, Py) J(a® RY, Py) = J(a", R, D).

- Thus, (5) and (6) combine to yield a single result. For any sta-
= lim J¥(a% RY, P) 2 us (5) ©) I “ e N y

oo tionary ergodic or stationary nonergodic soufée
[14, Lemma 14]. Function/™(a”, R", P;) describes the JE (o, RY, Py) = J(a, R*, Py) )
optimal performance theoretically achievable by any quantizer . . _ _
Qan c prryRL (L, n) (the nth—oré/er OPTA) he)r/e cgll?ed theprowded thatA is Polish; foreaclf € {1, ..., L} there exists
nth-order fixed-rate operational distortion-rate functicand a reference Iettegy(é) € A such thatE"p (.x’ y(é)). < o0; and
given by for each/ € {1, ..., L}, pey(z, y) is continuous inc € A for
1 ally € A(@).
JE ", R, Py) = inf ZJor(al, Py, QFM). , , , ,
QLrncQmRL (L) T B. Variable-Rate Multiresolution Quantizers
3) Let £Y*(P) denote the space of rate-distortion vectors

The “distortion-rate function” for sourc, and rate vector (£ » D) achievable (to within arbitrary accuracy) through

RL is defined as variable-ratel-resolution source coding. More formally
J(a¥, RE, Py) = inf J,(a", RY, Py) @ LUB)

where = {(RL, DLy 3n > 1, QL € Qv (L, n) with

L
1
Jn Oér‘7 _RL7 P0 = inf — OQEPW n 0 Xn, Yn : 1 1
( ) a | n ; v PO ©) gRé(Pev QL") < Ry, gDé(Pev QL-m) < Dy,

1 n. —1
E_Tpenqn(X s YY) <Ry, Ve, ...,L}}.

tefl,...,L}}. Notice thatC¥*(Py) C R*~ describes the space of rate-distor-
tion vectors(R", D) achievable byany variable-rate code,
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while the setD"(P,, R) C R¥, discussed earlier, describesvhere

only the subset of distortion vectals™ achievable by fixed-rate

codes with rate vectors less that. Ju(a, BT, Py) = int {l 3 (aéEpnqnp(é) (X", y&))
If Py is stationary, then the s&t™(P) is convex [14, Lem- I (et ’

ma 2] and closed, and is thus entirely characterized by its sup-

port functional [18, p. 135)"*(a, B, Ps), here called the n. -1

operational variable-rate disto(rtion-rate fu%ctiowhere Hhelppqr (X7 Yoy )) } '

L

Tt BB = L Gy D ledet Berd - ®)
’ =1

If source Py is ergodic, then

Ik, pE, Py) = J(a", pY, Py)

For an . . o
y [14, Theorem 3]. IfP, is not ergodic, then, under the conditions

aL:(alv a2, ..., CYL) and [3L:([317[327 7[3[1) of (5)
such thaty,, 3, > 0forall £ {1, ..., L} and jvr(aL BL, Py) = / jvr(aL pL, P,)dPs(x)
L
0< ap+ fFe) < oo
;( ¢+ Be) = / J(ak, gt P,) dPs(x)
(af, B%) may be interpreted as the planar direction or “slope” =J(at, gE, Py)

of a tangential hyperplane supporting the spac¢rff, D)

vectors achlevable through variable-rate coding. The suppsiice both/**(aF, 8%, Py) andJ(ak, L, Py) admit the er-
functional/** (aX, 8, P,) describes the optimal performancegodic decomposition [14, Theorems 7 and 8]. Thus, once again,
theoretically achievable on souré&s by anL-resolution quan- the results can be summarized in a single equation. For any sta-

tizer of any dimension (the OPTA). tionary-ergodic or stationary-nonergodic soufée
For any codeQ™ " € Q™(L, n), let Svrg T gl L Al
J (avﬁvpﬂ):‘](avﬁvpﬂ) (12)
5P(at, gl 2, QB : o _

provided thatA is Polish; for eactf € {1, ..., L} there exists

a reference lettey?,, € Ay such thats p(z, y7,,) < oco; and
L,n . n L,n (¢ 0 0P\, y(é)

Z agde(z”, Q1) + Bere(a”, Q1] foreach? € {1, ..., L}, po)(z, y) is continuous in: € A for

£=1
JOP(O(L7 /3L7 P07 QL,n)
= Eoj™(a’, g%, X", Q5"

ally € A(@).

I1l. UNIVERSAL MULTIRESOLUTION QUANTIZERS

L A. Definitions
— Z [eDe(Po, Q™) + BeRe(Po, Q™)) For anyQL:™ € Q2" (L, n), define thefixed-rate&L re-
=1 dundancyof Q7™ as

denote the instantaneous and expected Lagrangians, res&ec(—aL RE, Py, Q1)

tively, associated with coding:™ with variable-rate code IR X

Q% ™. The equation forJV*(«*, R, P) given in (8) may = — JP(a” Py, Q) — JT (" RT, Py).
alternatively be given as "

. . Likewise, for anyQ™™ € Qv*(L, n), define thevariable-rate
Jvr(O(L7 /3L7 Pg) — Hr}f J;{r(OéL, /3L7 Pg) redundancws
= lim Jr(ab " F) (@) AT, B, Ps, Q1)
n_)OOA 1 op( L L L,n vry L L

[14, Lemma 14]. The function/¥*(a*, g%, P;) describes =7 (o, 8%, Pp, Q0 ") = S (a”, 57, Fy).
the optimal performance theoretically achievable by
block-lengths, variable-rateL-resolution quantizer on source
P, (the nth-order OPTA), here called thenth-order vari-
able-rate operational distortion-rate function” and given by Qe QF R (L, n), foralln > 1

§y (2), (3), (9), and (10), both redundancies are nonnegative.
Given a sequence of codé€% "> | such that

I (ot Bl Py) = . inf JOP( L gt Py, Q% ™).  {Q%"} is a universal sequence of fixed-rate multiresolution
Qe (L n quantizers if
(10)
fry L L L,n
For variable-rate codes, the “distortion-rate function” for AMa®, BY, By, Q77) = 0, asn = oo
sourcel is given by Similarly, given a sequence of codg@™ "} ; such that

J(at, pE, Pp) =inf Ju(a®, BY, Fp) (11) QL™ e Q(L,n), foralln>1
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{Q% ™) is a universal sequence of variable-rate multiresolutiand, thus, the space of distortion-rate vectors achievable through
guantizers if fixed-rate coding is a subset of the space of distortion-rate vec-
tors achievable through variable-rate coding, as shown in [14].
A(at, g5, Py, Q1) =0, asn— oo, Thus, a sequence of fixed-rate codes that is “optimal” for source
More Speciﬁca”y’ a sequence of Codesvmakw minimax e in tfle sense that it asymptotically achieves the fixed-rate
universalif the convergence is pointwise #h strongly minimax OPTA J"(a*, R*, Fp) is not necessarily optimal for source
universal if the convergence is uniform ovet € A, and % fromavariable-rate coding perspective. As aresult, while all
weighted universalf the convergence is in expectation withfixed-rate multiresolution quantizers are also variable-rate mul-

respect tow. tiresolution quantizers, aniversalsequence of fixed-rate mul-
tiresolution quantizers is not necessarilyraversalsequence of
B. Discussion and Proof of Existence variable-rate multiresolution quantizers. (Notice that the same

