Signaling and Cross-talk by C5a and UDP in Macrophages
Selectively Use PLCβ3 to Regulate Intracellular Free Calcium

Studies in fibroblasts, neurons, and platelets have demonstrated the integration of signals from different G protein-coupled receptors (GPCRs) in raising intracellular free Ca\(^2+\). To study signal integration in macrophages, we screened RAW264.7 cells and bone marrow-derived macrophages (BMDM) for their Ca\(^{2+}\) response to GPCR ligands. We found a synergistic response to complement component 5α (C5α) in combination with uridine 5'-diphosphate (UDP), platelet activating factor (PAF), or lysophosphatidic acid (LPA). The C5α response was Goαi-dependent, whereas the UDP, PAF, and LPA responses were Goαq-dependent. Synergy between C5α and UDP, mediated by the C5α and P2Y6 receptors, required dual receptor occupancy, and affected the initial release of Ca\(^{2+}\) from intracellular stores as well as sustained Ca\(^{2+}\) levels. C5α and UDP synergized in generating inositol 1,4,5-trisphosphate, suggesting synergy in activating phospholipase C (PLC) β. Macrophages expressed transcripts for three PLCβ isoforms (PLCβ2, PLCβ3, and PLCβ4), but GPCR ligands selectively used these isoforms in Ca\(^{2+}\) signaling. C5α predominantly used PLCβ3, whereas UDP used PLCβ2 but also PLCβ4. Neither ligand required PLCβ2. Synergy between C5α and UDP likewise depended primarily on PLCβ3. Importantly, the Ca\(^{2+}\) signaling deficiency observed in PLCβ3-deficient BMDM was reversed by re-constitution with PLCβ3. Neither phosphatidylinositol (PI) 3-kinase nor protein kinase C was required for synergy. In contrast to Ca\(^{2+}\), PI 3-kinase activation by C5α was inhibited by UDP, as was macropinocytosis, which depends on PI 3-kinase. PLCβ3 may thus provide a selective target for inhibiting Ca\(^{2+}\) responses to mediators of inflammation, including C5α, UDP, PAF, and LPA.

Calcium is an important messenger involved in the regulation of multiple cellular processes, and levels of intracellular free calcium ([Ca\(^{2+}\)]) are precisely regulated (1–3). Increases in intracellular [Ca\(^{2+}\)], are initiated by the phospholipase C (PLC) family of enzymes, which hydrolyze membrane-associated phosphatidylinositol 4,5-diphosphate (PIP\(_2\)) to produce inositol-1,4,5-trisphosphate (IP\(_3\)) and diacylglycerol (4). IP\(_3\) triggers the release of Ca\(^{2+}\) from stores in the endoplasmic reticulum, whereas diacylglycerol activates members of the protein kinase C (PKC) family. Following activation of stored Ca\(^{2+}\) by IP\(_3\), influx of extracellular Ca\(^{2+}\) across the plasma membrane may further contribute to an increase in [Ca\(^{2+}\)], which is regulated by several Ca\(^{2+}\) pumps and buffers (1). The net level and duration of these Ca\(^{2+}\) signals regulate cellular responses, including transcription, apoptosis, endocytosis, chemotaxis, and metabolism (3).

Simultaneous stimulation of two GPCRs coupled to different Go subunits, often Goαi or Goαq in combination with Goαq, has been shown to yield synergistic Ca\(^{2+}\) responses in several model systems (reviewed in Ref. 5). Limited studies have demonstrated this synergy in primary cells, including neurons and platelets, but the mechanisms of synergy vary and are not well defined (6, 7).

Synergistic Ca\(^{2+}\) responses resulting from heterologous GPCR ligation have been little studied in macrophages, where members of the GPCR superfamily can stimulate an increase in [Ca\(^{2+}\)], by activating members of the PLCβ family (4). As part of a systematic screen of RAW264.7 macrophage cells, C5α and UDP demonstrated synergy in producing a rise in [Ca\(^{2+}\)], (8). C5α is an important inflammatory mediator for macrophages and UDP, which is released following cell damage, is also present at sites of injury or infection (9, 10). Both ligands signal through GPCRs; C5α signals through C5αR (11), and UDP signals through P2Y6 receptors (12). To examine GPCR cross-talk by these ligands in mouse macrophages we studied both

*This work was supported, in whole or in part, by National Institutes of Health Grant GM 62114. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

†To whom correspondence may be addressed: VAMC 111R, 4150 Clement St., San Francisco, CA 94121. Tel.: 415-750-2104; Fax: 415-750-6920; E-mail: Tamara.Roach@ucsf.edu.