It is interesting to notice that the definitions for the distoroPServation holds also in the single-resolution case.)
tion-rate function given in (4) and (11) differ. In particular, for '€ relationship between weakly minimax universal,
fixed-rate coding, the surface was parameterizeddy, RE), stro'ngly minimax universal, and v_velghted universal sequences
while for variable-rate coding the surface was parameteriz8fSingleresolution source codes is discussed at some length in
by (o, %). It is therefore important to check that the set dft2]. The conclusion of that argument, which applies equally

(RL, D™) points described by these two functionals are tpuell to sequences ofmultiresolution codes, is that from a
sam7e. This check is easily accomplished as practical coding perspective, the differences between the three

types of universality seem rather minor. For example, the

L
J(aF, RY, Py) = inf | J(aE, BF, Py) — ZﬁfRf existence of a weighted universal sequence of codes implies,
Bt = for anye > 0, the existence of a strongly minimax universal
. sequence of codes on some AetC A with W(A,) > 1 —e.
I oo . I oI Thus, the existence of the “weakest” form of universal code
Je 57 Po) = I}IzlLf [J(O‘ , B, Po) + ;_; Pekie in some sense implies the existence of the “strongest” form

which together imply that the spaces described by the tv%universal code. The remainder of this work includes results
functionals are identical. It is interesting to note, howeve?,n_aII three forms of universality but emphasizes the weighted
that while J(a*, 3%, P5) meets the ergodic decomposition,umversfelI case.. _ .

The first step in the study of universal sequences of multires-

J(at, RE, Py) does not[14]. Roughly speaking, the lower
(o, : o) [14] ghty sp g olution quantizers is a proof of their existence. The following

convex hull of the set of achievabl&”, D) vectors for a sta- . 4 suffici dition for the exi

tionary nonergodic source is equal to the weighted combinatim?ore”f‘ glv'eia gecgssaryl and su |C|entfcon| ition Ior.t € exis-

of the lower convex hulls of achievabigt”, D™ vectors for €€ of weighted universal sequences of multiresolution quan-
Jigers under the assumption th&§ describes a stationary, er-

that source’s stationary ergodic components, where the ¢ i ¢ Be A Th t of Th 1
bination is taken at points of equal “slope” rather than poin%0 IC source for eacn € A. The proot of Theorem 1 appears
n the Appendix.

of equal rate. This parallels the findings for single-resolutio
codes given in [19]. Theorem 1: Assume thaf X } is stationary and ergodic for
As a result of the above discrepancies, the optimal perfasachf € A. Weighted universal codes exist fofX;}, ©) if

mance theoretically achievable by block multiresolution souregd only if the OPTA has an ergodic decomposition.
coding in general differs for fixed- and variable-rate source

codes. In patrticular, i% is nonergodic, then
jvr(aL’ /3L, Pg)

Thus, under the conditions of Theorem 1, weighted universal
sequences of multiresolution quantizers exist for the fixed-rate
case if and only if

= / Tk, gl P dPs(x) JE(ar RE P) = / JE (o RE Py) dW (6)
and, for the variable-rate case, if and only if

_ L L
_/J(a , 3%, Pp) dPy(x) Il gr, P) :/.jvr(aL, BE. Py) dW (6).

] I L Both of these ergodic decompositions are satisfied under
- / inf | J(a”, BY, Py) +_ Bilie| dPy(z) the following three conditionsA is Polish; for each? ¢
=1 {1, ..., L} there exists a reference lettg, € 121([) such that
. L L L Epp(zx, y&)) < oo; and for eactt € {1, ..., L}, puy(z, v)
= / nf | S5 (o, BY, Pr) + ; Pebe| dPy(z) is continuous inz € A for all y € Ag. Theorem 1 justifies

the differences between the parameterizations of the fixed- and
variable-rate redundancies. In particular, fixed-rate codest
be compared at the same rdté& rather than across rates at the
same Lagrangian paramef@r since the Lagrangian
J¥ (o, g5, Py) = inf [J¥(oX, RY, Py) + B Ry
RT,

does not have an ergodic decomposition [14].

L
< inf [ / JE (o, RY, P,)dPy(z) + ; BeRy
=1

I
- i}rgLf [Jﬁ(aL, RE, Py + ; BeRe
=1
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The rate at which the expected redundancy of a univer&trictly speaking, this redundancy should be calculated only for
sequence of multiresolution quantizers converges to zegoantizers in the clas@™ RL(L, n) of fixed-rate quantizers
serves as a comparative performance measure for competiiti
algorithms. The redundancieA® (af, R Py, IQL”‘) and le(Pe, QL™ < Ry, forall £e{1,..., L}.

A (ol gL, Py, QF>™) may each be broken into a sum of n _

two nonnegative terms, where the first term describes thioWever, for any sequence of quantizé™ "}, such that
difference between the performance of a particular code and f8& " € Q% (L, n) foralln > 1 but(1/n)R¢(Ps, Q% ") > R,
nth-order OPTA and the second term describes the differerf@ one or moref € {1, ..., L}, if An(at, g5, Py, Q%)

between thexth-order OPTA and the OPTA. This work followsiS bounded above by some sequemgéf) that converges to
the lead of [12] by focusing exclusively on the first termZ€ro, then there exists another sequence of fixed-rate quan-

L

called thenth-order redundancynd given, for the fixed- and tizers {Q“"122, such thatQ®" € Q% (L, n) and
variable-rate cases, respectively, by AX(at, RY, Py, Q™) likewise converges to zero for any
3L appropriately chosen. A formal statement and proof of this

AX(a", RY, Py, QM ™) result appear in Lemma 1 in the Appendix. This argument,
1 op/ I n e I oL which parallels an argument given for single-resolution codes,
= JP(a”, Po, Q") — J (7, RY, Py) justifies the use of the same form of redundancy term in both

AV (oL, BE, Py, QF M) fixed- and variable-rate multiresolution quantizers.
_ lJOP(aL’ 8L Py, QL’") _ jrvf(OéLa gL Py). IV. TWO-STAGE UNIVERSAL MULTIRESOLUTION QUANTIZERS
n A two-stage single-resolution quantizer (e.g., [23]-[25],
The nth-order redundancy describes the price paid for unit2]) is a source code that describes a data sequence in two
versality and is the only part of the redundancy that variegages. The first-stage description encodes the choice of a single
from quantizer to quantizer. The rate of convergence of thgock-lengthn quantizer from some collection of available
nth-order OPTA to the OPTA, which describes the penalfyock-lengthn source codes. The second-stage description
associated with finite dimensionality, has been studied fahcodes a data vectat using the chosen code. The discus-
single-resolution quantizers in works such as [20], [21], [9bjon that follows treats the rate of convergence of weighted
[22]; for multiresolution quantizers, this rate of convergencgniversal sequences of two-stage multiresolution quantizers.
remains an interesting open topic for future investigation.  The two-stage multiresolution quantizers introduced here
To simplify the following discussion on rates of convergencgeneralize the two-stage approach to universal lossy source
the notation for fixed- and variable-rate coding are here COoding described in [12] from the single-resolution case to the
bined into a single notation multiresolution case.
An(al, g7, Py, Q™) An inter_esting que_stion arises _in the gerjera_\lization of _two-
1 . stage coding from single-resolution quantization to multires-
= JP(ah, BY, Pe, QB ) — Ja (e, 8%, Py). (13) olution quantization. In which resolution of a multiresolution
source description should the first-stage source description be
given? Clearly, one possible answer to this question is that the
jn(aL’ Bt Py = jrvlr(aL’ B, Py) first-stage description can be given entirely in the first-resolu-
. . tion data description. One possible justification for this choice
and A, (o, 37, Py, Q") is exactly thenth-order redun- gises from the fact that of the incremental descriptions, only

For variable-rate coding

L,n i - i . . s
dancy of cod&2™ ™. For fixed-rate coding the first-resolution source description is used by all decoders
An(a, 8", Py, Q7 g1, 92, -- -, gr,. Thus, only by incorporating the first-stage
. coding information into the first-resolution source description
1 1 can this choice be fully known to all of the incremental decoders
_ | = 7yop L L,n - L,n
- [n T, Po, Q1) + n ; Pele(Pe, @ )] in ¢~ This choice is also reasonable because the length of the

first-stage description, when amortized over the lengtf the
data sequence to which it pertains, is asymptotically equal to
zero for any universal code.