‡To whom correspondence may be addressed. E-mail: Robert.Rebres@ucsf.edu.

§To whom correspondence may be addressed. E-mail: bseaman@medicine.ucsf.edu.

The abbreviations used are: [Ca\(^{2+}\)], intracellular free calcium; BMDM, bone marrow-derived macrophages; C5α, complement component 5α; GPCR, G protein-coupled receptor; GRK, G protein-coupled receptor kinase; IP\(_{3}\), inositol 1,4,5-trisphosphate; LPA, lysophosphatidic acid; PAF, platelet activating factor; PIP\(_{2}\), phosphatidylinositol 4,5-diphosphate; PKC, protein kinase C; PI3K, phosphatidylinositol 3-kinase; PLC, phospholipase C; PTX, pertussis toxin; ERK, extracellular signal-regulated kinase; WT, wild type; YFP, yellow fluorescent protein; RNAi, RNA interfering; shRNA, short hairpin RNA.
RAW264.7 cells and primary bone marrow-derived macrophages (BMDMs).

Our studies show that signals generated by C5a and UDP, acting through \(\text{G}_{\alpha_q} \) and \(\text{G}_{\alpha_i} \)-coupled pathways, respectively, converge at the level of PLC\(\beta \), and that these ligands, both individually and in concert, selectively use one PLC\(\beta \) isoform, PLC\(\beta 3 \), to activate the production of IP\(3 \) and the consequent release of Ca\(^{2+} \) from intracellular stores.

EXPERIMENTAL PROCEDURES

Reagents—UDT, UTP, LPA, platelet activating factor (PAF), human C5a, and fluorescein isothiocyanate-dextran were from Sigma. Mouse IgG\(_{2a}\), was from BD Pharmaceuticals. F(\(\text{ab}^\prime \))\(_2\) fragment of goat anti-mouse IgG was from Jackson ImmunoResearch Inc. Anti-PLC\(\beta 3 \) was from P. Sternweiss, University of Texas Southwestern Medical Center. Anti-P-Akt and anti-P-ERK were from Cell Signaling Technologies. Fura2 was from Molecular Probes. Ionomycin, thapsigargin, pertussis toxin, and these cells were maintained for up to 35 days in culture. After 6 days, over 99% of the surviving cells were macrophages, which were isolated by adherence and replated into BMDM as described above.

Population Calcium Assays—Ca\(^{2+} \) responses were measured by monitoring the fluorescence of Fura2-loaded cells (PP00000211). Baseline readings were collected for 30–40 s. Calibration steps included additions of a Ca\(^{2+} \)-minimizing solution (PS00000607) and Fura2 Ca\(^{2+} \)-saturating solution (PS00000608) at the end of each recording, to allow calculation of [Ca\(^{2+} \)]\(_i \) values according to the method of Grynkiewicz et al. (24), assuming a cytoplasmic \(K_d \) of 250 nM for Fura2. Ca\(^{2+} \) signals during the response period were quantified by features as indicated, including the peak offset response (difference between baseline Ca\(^{2+} \) level and the maximal Ca\(^{2+} \) level observed, reported in nanomolar) and an integrated response (integrated Ca\(^{2+} \) level above the average baseline over the indicated time period, reported in nanomolar \(\times \) seconds).

Single-cell Calcium Assays—BMDM were plated in chambered coverslips (Nunc, 8 wells/coverglass), cultured overnight, and loaded with Fura2-AM as described above. Video microscopy was performed on a Nikon TE-300 fluorescence microscope equipped with a Photometrics HQ2 camera, 37 °C stage incubator (Bionomics), Xe lamp (Sutter), and filter/shutter/dichoric controllers (Sutter and Conix). Simple PCI software was used to control collection parameters and extract fluorescence intensity data for individual cells.