Yet placing the entire first-stage description in the first-reso-
lution source description also has drawbacks. In particular, for
practical coding, the coding dimensiarmay be quite small. In
this case, the optimal per-symbol rate needed to give the first-

L
- l,j,ff(aL, RY Po) 4+ BeRe
=1

1 R
— |:_ JOP(O(L7 Pg, QL,n) —Jrflr(OéL, RL, Pg):|
n

L r q - . - .
1 n stage description may represent a significant portion of (or even
* ; Pe n Be(Po, @77) = Ré_ exceed) the available first-resolution coding r&te Placing the
- entire first-stage description in the first resolution may therefore
= A¥al RE) Py, QB ) place an undue burden on the first-resolution source code.

I = B} One alternative for alleviating the burden on the first-resolu-
+ Z Be - Ri(Ps, Q1) = Ry| . tion code, at least in part, is to spread the cost of the first-stage
=1

description over allL resolutions. This approach is motivated
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not only from a practical coding perspective, as described abot#ere f,(z") = 5,5, indicates thaf,(z") is formed by concate-
but also from an optimal universal coding perspective. In partinating binary strings, ands, and

ular, for single-resolution codes, the optimal first-stage codir}g
rate for any dimensiom may vary (by a constant factor) as
a function of the target source coding rate (see, for example, f(}l(xn)jz(w)’m’ﬁ(mn))’é(a:")) .

[12, Sec. lll, Case 1]. Since each resolution in a multiresoltrhe case where the entire first-stage source description is given
tion source code has a different target rate, it seems reasonabi@e first resolution (using a single-resolution first-stage code)
to postulate that the optimal first-stage coding rate for the firﬁtay be treated by setting(z™) to the empty string foral > 1
resolution may differ from the optimal first-stage coding rate faind allz™. (Rate® descriptions in the second-stage code are
later resolutions, making the idea of spreading the first-stage dgrain disallowed.)

scription over multiple resolutions even more attractive. This ap-Now suppose that for eacth € ST, Q; ™ is a product code
proach generalizes the quantization interpretation of two-stageated by using some block-length-multiresolution quan-

C(ac”)(xn) = (f}l(ac”)7 1(‘Tn)7 f(;cl(xn)7}2(3971))72(.’1'”), .

universal source codes from single-resolution to multiresolutid)izengLL’m n/m times. (For simplicity, assume that divides
first-stage codes. That is, just as the first-stage encoder anddevenly.) Then for anyg™ = (x?f), Tiyys e x?g/nl)) and any
coder of a single-resolution source code may be viewed aga {1, ..., L}

uantizer quantizing the space of dimensiosingle-resolution ny _ Fiomyf m \ f. m )
guantizersq, the firsfc-]stagepencoder and decoger of a multireso- Jel) = Jel@") pecomy. o ($(1)> Trem, e ($(2>>
lution quantizer may be viewed as a multiresolution quantizer Foe (xm )
quantizing—first coarsely and then to higher and higher resolu- Fo@m), 6" n/m)

tions—the space of dimensionmultiresolution quantizers. and
This section includes descriptions of a variety of rate of con-g, (fé(a:")) =YFe(any, 0 (ffu, @) (a:?f)))
vergence results for weakly minimax and weighted universal se-

guences of multiresolution quantizers. The arguments appearing Tye(om. e (ffc,( " (1’?5))) ..
in this section give upper bounds on the optimal rate of conver- ’ *

gence using constructive proofs with two-stage multiresolution Gie (ff, (xrn )) _
quantizers. The use of single-resolution first-stage source de- Fiam), L\ Je(am) 7 (n/m)

scriptions leads to arguments similar to those resulting from the! N€ firSt stage of our multiresolution quantizer may itself

. . . jad N,L
uantization interpretation of two-stage coding given in [12]. A% th_ought of as a multiresolution quan_hz@lL:" =90
d D g 99 [12]. A3, with encoderfZ: 4™ — ST as described above and de-

a result, the proofs of results using single-resolution first-stage ", =" i
descriptions are excluded for the sake of brevity. The use of m derg”: S° — Q(L, m), whereQ(L, m) = {Q™: 3 €
tiresolution first-stage source descriptions requires additioria}-Thus, the first-stage quantizer maps the input space of pos-
care, and, thus, the multiresolution first-stage source coding fRle data vectors to the output space of multiresolution quan-
sults are included in their entirety. tizers by way of a binary multiresolution prefix co&_é*. .

Let f: A” — S' be a measurable mapping from the source Given a two-stage multlre_solu'uon quar_m@f*’" with first-
alphabetA™ to someL-resolution binary prefix codé”, and let stage_mult!resolutlon quantizéy™ ", the (instantaneous) rate
{Q%"}.. .5, be a collection of block-length- L-resolution and distortion of the two-stage code are
quantizers. For eack € SL, the quantize’;™ = &, o fL, (2", Q"™)
has measurablé-resolution encoder

n/rn
L= (fs 1, f2,2, ooy f3on) = |f1(x")|+z ‘ffl(“f’l):l(xag T
=1
and decoder
g”LL = (951 1, 932,25 ---5 957 L)' 3 n A m
i = (51, 95, % @+ [ e, ()|
Thus, for each¥ € {1, ..., L}, the fth incremental encoder i=1
f3¢,¢ and decodep;: , are indexed by the first increments y
of the description o&”. A multiresolution quantize™ " = ol AL LS m ALm
g’ o fI is a two-stage multiresolution quantizer if its encoder — r (x , @ ) Z r (x(i)’ Q}L(m”))
Y = (f1, fo, ..., fr) and decoder” = (g1, g2, - .., g1 =1
take the following forms: d(z", Q™)
FEE") = (R o, 1) T2 F oy 2@ wmo L
- n n = Z p(l) ($(7)a 9}1(3071)71 (f;n (&™) (:L' 7)))) [
Fe(@) fy oy, 1) =
and n/m
m ~ L m
gt (@) = (9}1 (@), 1 (f,%l(m)(xn)) ; ; = (x(i)’ Ipe@n.x (ff%v”) (%))))

intens (P @) "
g}L(%‘”),L (f}LL(xn)(xn))) . - zz:; d (x?il)’ Q;I:;l(xn))
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where [
7 (a:", QLn) — (‘fl(a:") fr(z™) ) i

denotes the (instantaneous) rate of the first-stage en- A

3 ey

coder fX. Combining these two results, the redundancy @ “ I
An(ar, gE Py, Q% ™) of the two-stage cod@ ™ equals M g/
Z 10 Y4
Ao, g5, P, Q5 M) 3, y
y
1 - ol 4
= g JOP(aLa ﬁLa P@a QL7n) - Jn(aLa ﬁLa P@) oL y

n/m

[ _ »
= % / Z 17} ; dy (a??;), Q;{’;r(’;n) (.’L'?;))) - : .

—1 rate (bits per symbol)

L Fig. 3. Experimental results for single- and multiresolution nonuniversal
. n AL n and universal codes. Three sets of curves are included. The squares show the
+ Z Be | 7 (37 ; Q7 ) performance of a collection of VQs (connected by a dashed line to note that
=1 the performances are achieved tijferent codes) and a family of MRVQs.
The circles and triangles show corresponding results for WUVQ (dashed line)
n/m and WUMRVQ (solid lines) with two different first-stage coding rates. The

+ Z - (a:m Q@,m ) dP (xn) weighted universal codes give up to 6 dB of performance improvement over
. SOk FL(zm™) ¢ their nonuniversal counterparts on the collection of medical brain scans used
=1 in these experiments.

- jn(arlv ﬁLv P@)
I there for practical multiresolution vector quantizer (MRVQ) de-
_ 1 / [Z By (xn QL,n) sign. Just as single-resolution vector quantization (VQ) gener-
n =t ’ alizes to weighted universal vector quantization (WUVQ) using
an iterative descent design technique [23], [12], MRVQ likewise
S . generalizes to weighted universal multiresolution vector quan-
+> 0 (04 B @y Q;},(wn)) dPy(x")  tization (WUMRVQ) using a similar approach. Results demon-
=1 strating the experimental performance benefits of WUMRVQ
_ 7L gL over MRVQ appear in Fig. 3.
Tnle, 57, Fo). (14) While the optimal encoder is easily implemented in prac-
The first-stage encoder that minimizes (14) minimizes the intéeal weighted universal multiresolution vector quantizers, for
grand pointwise, giving the following result. the purpose of theoretical analysis, the optimal encoder is more
difficult to analyze than is the omniscient multiresolution first-
stage encoder defined next and used through the remainder of
this work.

n/m

Nearest Neighbor First-Stage Multiresolution EncodeFfor
any two-stage multiresolution source cod@™ "™ with
first- stage quantizeQ“™ = gL o fL, there exists a
two-stage multiresolution source co@f’" with first-stage Omniscient First-Stage Multiresolution Encoder€on-
quantizerQl"™ = - o 1F such that sider a two-stage multiresolution source co@g: ™ with

L - L - first-stage quantize®!»™ = g’ o fI. The first-stage encoder

An(al, B, Py, Q") < Ap(a®, BT, Py, Q™) (15) fE is called an omniscient first(jstage encoder if it works

for all @ € A. The first-stage encodgt” is given by directly oné € A rather than on™ € A™. Thus, the omniscient
. first-stage encodef”: A — S’ chooses a second-stage code
fo@™) based on the true underlying source in operation (rather than the

L n/m vectorz™ produced by that source). The omniscient first-stage
=arg min > Belel+d P (a",ﬁ",x?g’), QQ‘L”"’) encoder, like the original first-stage encoder, is assumed to be
shest 1o i=1 measurable. For any omniscient first-stage encgder

16 n n
(16) An(ab, BE, Po, QF7) < A(aF, 85, Py, QF™)

for_ eaChf € A" and IS calleq an “optimal or nearestfor all ¢ € A by (15). Thus, the omniscient multiresolution
neighbor” first-stage multiresolution encoder with respect tfo

first-stage multiresolution decodgf. WhenSZ is countably Irst-stage encoder, while not achievable in practice, does no
il . : . .7 petter than the optimal (nearest neighbor) multiresolution first-
infinite, a proof is required to demonstrate that the minimu

. . ; . : r‘llage encoder, which can be achieved in practice. As a result,
in (16) is always achieved. This proof appears in Lemma 2 In : . ;
. e redundancy of the best two-stage multiresolution quantizer
the Appendix. . L ) .
with an omniscient first-stage encoder gives an upper bound on
The nearest neighbor first-stage multiresolution encoder dhe redundancy for the best two-stage multiresolution quantizer.
fined above gives a two-stage coding analogy to the near&sie remainder of this section focuses on the derivation of such
neighbor multiresolution quantizer defined in [1], [2] and used bound.



2122 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 6, SEPTEMBER 2001

Given atwo-stage multi~resoluti0n quantiz@j’ withomni- Thus,

scient first-stage quantiz&}s- ™ = ¢ o f, the (mstantaneous)A ( L gl p QL’")
rate and distortion of the two- stage code are T . b %o
n 1 - ~ AL, n m
T(-T ? Q£7 ) = g Z /357’5 (97 Q0L7 ) + Am (aLa ﬁLv P97 Q;I:;(g)) .
n/m =1

By convention, thén, m)th-order redundancy will only be cal-
culated for codes with second-stage coding dimension
The (n, m)th-order redundancy is of particular interest for
. n/m . practical multiresolution source coding. For practical codes, the
|fo, £(6)] + Z ffL(e) L (x(z )‘ code dimension cannot be allowed to grow without bound due
the complexity implications of such unrestricted growth. When

PRI

= [ 1fo @)+ ‘f}gw),l (”5?5))
=1

B n/m the coding dimension is fixed at some finite vatuethe asymp-
=7 (9, Qf") + Z T (x?i’), QJLCL’('g)) ) totic performance of thér, m)th-order redundancy asgrows
i=1 ’ without bound describes the behavior of the given code on ar-
d(z", Q™) bitrarily large data sequences.X, ,, — 0 asn — oo, then
njm the given code’s performance using a code of dimensiap-
_ Z p (xm p (fl (xm))) proaches the:th-order OPTA for the source in operation. Thus,
r O AOIEHORRSF ORI T the code’s performance is asymptotically optimal subject to the
fixed constraint on the code’s dimension.
n/m Bounding the performance of two-stage multiresolution
Z L) (UUE?), 972(0), L (f;f;r,(e) (w?f)))) guantizers with omniscient first-stage encoders leads to bounds
i=1 on the redundancy achievable in two-stage multiresolution
n/m coding. Theorems 2 and 3 use single-resolution first-stage
_ Z d(x(z)’ JLCL?;)) guantizers. The coding strategy involves first describing the

source parametef and then describing the data using a

where# (8, Q(f’") denotes the (instantaneous) rate of the 0mrr_1u|t|resolut|on code matched to the described source. The

niscient first-stage encodef-. Thus, the redundancy of theparameter description is treated as part of the first-resolution
two-stage cod@%" equalso . ’ y description. Proof of universality involves demonstrating, for

a particular setA of possible sources, that the rate cost of

An(a", Bl Py, Qg"") describing® and the Lagrangian performance penalty for any
Lo L s Lo inaccuracies in that description are asymptotically negligible.
= I B, P, Q") — Jula”, 7, Fo) Theorems 2 and 3 give two such scenarios. The proofs follow

similar arguments to the corresponding proofs for single-reso-

L lution codes [12, Theorems 3, 4] and are, therefore, omitted.