IP\(3 \) Assay—After cell culture overnight, cells were plated in serum-free medium containing, 0.01% bovine serum albumin. After 1 h, ligands were added and, after varied time periods, dishes were transferred to ice, the media aspirated, and the cells washed with cold phosphate-buffered saline. Cells were scraped into 125 ml of 5.4% perchloric acid solution and trans-ferred, and the samples recentrifuged at 14,000 g for 15 min at 4 °C. 120 μl of supernatant was neutralized with 5 N KOH containing 60 mM HEPES, and the samples recentrifuged at 14,000 × g for 15 min at 4 °C. The IP\(3 \) content of the final supernatant was assayed with an Amersham Biosciences IP\(3 \) \([\text{H}] \) Biotrak assay kit. Results were reported as picomoles of IP\(3 \) per 10\(^5 \) cells.

SDS-PAGE and Western Blot Analysis of Phosphoproteins (Protocols PP00000168 and PP00000181)—Cells were stimulated under the same conditions used for the IP\(3 \) assay. Then buffer was aspirated, the cells were scraped into Laemmli sample buffer, and the samples heated. SDS-PAGE gels were loaded with 20 μg of protein per lane, and Western blots were probed with anti-P-Akt, anti-P-ERK, and anti-Rho-GDI. Fluorescent

Lentivirus-mediated RNAi—Lentivirus was produced with a combination of three plasmids: (i) pCMVΔR8.91 packaging plasmid, (ii) pMD.G envelope plasmid (20, 21), and (iii) a lentiviral vector plasmid. The packaging and envelope plasmids were generously provided by D. Trono, Geneva. The lentiviral vector plasmids contained shRNA sequences expressed under RNA polymerase III promoters (U6 or H1) upstream of a Ubi-C promoter driving bicistronic expression of either enhanced green fluorescent protein or an hCD4 marker, followed by a resistance gene for either puromycin or hygromycin (22). Transfection of the 3 plasmids into 293T cells utilized Lipofectamine 2000 (Invitrogen) and 20 μg of total DNA in a ratio of 4:3:2 for vector, packaging, and envelope plasmids, respectively (PP00000200). Two days post-transfection, lentivirus was concentrated by using Centricon microfiltration tubes (PP00000202). Macrophages were infected at a multiplicity of infection of ~10 in the presence of Polybrene at 4 μg/ml (PP00000215) (22). shRNAs targeting murine PLC\(\beta 2 \), PLC\(\beta 3 \), and PLC\(\beta 4 \) were employed the sequences GAA CGG CAG TTA CGT TGT C; GCA GCC AGA TGA TTT GAT T; and ACG CGA TTG AGT TTA ATT A, respectively.
Selective PLCβ3 Use in GPCR Ca\(^{2+}\) Signaling by Macrophages

RESULTS

UDP and C5a Interact to Produce a Synergistic Calcium Response in Macrophages—As part of a large-scale screen, we observed a synergistic interaction between UDP and C5a for Ca\(^{2+}\) signaling (8). This response showed a faster rise time and an increased peak offset (peak response minus baseline) compared with the predicted additive response by the individual ligands (Fig. 1A). For the peak offset, the observed dual ligand response was increased by 1.5–2-fold over the predicted additive response. Integration of the response over the first 20 s yielded similar values. The ratio of observed/predicted values for such features of the response was referred to as the synergy ratio. BMDM showed a similar synergistic increase in the Ca\(^{2+}\) response, but the synergy ratio was much greater than in RAW264.7 cells (Fig. 1B).

For both cell types the optimal synergistic concentrations of each ligand were at or near the threshold concentration of both ligands, which fell within the linear portions of their dose-response curves. For RAW 264.7 cells, optimal concentrations for synergy were 0.25–100 nM C5a and 40–500 nM UDP, whereas for BMDM they were 0.1–3 nM C5a and 150–500 nM UDP.

Synergy Is Dependent on Signaling through Both Gαq and Gα\(_{i}\)-dependent GPCRs—C5a engages C5aR, which signals predominantly through Gα\(_{q}\)-coupled heterotrimeric (11, 25, 26). Thus, in BMDM and RAW264.7, the Ca\(^{2+}\) response to C5a was inhibited following treatment with pertussis toxin (PTX), whereas that of UDP was not (Fig. 2A and supplemental Fig. S1). PTX-mediated inhibition of signaling by low concentrations of C5a (<1 nM) was complete, but at high concentrations residual PTX-insensitive calcium signaling was detected both in WT BMDM and in BMDM from mice lacking either Gα\(_{q}\) or Gα\(_{i}\) (data not shown). Saturation of PTX intoxication of the C5a Ca\(^{2+}\) response was reached using 5 ng/ml for 18 h (supplemental Fig. S1). Others have demonstrated a role for Gα\(_{i}\) in C5a signaling in primary macrophages (27). Although our data indicate that most C5a signaling is PTX-sensitive, they are consistent with some signaling through Gα\(_{i}\) when C5a is present in high concentrations. The Ca\(^{2+}\) response to C5a in BMDM from
Selective PLCβ3 Use in GPCR Ca^{2+} Signaling by Macrophages