= % Z Bete (97 QoLn)

=1 Theorem 2: Consider a spac& of possible distribution pa-
rameters such that C R*. The setA is assumed to be bounded
n/m . . Lom for fixed-rate coding but may be unbounded for variable-rate
+Eq Z Jr ( B X(z)7 Q}oi(g)) coding. For eacl? € A, suppose that there exists a multireso-

lution quantizeng’ ™ achieving thexth-order OPTA on source
> L Al P,. Further, assume that the costyith-order redundancy, as-
— (", B, Py) : , : . ) Ton
sociated with coding sourcg, with quantlzerQé’ “is locally

1N —_— quadratic ind. That is, for eacl§ € A andn > 1, there exists a
~n > Pee (97 Qo ) neighborhoods of 6 and constant; such that
{=1 ~
L An(ak, BE Po, QF") < 10 - 6
_’]Op(’ 73 7P7 ~,"l) A ..
+ m o f ¢ QfoL<9> forall 6 € Sy . Then, for anyh and anym that divides: evenly,
_J (oL, BE, Py) there exists a two-stage multiresolution quantiggr™ such
e non that
The resulting redundancy can be broken into two terms, the . . k logn
first of which compares the given code’s performance to Dp,m(ah, BY, Py, QB < Py + 2

n
€ Risaconstant dependent@andm. Further, ifcy
andSy are independent of for eachd, thenaj is independent
of n for eachf and, settingn = n, there exists a weakly min-
imax sequence of multiresolution quantizérgX-"}°° ; such
Ay e, gl Py, Q1) that

k logn

= St 5, By, Q4" = Ju(at, 6, ). Anlak, Y, Pry QP < g 2B 42

the mth-order OPTA and the second of which compares t%heream
mth-order OPTA to thenth-order OPTA. The focus of this
work is on the first of those terms, called thg; m)th-order
redundancy” and defined as
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Theorem 2 is interesting only if there exist collections afome sort of “rate—distortion” tradeoff. The following defini-
sources{ Py, 8 € A} satisfying the locally quadratic prop-tions help make these ideas concrete.
erty assumed there. In [12], the corresponding property forDefine the rates of the multiresolution first-stage quantizer as
single-resolution quantizers is shown to hold for any collection

of random processels’s: § € A} parameterized by the vector 7 (Qf") = / 7 (@7 Qf") dW(©)
6 = (u, o) describing the sources with unknown megaand . .
standard deviation. The same result holds for multiresolutiorfor €achZ € {1,..., L}, and define the corresponding
quantizers, as shown in Lemma 3 in the Appendix. (weighted) “distortion” as
Theorem 3: Consider a discrete spageof possible distribu- A, (aL, g, Qf")
tion parameters. For fixed-rate coding, assume th finite.
For variable-rate codingy may be countably infinite. For each = / A (aL, pY, Pe, §" (fL(@))) dw ()
6 € A, suppose that there exists a multiresolution quantizer

5" achieving thenth-order OPTA on sourcé. Then, for Lo Lom
anyn and anym that dividesn evenly, there exists a two-stage = / Am (O‘ , %, Pe, Q}OL(@)) dw(©).

multiresolution quantize®™ ™ such that ) . ] e
The operational “distortion-rate” functiow,,,(R%) captures

n ae . -
Ay (o, Bl Py, Q2™ < By o the tradeoff between rate and distortion as

wherea, € R is a constant dependent nThus, settingn = D (RE) = inf {Am (ocL, s, QoLn) ‘
n, there exists a weakly minimax sequence of multiresolution Q"
quantizers{Q® "}°° | with i (QOLn) <RVEETL ... L}}.
An(a®, BE Py, QB < g 22 o .
(o7, £ b @7 <A n By definition of D,,(RY), for any R, > 0 for all
For A finite, the codes are strongly minimax universal as welly ¢ {1, ..., L}, anye > 0, and anyn, there exists an omni-

ant fi L. n
The use of multiresolution first-stage quantizers complicatS§ient first-stage quantizey;-™ such that

the story considerably. Given a two-stage multiresolution code P (QLn) <R,

with a multiresolution, omniscient first-stage quantizer, the ¢ -

first-stage quantizer's description ¢f is a multiresolution forall ¢ € {1,..., L} and

description. Thus, only the first-resolution descriptionfois B L

used in choosing the code for the first-resolution description of A, (a’*, B, an) < Dp(RY) + ¢/n”.

{XT)}Z:/l ; only the first- and second-resolution descriptiong,,, expected redundancy of the two-stage multiresolution code
of # are used in choosing the code for the second-resoluti

9}0);7 " with the multiresolution first-stage quantiz@: " is

n/m.

description off X773 };2;"; and so on.

Multiresolution first-stage quantizers are motivated by uni-  EA, ., (a”, 8", Po, Q™)
versal coding problems where the accuracy required in the de- L
scription of# varies as a function of the second-stage coding A, (aL7 gL, QLn) + 1 Z Bere (QLn)
rate. In such examples, the only hope for achieving optimal ¢ n ¢

{=1
rates of convergence lies in using a multiresolution first-stage .
quantizer. Only by using a multiresolution first-stage quantizer S 1 ~ €
can the first-stage description rate (and thus the resulting redun- < Di(RY) + n ; Pelie+ nZ’

dancy) vary as a function of the resolution. o R
A variety of results on multiresolution first-stage quantization If, for eachm, D,,,(RL) — 0asR;, — oo forall ¢ €
follow. These results treat weighted universal codes. Inweight¢t, ..., L}, then the expectednth-order redundancy
universal multiresolution source coding, the goal is to minimizBA,, (a%, 8L, Pe, Q&™) can _be made arbitrarily small
the expectedn, m)th-order redundancy by appropriate choice ofn, R", n, and . In particular,
L L L,n choosingm sufficiently large makes the difference between
Eln,m(a”, 57, Po, Q") EA, n(af BE Po,Q™) and EA,(ak, Bt Ps, Q™)

1N . small; then choosing R sufficiently large makes
—/ [g Z Bere (@, Qo’n) D, (RY) small; next choosing» sufficiently large makes
=1 (1/n) Ele Be Ry small; and, finally, choosing small gives
the desired result.
+A,, (aL’/jL’ Po. Q;Lc;,’('é))] dW(0). The above discussion demonstrates the existence of
’ weighted universal codes for sources where, for eagh

The first component of this expression treats the expected raﬁ%(RL) decays to zero ask‘ grows without bound.
spent in providing a (multiresolution) description of randonvore careful examination yields insight into the rate of
variable®. The other describes the expected “distortion"—aeonvergence ofEA,, ,,.(al, 8%, Ps, QL>™) for these uni-
tually a redundancy—achieved by this description. Thus, migersal codes. Finding the optimal rate of convergence for
imization of the expected redundancy requires optimization &A,, ,,(a", 3", Po, Q™) involves finding the value of
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RE at which D,,,(RE) + Y1, (8¢/n) R, is minimized. Note

that D,,(R") +;_,(8/n)R, may be interpreted as a

Lagrangian for the minimization oi)m(RL) subject to a
collection of constraints ot £ € {1, ..., L}. Note further
that asn grows, the Lagrangian constants/n, ..., fr/n

decay to zero, thereby loosening the constraint&én
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If D,,,(RE) = D(RL) for all m, then, settingn = n