Intracellular Ca^{2+} responses were measured in Fura2-loaded BMDMs. A, C5a Ca^{2+} responses are mostly PTX sensitive. BMDM cultured overnight with or without PTX (100 ng/ml) were stimulated with different concentrations of C5a (0.33 to 10 nM) or a single concentration of UDP (2.5 μM), and the peak offset of the Ca^{2+} responses was determined. Shown is a representative experiment of seven with similar results. Values are mean ± S.E. from three to four replicate samples per condition, * p < 0.01. B, UDP responses are Gq- dependent. Wild type (WT), Gq heterozygote (+/−), and Gq- deficient (−/−) BMDM were stimulated with either UDP (2.5 μM) or C5a (10 nM). Peak offsets of responses are shown normalized to those of the wild-type cells from each experiment. Values are mean ± S.E. from three experiments. *, p < 0.001. C, quantitative reverse transcriptase-PCR for Gq family isoforms q, 11, and 15 was performed on RAW264.7 cell and BMDM samples to determine relative prevalence. Transcript levels were normalized to those for Gαi, for the same cell type. Data shown are mean ± S.E. from n = 3 samples per cell. D, synergy following dual ligand stimulation requires both Gq and Gαi subunits. WT or Gq- deficient (−/−) BMDM were stimulated with UDP (500 nM), C5a (0.75 nM), or simultaneous UDP and C5a. WT cells were cultured overnight with or without PTX (100 ng/ml). Data shown are from a representative experiment of three to four with similar results. Each line in the graphs represents the average of three to four individual wells in the assay.

mice genetically deficient in Gαq2 were intact (data not shown), suggesting that Gαi3 is sufficient to support C5a signaling in these cells, because Gqα1 and Gqα3 are not expressed in macrophages (data not shown). Inhibition by PTX was similar to that observed for WT cells (data not shown).

UDP binds to purinergic receptors of the P2Y family, which usually signal through members of the Gqα family (12, 28, 29). In accord with this, we found that the Ca^{2+} response was completely lost in BMDM from Gqα-deficient mice (Fig. 2B). Surprisingly, although BMDM express other members of the Gqα family, including Gα11 and Gα15 (Fig. 2C), these are evidently unable to substitute for Gqα in response to UDP. Furthermore, the BMDM from Gqα-deficient mice had no reduction in Ca^{2+} responses for UDP (or for C5a, data not shown) compared with wild type.

UDP only binds with high affinity to the P2Y6 receptor on macrophages. UTP, which has much lower affinity for P2Y6, binds also to P2Y2 and P2Y4 receptors (12, 28). To demonstrate that the responses to UDP did not involve contaminating UTP, we separately tested UTP and UDP before and after treatment with hexokinase (12), which catalyzes conversion of UTP to UDP. Hexokinase treatment of UDP had no effect on its capacity to increase [Ca^{2+}], in BMDM (not shown), indicating that contaminating UTP was not responsible for the observed responses in BMDM. The efficacy of hexokinase treatment was confirmed by showing that hexokinase treatment of UTP ablated its capacity to increase [Ca^{2+}], in NIH 3T3 cells, which respond to UTP but not UDP.

The removal of either Gqα or Gαiα via genetic deletion or PTX intoxication, respectively, also eliminated any synergistic Ca^{2+} response to dual ligand stimulation (Fig. 2D). Thus, synergy between C5a and UDP is dependent on the Gi- and Gq-linked subunit effectors that are activated by C5a and P2Y6 receptors, respectively.

LPA and PAF Also Synergize with C5a for Ca^{2+} Responses—To determine whether synergy for Ca^{2+} signaling occurred with other ligand pairs, we also examined responses to C5a or UDP in combination with PAF or LPA, both of which induce a Ca^{2+} response in macrophages through GPCRs. Pairing of C5a with either PAF or LPA demonstrated a robust synergy in Ca^{2+} signaling. Little or no synergy was seen with UDP/PAF, UDP/LPA, or PAF/LPA (data not shown). The levels of synergy observed for C5a paired with LPA or PAF (Fig. 3, A and B) were comparable with those for C5a paired with UDP.