EAn (aLv ﬁLv P@7 Q0L7n)
L

> BeBne+ 5
=1 "

b (at.)+

If D,,(R") is differentiable with respect td?, for each Since D(RE,,) approache®) as R, — oo for each’ ¢
£e{1, ..., L}, then the optimaR” for anyn can be found {1, ..., L}, D(RL)+>"7_, (8¢/n)R, can be made arbitrarily
by taking partial derivatives of),,,(R") + 30 (Be/n)Re  small by first choosing the components & to be large
with respect taik, for each? € {1, ..., L} and setting those enough such thab(RL) is small, and then choosing large
partial derivatives equal to zero. In the case wheyg(RL) is  enough so thagle (Be/n)Ry is small. Thus, sincei?f’n
not differentiable, a convex, differentiable, decreasing UpPpRrthe RL-vector that minimizesD(RE) + ZZL=1 (Be/n)Ry
bound onD,,,(R*) can be used as a replacementfr,(R")  for eachn, D(RE ) + S°E | (Be/n)R.. ... must approach
in the minimization. The optimal performance with respeglerg as, grows without bound. Hence there exists a sequence
to this upper bound provides an upper bound to the optim@ tyo-stage multiresolution source codé§L ™12 with

performance with respect t0,,,( R%). EAn(ar, BY, Po, Q&™) approaching zero at the given
Theorem 4: Let D,,,(R") be a convex, differentiable upper'ate. U

" H H ” FP L ] . . . .
bound on the “distortion-rate” functioly,,, (1) for first-stage  The following corollary demonstrates the implications of

omniscient multiresolution quanEize@OL?";A — Q(L, m).  Theorem 4 under a variety of conditions ml(RL).
Further, assume that, for eagh D,,(R") — 0asR; — oo

foreach? € {1, ..., L}. Then, for eacl and eachn dividing
n, for anye > 0 there exists a two-stage multiresolution source
code@™ ™ with

EAn,rn (aLv ﬂLv P@7 QL7n)

Corollary 1: If
~ L =2
Do(RY) =3 A i
=1

. and D,,,(RF) — 0 asRY — oo, then for anye > 0, there

R I 1 5 € exists a sequencgl)™ " 152, of multiresolution source codes
< I - - n=1
- I%ILH Dn(B7) + n ; Pelie + n? such that
1 L ¢ EAn, m (Oérlv /3L7 P®7 Qh,n)
7 L I
=Dy, (R*n) T Z BB e + oz L7 AN 1 1\ log(cen) ¢
=1 SZ — ) —+0| — — |t
. . . o — c ) n be n n
whereRL | = (R, 1, ..., Ra s, 1) satisfies
~ wherec, = A¢be/(Beloge). In particular, we have the fol-
D, (R") Be_y 17) lowing conditions.
Ok, |, n * WhenA has finite dimensiork

v~ 1 (pLy _ pgo—2Ri/k
foreach € {1, ..., L}. Further, ifD,,(R") is independent of Di(R”) = A2 /

m, so thatD,,(R") = D(R") for all m, then (settingn = n)
there exists a weighted universal sequence of multiresolution
source code§)’- ™ such that

EA, (o, BE, Po, Q%)

(see Lemma 4 in the Appendix). Sinég,, (R") is inde-
pendent ofm, settingm n and allowingn to grow
without bound gives a weighted universal sequence of
multiresolution source codes with performance that con-
verges to thesth-order OPTA as

L
o 1 ~ €
L - _—
< D (R*7n) + n [z_:l ﬁéR*,n,é + 712' EAn (OCL, /3L7 P@7 QL,n)
_Proof: By definition of D,,, (k") and the given properties < A1 18 k loglein) | ¢
of D,,,(R"), for any R > 0 and anye > 0, there exists an cn 2 n n?
omniscient first-stage quantizé’- " such that,(Q% ") < R, _ 3 k logn 0 ke log ke
forall ¢ € {1,..., L} and =hg + n '

Am(OCLa /3L7 ngn) < Dm(RL) + 6/712 < Dm(-éh) + 6/712-

Thus, there exists a two-stage multiresolution caife™ with
an omniscient first-stage quantiz@{ ™ such that

BN, o (o, Y, P, Q2M)

* For fixed-rateR” coding

L
Do(RE) = Y 422k
{=1

L

> BeB i+ 5
£=1 "

1

£
Lo wherek, = m2™ 2 B (see Lemmas 5 and 6 in the
"

Appendix). Thus, for anyn, there exists a sequence of
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multiresolution source codes with performance that con-

verges to thenth-order OPTA as

EAn,rn (aLv ﬁLv P@7 QL7n)

L L
£ E
=1

{=1

O </€[ log k[) )
n
Allowing m to grow with n at the optimal rate gives a

weighted universal code witf(/loglogn/logn) con-
vergence.

Proof: GivenD,,(RL) = Ele Ag2— b

=

Hencefzfm may be found as the solution to teequations
described in (17), giving

ke log(cen)

€
2

2

D, (RY)

OR,

Agbe
loge

) g beRe = _g o ombeRe,

R*ng:—log(cyl)
Fl Fl b[
and
LoranN 1
DRI Y = it

Combining these results as

L
D(RE )+ (Be/n) R n c +¢/n”

£=1

gives the desired result. O
Corollary 2: If
Dn(RY) =0
whenR, > 7, for each? ¢ {1, ..., L}, then for anye > 0,

there exists a sequend@’-m}2 | of multiresolution source
codes such that

L

T b ,n 7_é
EA, m (o, B, Po, Q )ggﬁén +

€

n2

In particular, we have the following condition.
* If Ais countable and(O) is finite, then

D (RY) =0

for all R > (H(®), 0, ..., 0) since H(®) bits in the
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Proof: GivenD,,(RE) = 0foranyR, > 7, by Theorem
4, there exists a sequenp@% ™12 | of multiresolution source
codes such that

EAn,rn (aLa ﬁLa Po, QL7n)

L

o ~ 1 ~ €
< mi Ly, = —
< min Dy (R%) + - ;::1 Bele| + —
< | D (75) + S Z Bere | + <
B " =1 TLQ

L
1 -
== Bt —
n
=1
which gives the desired result. O
V. SUMMARY

This work introduces the concept of universal multiresolution
source coding and considers the existence, rate of convergence,
and design of universal multiresolution codes. Central to the dis-
cussion is a generalization of the quantization interpretation of
two-stage universal source coding from single- to multiresolu-
tion source coding. Two ways of achieving the generalization
are considered. When the rate required for the code descrip-
tion in the first-stage description is independent of the desired
coding rate, then a single-resolution first-stage quantizer is used
with a multiresolution second-stage code. The single-resolution
first-stage quantizer’s role in quantizing the space of possible
sources (or, equivalently, the space of possible multiresolution
codes) is a straightforward extension of the role played by the
first-stage quantizer in traditional two-stage codes. When the
rate required for the code description in the first-stage descrip-
tion is a function of the desired coding rate, then the single-res-
olution first-stage quantizer is replaced with a multiresolution
first-stage quantizer. In this case, in resolutioine first-stage
quantizer may describe the source or code to the accuracy re-
quired for the resolutiod-data description. The first-stage de-
scription may then be refined in future resolutions if greater ac-
curacy in the source description is required. Proof of existence
and redundancy results are given under both scenarios.

APPENDIX

Theorem 1: Assume thaf X;} is stationary and ergodic for
eachf € A. Weighted universal multiresolution codes exist for
({X:}, ©) if and only if the OPTA has an ergodic decomposi-
tion.