PAF and LPA, like UDP, signaled Ca^{2+} primarily through Gqα in BMDM (Fig. 3C), but unlike UDP this was not exclusive; in the Gqα- deficient cells residual Ca^{2+} responses for PAF were abrogated by PTX, indicating a minor contribution from Gi-linked receptors. PTX did not reduce the Ca^{2+} response to LPA, but instead surprisingly enhanced it in both Gqα-deficient and WT BMDM (Fig. 3D). These data suggest for the first time that Gqα-coupled receptors basally inhibit LPA Ca^{2+} signaling. As with UDP, synergy by either LPA or PAF with C5a was lost in Gqα- deficient BMDM (data not shown). Thus, although these receptors can activate some Ca^{2+} signaling independently of Gqα synergy with C5a nonetheless requires Gqα activation. Overall, these results indicate that the simultaneous activation of Gqα and Giα heterotrimers results in a synergistic Ca^{2+} response in macrophages. C5aR was the only endogenous Gqα-coupled GPCR on BMDM that we found to be capable of generating a robust Ca^{2+} response independently, and it was also the only receptor that synergized with ligands for Gqα-coupled receptors.

Synergy Requires Dual Receptor Occupancy—We next examined the possibility that one ligand might prime cells for subsequent responses, for example, by increasing the supply of PIP2 to provide a heightened state of responsiveness to the second stimulus (30). Although synergy was greatest when C5a and UDP were added simultaneously, it was also evident when ligands were added as much as 10 min apart. The sequence of addition was irrelevant. Fig. 4A shows the results for ligands
Selective PLCβ3 Use in GPCR Ca²⁺ Signaling by Macrophages

Synergy Affects the Initial Release of Ca²⁺ from Intracellular Stores and IP₃ Production—Synergy between C5a and UDP affected the early rise in [Ca²⁺], suggesting an effect on the release of intracellular calcium stores. To test this, the Ca²⁺ responses to C5a and UDP, either alone or in combination, were measured after acute addition of EGTA to deplete extracellular Ca²⁺. Synergy occurred in the presence of EGTA, confirming an effect on the release of intracellular Ca²⁺ (Fig. 4C). Without EGTA, however, synergy also extended to the sustained phase response, which is dependent on the influx of extracellular Ca²⁺. Thus, synergy between C5a and UDP begins with the release of intracellular Ca²⁺ stores but extends to the influx of extracellular Ca²⁺.

The release of Ca²⁺ from intracellular stores is activated by IP₃ binding to IP₃ receptors on the endoplasmic reticulum to open ER calcium channels (1). Simultaneous stimulation of BMDM with C5a and UDP in amounts that produced a synergistic Ca²⁺ response also resulted in synergy in the production of IP₃ (Fig. 4D), suggesting synergistic mechanisms are manifest at the level of PLCβ activation. Levels of IP₃ measured at 30 s and 1 min after ligand additions were increased. Ca²⁺ levels began to decline while IP₃ was still rising, indicating that levels of [Ca²⁺], are not solely regulated by levels of IP₃.

The Synergistic Ca²⁺ Response Is Independent of Feedback Pathways Involving PI 3-Kinase (PI3K) or PKC—Downstream of GPCR activation, PLCβ may be regulated by other signaling components, including those generated following the activation of PI3K (by Gβγ subunits) or PKC (by diacylglycerol) (5). In our studies, however, inhibition of PI3K by LY294002 or PKC by Calphostin C or staurosporine did not significantly affect synergy (supplemental Fig. S2.). The activity of the inhibitors was confirmed by inhibition of Akt or myristoylated alanine-rich c-kinase substrate (MARCKS) phosphorylation (supplemental Fig. S3). These data are further evidence that an early signaling event is involved in the mechanism of synergy.

C5a and UDP Make Selective Use of PLCβ Isoforms—To examine the role of PLCβ in the signaling response to C5a and UDP, we first determined levels of transcripts for PLCβ isoforms in RAW264.7 cells and BMDMs. By both microarray analysis (data not shown) and reverse transcriptase-PCR (Fig. 5), we found that both cell types express PLCβ2, PLCβ3, and PLCβ4, with little or no PLCβ1. At the transcript level, the proportions of these PLCβ isoforms, however, differ between RAW264.7 cells and BMDM; normalized to PLCβ3, RAW264.7 cells express similar levels of transcripts for PLCβ2, PLCβ3, and PLCβ4, whereas BMDM express PLCβ2 > PLCβ3 > PLCβ4.

To determine whether C5a and/or UDP made selective use of these PLCβ isoforms, we examined the Ca²⁺ response in BMDM from mice genetically deficient in PLCβ2, PLCβ3, or PLCβ4. BMDM from mice deficient in PLCβ3 demonstrated a marked loss of signaling in response to all GPCR ligands, including, C5a, UDP, PAF, and LPA (Fig. 6 and Table 1). Activation of Ca²⁺ responses, however, was intact in response to ligation of FcγRI by cross-linked IgG₂a (Fig. 6), demonstrating that macrophages from PLCβ3-deficient mice are not deficient in the generation of [Ca²⁺], to a non-GPCR ligand. In BMDM from mice deficient in PLCβ2, the Ca²⁺ response to UDP was also consistently reduced, whereas the response to C5a was slightly elevated (Table 1 and Fig. 6) and FcγRI signaling was normal. No loss of signaling to either UDP or C5a was seen in BMDM from mice deficient in PLCβ2. Thus, in BMDM, signaling...
Selective PLCβ3 Use in GPCR Ca²⁺ Signaling by Macrophages

![Graph](image)

FIGURE 4. C5a and UDP produce synergistic Ca²⁺ responses when added serially, but synergy requires dual ligand receptor occupancy. Intracellular Ca²⁺ responses were measured in Fura2-loaded BMDM. Each line in the graphs represents the average of three to four individual wells per assay. A, serial addition of stimuli to BMDM provides synergy. C5a (0.75 nM); UDP (500 nM) or Hanks' balanced salt solution (HBSS) were added at the first time point (arrow 1), and after a 100-s delay UDP or C5a were added at the second time point (arrow 2). The first stimulus was not removed prior to addition of the second. B, serial stimulation of BMDM does not provide synergy if the first ligand is removed prior to addition of the second. Either UDP (500 nM) or Hanks' balanced salt solution was added to the cells and incubated for 2 min. The buffer was then left in the wells another 3 min or the buffer was removed, the cells washed, and fresh buffer replaced in the wells. C5a (0.75 nM), C5a + UDP (0.75 nM + 500 nM), or Hanks' balanced salt solution were then added to the wells (2nd addition, arrow labeled 2, 5-min delay from 1st addition, thus 3-min delay after 1st ligand removal for washed samples), and the results of the second response period are shown. The left panel depicts responses to the 2nd stimulus when the 1st ligand remains. The right panel depicts responses to the 2nd ligand in the absence of the 1st ligand. C, synergy was observed in the release of Ca²⁺ from intracellular stores. Each line in the graphs represents the average of three to four individual wells per assay. Hanks' balanced salt solution or EGTA (2 mM) were added to assay wells 30 s prior to C5a (0.75 nM), UDP (500 nM), or simultaneous addition of C5a and UDP. D, IP₃ responses of BMDMs. Cells were stimulated with C5a (10 nM), UDP (2.5 μM), or simultaneous C5a and UDP for 0, 30 s, or 1 min and signaling was stopped by cell lysis in perchloric acid as described for IP₃ measurements. IP₃ was measured using a competitive binding assay for the IP₃ receptor and results are reported as picomole/10⁶ cells. Values shown are mean ± S.E. from n = 5–10 samples per condition.

by both C5a and UDP, C5a and UDP are selectively dependent on PLCβ3, but signaling by UDP is also partly dependent on PLCβ4.

To examine the role of PLCβ in RAW264.7 cells, we used RNAi against the different PLCβ isoforms. The loss of PLCβ isoforms in response to RNAi was incomplete (supplemental Fig. S4), but this approach allowed the testing of a uniform cell line, and it avoided possible developmental effects on macrophages due to PLCβ isoform loss. The depletion of PLCβ3 from RAW264.7 cells by RNAi reduced signaling by C5a, although not to the same extent as in BMDM genetically deficient in PLCβ3 (Table 2). Cells depleted of PLCβ3 by RNAi were not deficient in their response to UDP, but RNAi against PLCβ4 caused a loss of signaling in response to UDP, with a slight elevation in C5a signaling (Table 2). Thus, signaling by C5a depends mostly on PLCβ3 in both BMDM and RAW264.7 cells. Signaling by UDP is partially dependent on PLCβ3 in BMDM, but we could not detect this dependence in RAW264.7 cells by RNAi of PLCβ3. Signaling by UDP is also dependent on PLCβ4 in both BMDM and RAW264.7 cells, whereas deficiency of PLCβ4 augments C5a signaling in both cells.