Proof: By the definition of weighted universal coding for

first resolution of the first-stage source description sufixed-rate multiresolution quantizers, a sequericE 122
fices to describeé perfectly. In this case, there exists &f quantizers withQ%:" € QfF R” (L,n)foralln > lisa

sequencg @™ "}72,; of two-stage multiresolution sourceweighted universal sequence of fixed-rate multiresolution quan-
codes such that tizers if and only if

" H(© €
EAn,rn (Oérlv /3L7 P®7 QL’ ) < /31 # + ﬁ EAfr(OéL, RL, P@, Qh’n) — 0, asn — oo
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where is a weighted universal sequence of variable-rate multiresolu-
tion quantizers if and only iEAY* (o, 8%, Ps, Q") — 0
EA™ (ab, RY, Po, Q1) asn — oo, where
1 vr n
- / [_ JP (o Py, Q1) EAY (a", BY, Po, Q™7)
n

— l op L L L,n
% (o, BE, PH):| W (6) _/ [n TP (o, pY, Py, Q5 T)

_ gJvr L L
I%J(’" (aF, P, QM) —/ffr (¥, RY, Py) dW(6). T (o, BE, Py) | dW ()

— 1 op( . L L L,n
Thus, if the ergodic decomposition = J%(a”, 55, P Q7T)

JE(a*, RY, P) = / J5(at, RY, Pp)dW(0)  (18) - / I (o, g5, Pa) AW (9).

Thus, by an argument similar to the one given above,
EAY ok, gL, Ps, Q™) — 0 if and only if the following
ergodic decomposition holds:

holds, then, because there exi§3™ " 1> | such thaQ® "
O R"(L p)foralln > 1and

opys . L L,y _, ’Afr L L R R
(LI (o, B @) = Je™, B, ) J (¥, ", P) :/J“ (aF, B, Pa) dW(8).  (19)

(18) implies thatE A (o, R¥, Pg, Q™) — 0 for the same
sequencd Q% ™12, of fixed-rate multiresolution quantizers.
On the other hand, notice that for any> 1 and anyQ™ ™ ¢

O

Lemma 1: Suppose thafr*(n)}°2, is a sequence af-di-

Q™1 (L, n) mensional real vectors such thatn) > Oforalln > 1
1 . andr,(n) — 0asn — oo for eachf e {1, ..., L}. Sup-
EJOP(C%L, P, Q") > J(a", R*, P) pose further that for each € A, {c,.(0)}32, is a sequence
of positive humbers that converges to zeromagrows without
and bound. If for each rate vectdt” there exists a sequence of mul-
. tiresolution quantizer§Q%-"}2% , such that for each > 1
Jﬁr(aL7 RL, P) QL,n c er, R[—I—r[(n)(L7 7’L) and
= lim inf / L or (a®, Po, Q% ™) dP(z) 1 TPl Py, QP < JE(ah, R
n—oo QL’”EQH’RL n o ; @, Iy, Q ) < J (Oé ) R ) PH) +cn(9)

> lim / inf 1 J? (a*, Py, Q™) dP(z)  foreachp € A, then for each positive rate vecthF there exists
QrreQm Rl N a sequence of quantizef&™ ™ }>2, such that for each > 1

1 JLin e QFR"(L ) and
> / lim inf = Jor (Ocr‘, P, Qr"") dP(x) @ ( )

n—oo QL’”EQH’RL n 1 N

— Jop (aL7 P&; QL,n)

- / J¥ (a”, R", P,) dP(z) " L

< Jir (aL, RL, Pg) +cn () + Z Bere(n)
=1

= / J (o, RY, P,) dP(x)
for n sufficiently large, provided that the planar direction de-
// J (o, RY, P,) dPs(z) dW(0) scribed bys’ satisfies the constraints

Be > _a(’jrr(aLv E‘Lv PQ))/(aRZ)

JE (o, R, Py) dW(6) ~ Proof: Since J¥(al, R*, Py) is convex inR" (by a
simple time-sharing argument) [14] and given the condition

o L oL L , on 3L, there exists a rate vectdt? with B, < R, for all
so EA™ (o, R, Pe, Q™™) can only approach zero if (18) , € {1, ..., L} such that for anyr” with

/ forall £ e {1, ..., L}.
/

The argument for variable-rate coding is similar. In particular, Ry €[Re, Ry, fe{l,..., L}
a sequencé@’™ ™12 | of quantizers with I

JEE, RE, Py <J%(a, R*, P)+ Y B(Re — Re).
Qb e Q7 (L, n), foralln>1 ( ) ( ) ; ( )
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Considerm sufficiently large so that

Ey

- el X = g5 U™ NIP+Bel fy o(X™)]

1
m

oy
||Ma
I

Ry =Ry —ri(n) € [Ry, R}, forallfe{1,..., L}

Eo Y ol X™—go, e (F5(XTNIP+Be| fo, o X™)]]

1
Then there exists a - —
m

oy
IIMh
I

Qb e @A N(L, m) = Q% (L, n)

L
1
S_E a Xrn_gA fé xm 2+/3 f7 xXm
such that o B 0 [l =g, LTSI+l X

l Jop (OéL P QL,n) 1 L m ¢ m 2 m
. » Fo — —Ey D el X™ = go, o (F5 (X DI +5e| fo, o(X™)]]
< J(ak, RE, Py) + ca(6) -

L
1
~ ~ L = — F « 4 X™)) — g 14 xXm 2
< B (aL, i, Pg) £3° fre(n) + ea(6). — B ;::1 ellge, «(fo(X™)) = g5 (S (X™)
=1 L m
.« . . 1 m
giving the desired result. o =& > o [ge 0 (fs(X™)
(=1 =1
Lemma 2: For eachz™ € A" and any3% such that3, > 0 ! R 9
forall¢ e {1,..., L} and0 < Eleﬁz < o0, the infimum — <f(ge ; j(fg(Xm))—u)-i-ﬂﬂ
o \98, L,
n/m I 1 L m &
: L L _m ) M _ = _ 7 £ m
532; Z Bé|$é| + Z J ( ) /3 ) x(z)’ Qgr, ) = m Ee Kzz:l (07 Jzz:l |:<1 O) gg7é7j(f9(X ))
is achieved. ) n po N\
Proof: Pick anys” € S%, and let s H

n/m

Z/3z|35|+ZJ (af, 8% 0l QG™) <00 T

=1

L m
Ee Z (873 Z
=1

—1

<

1
m
5 2
SinceS™ is a multiresolution prefix code, the number of strings - [(1 - —) ggl,j(fg(xm))
57 e ST that satisfy> L, 4]5,| < ¢ must be finite. Thus, o

sincejoP(ak, g, ™, QEL;,’") > 0 for all z™ and allQ% ™, &\ (uo . P

the infimum is achieved. O +2 <1 - ;) <7 u) go,¢,(fo(X™))
Lemma 3:Let {X;} be an arbitrary real-valued random 5 2

process with measurE,, such thah = (i, o) describes the + <“— - ﬂ) ]

source’s meam and standard deviatioh < o < ~o. For any 7

quantizer for sourcé. If the Zth-resolution distortion measure «
poy(z, y) = (x—y)? forall£ e {1, ..., L}, then

g P~ ~ 2
7Y (H2 po
A, ( B P, QF m) <E az) 6 — 6] +2 <1 - ;) <7 —N> Eo X1 + <? —N> ]
L
foralln > 1andalld € A. _ <Z aé)

6 € A let QL ™ be the optimal dimension: multiresolution < g

Proof: For any(u, o) € A, the quanhzeQ( ) can be =1
obtained from the quantize’g(L0 ’f) by first scaling each compo- &\ [ b 16 2
nent on(’;;”f’) by o and then translating by. Thus, +2 <1 - ;) <7 - M) p+ < . ﬂ)
L L,m L
Arn( 7/3 PH?Q‘ ) — <Za[> [(g—é’)2+(u—ﬂ)2] D
=1

_ ~ jop L L,m
== Ly ( B, Py, QL )

1 Lemma 4: Consider a spacd of possible source parame-
op L L L,m . .
- J (a , B7, Pa, Qy ) ters such that C R¥ for some fixed integek. In the case of
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fixed-rate coding, assume thatis bounded. In the case of vari- Foreaclf € {1, ..., L}, partition[—B, B]** uniformly into
able-rate coding\ may be unbounded if the differential entropy2*% bins by partitioning each dimension int§/*: bins and
then taking the cross product. Taking the cross product of these
L Pa L
h(©) = / w(f) logw(f) dh < oc. partitions gives a2« )-bin partition of[- B, B]Eczl ke,
Now consider an omniscient two-stage multiresolution quan-
Suppose that for eadh € A, there exists a cod@ﬁ’m that tizer QL™ that descrlbLeﬁkpy describing the bin into which
achieves thenth-order OPTA for source’. Suppose further falls. (If ¢ ¢ [-B, B]Ef:1 ¢, then the first-stage quantizer en-
that for allg, § € A and eachn > 1, there exists a constart, coder describes the bin whose center is closesgt)thet the
such that second-stage multiresolution quantizercbg’ " =gk o ff,

2 wheref is a representative value at the center of the chosen bin,
gg‘ is the multiresolution quantizer decoder described fgnd

fL is the corresponding nearest neighbor encoder. Notice that
Then there is a constart,, dependent om: such that decoding the/th-resolution description of data vectar™ re-
L. .. . quires only the/th-resolution codewords. Thus, arresolution
Dy (RY) < Dy (RE) = A 27200k, descriptions” of 4 suffices, where for eache {1, ..., L}, &

_ . is a ratef?, description of the resolutioAcodewords of). ™.
Further, if there exists a constansuch that,,, < ¢ for all m, Notice that ¢

thenA,,, = A does not depend om. o o omll? AL
Proof: This result uses a single-resolution first-stage Hgé,z(fe()* ) — g0, ¢(fo(X ))H sm [(23)2 ‘ ‘}

quantizer. Designing that first-stage quantizer involves breaigr almost allg. Thus,

ing R* into nested hypercubes—each with a representat%e (aL L QL")

value—and using the description of the hypercube in wigich™ ™™ v e

lies as an approximate description &f Since the first-stage

code is a single-resolution code, the argument is similar to the — L EFg

corresponding argument for weighted universal single-resolu-

A (aL, gL, p,, Qj") <enlo—6

L
Sl X7~ g, ol £ <Xm>>||2]

=1
tion codes [12, Lemma 7]. O L
1 ail it
Lemma 5: Fix integer m and rate vectorRL such that — .~ EEe >l X™ - go, «(f6(X ))||2]
£ g—
92 B s an integer for each ¢ {1, ..., L}, and suppose =t
that||X™|| < B almost surely?™. Then, for fixed-rateR” 1 L . o
coding under the squared-error distortion criterion s - EEe Z ag [|IX™ = gze (f6(X™)]|
=1
L - m 4 m 2
Do(RE) < A'Y a2/ —[IX™ = go, ((fo(X™NII"]
=1

L
[ EEo Y ar[|IX™ = g, (f6(X™ I
for someA < oo, wherek, = m2"" 2 B equals the number =1
of parameters in théth resolution of a fixed-raté?’ code.
Proof: LetQ, ™ = g} o fI be the optimal fixed-ratd:"
multiresolution quantizer fois. Since the optimal encoder

—1X™ = go, dlFS(X™))?]

L
fgL must be a nearest nceighbor encoder, describing for each— %EE@ Z ay [Hg@,g(fé(Xm)) _ g@}é(fé(Xm))HQ}
te{l,..., L} the 2251 ®i p_dimensional, resolutior- =1
codewords suffices to completely descrik‘ibg’m. Further, L }
since the codewords @™ are the only information about < Z g4 B2 e/ ke
that is required by the decoder, describfy ™" to the decoder ~ ¢=t )
is equivalent to describing to the decoder. Thus, there is ndiVing the desired result. 0

loss of generality associated with treatifigas the vector of | emma 6: Choose an integen and rate vectoR” such that

dimension mS . .
2 EjZIRJ is aninteger foreache {1, ..., L}. Suppose that

S Y E||X™||**¢ < oo for somee > 0. Then, for fixed-ratek”
Z m2 == Z ke coding under the squared-error distortion criterion
=1 =1 I
that describes the full multiresolution codebook. Sijse” || < Dn(RY) < A a272Ruelk
B almost surely, under this treatment £=1 )
6 € [-B, B x [-B, B]"** x --- x [-B, B]* for someA < oo, wherek, = m2™ 22i=1 i
—[-B, B]Zf:1 ke Proof: Given thatE||X™|**¢ < oo, by [12, Lemma 9]

almost surely. E[llge, «(sHI**

fo(X™) =] < o0
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£
for each /¢ {1,...,L} and each of the2™ 2= 2
fixed-length{m Ef’:l R;) binary stringss‘. Thus, by [26, 3]
Theorem 2], for each sudit there exists a constart,: < oo
and a collectior", containing|2™%¢/%¢ | m-vectors such that !
m E [ minlg — 9o (s")II*| f6(X™) = 4 < A2 2Mulke (8]
C
LetI', be the collection of [6]
m [_7 Hj £ [7]
L2an4/k4J2 =t < 2(n12m2j:1 Rj)R[/k[ _ 217“34
] ‘ ) . (8]
fixed-rate{>_,_, ;) codes achieved by taking the cross
product of thel",. sets for a fixed value of. Finally, letI" be ]
the collection of
£
L - L= L - [10]
H Lz’an(/k(JQ S H 2R( — 225:1 R(
=1 =1 (11

L-resolution source codes achieved by using a codebook from
T'; in resolutions for each? € {1, ..., L}.

By the above code construction, for ahy A, there exists an
L-resolution source cod@ELL’m = gk o f5 such that for each

(12]

fe{l,..., L}andeach fixed-rat(éZf=1 R;) binary descrip- 13]

tion s* [14]
5t ¢ = arg i - ¢ 2.

95¢(s") = arg min lg = go.¢(s")| [15]

LetQX" = gl o fF be the first-stage multiresolution quantizer [1e]

such thatf{(9) = s¢ andgZ(5%) = Q% ™. Then [17]

A (ocL, Br, Qf’")

(18]

1 = ~m L yom 2 [19]
< EE Z ag [|lgse, e (F&(X™) = go, ((FEX ™) ]
=1 [20]
L
<3 a3 Pro™) = ] -
=1 st [22]
1 m 4
EE[HQ;([( ) — go, (sH|? |f®X ) =s'] 23]

[24]

L
<3 [ X P = 5 Ay ) 22
=1 "

giving the desired result. O

[25]
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