Ca²⁺ Responses Are Restored in PLCβ3-deficient BMDM Reconstituted with PLCβ3—Recombinant viruses were used to transduce wild-type and PLCβ3-deficient BMDM with either YFP-tagged murine PLCβ3 or control YFP-tagged FLAG cDNAs. Single-cell calcium assays were performed, which allowed identification of transduced cells by YFP fluorescence and comparison of responses by transduced and non-transduced cells (Fig. 6, B and C). Reconstitution of PLCβ3-deficient BMDM with PLCβ3 reconstituted the Ca²⁺ response to both C5a and UDP, alone and in combination, indicating that the loss of Ca²⁺ response in the PLCβ3-deficient cells is not due to an associated developmental defect.

Synergistic Ca²⁺ Responses Also Show Isoform Dependence—We next tested the role of the PLCβ isoforms in synergy between C5a and UDP. In BMDM lacking PLCβ3 or PLCβ4, only those deficient in PLCβ3 were deficient in synergy (Fig. 7A and Table 3), as reflected by a reduced synergy ratio. Because signaling by individual ligands was lower than wild type in these cells, the predicted additive responses were also lower, but a residual synergistic response was still detected in PLCβ3-deficient cells (Table 3). Thus synergy in Ca²⁺ signaling, like signaling by individual ligands, is primarily dependent on PLCβ3, but some synergy can be seen without it. Notably, lack of PLCβ4 did not reduce synergy in BMDM but instead enhanced it. We conclude that PLCβ3, but not PLCβ4, plays an important role in synergy between these ligands as well as in their individual responses.
Selective PLCβ3 Use in GPCR Ca\(^{2+}\) Signaling by Macrophages

As with Ca\(^{2+}\) signaling, BMDM lacking PLCβ3, but not PLCβ4, failed to demonstrate synergy in the production of IP\(_3\) (Fig. 7B). Thus, studies of both Ca\(^{2+}\) and IP\(_3\) indicate that synergy in signaling by C5a and UDP is the result of enhanced activity of PLCβ3.

Dual-Ligand Effects on PI3-Kinase Contrast to Those on PLC—To determine whether the synergistic effects of C5a plus UDP dual ligand stimulation were reflected in signaling events other than PLC activation, we examined activation of PI3K. G\(\beta\gamma\) subunits directly activate PI3K-p110\(\gamma\) (31) and GPCRs can also activate PI3K-p110\(\alpha\) and PI3K-p110\(\beta\) (32). The G\(\alpha\) subunit does not activate PI3K, but instead can interact with and inhibit PI3K-p110\(\alpha\) (33, 34). Thus, PI3K activity reflects important proximal GPCR signals. To assess activation of PI3K, we measured the phosphorylation of Akt, which requires anchoring of its pleckstrin homology domain to PI\(_3\) produced by PI3K at the cell membrane. In BMDM, C5a rapidly activated PI3K, with peak phosphorylation of Akt at \(
\sim 3\) min (data not shown). In contrast, UDP did not activate PI3K, and it inhibited the phospho-Akt response to C5a (Fig. 8). This inhibition of Akt phosphorylation by UDP was at least partially selective, as ERK phosphorylation showed additivity. UDP did not inhibit PI3K activation in response to cross-linking of FcγRI (data not shown), demonstrating that signaling by UDP did not globally interfere with all forms of PI3K activation. The observation that UDP inhibits PI3K activation by C5a while promoting Ca\(^{2+}\) signaling suggests that these pathways are differentially regulated.

The Opposing Effects of C5a/UDP Signal Interactions on PLC and PI3K Are Reflected in Macropinocytosis—Macropinocytosis, the endocytic process whereby cells internalize substantial volumes of extracellular fluid and solutes, is dependent on both PLC and PI3K (35, 36), and this “sampling” of the environment contributes to macrophage antigen presentation (37, 38). We found that C5a activates macropinocytosis by BMDM, whereas UDP does not. Macropinocytosis was inhibited by dual ligand stimulation (Fig. 9), in contrast to synergy for PLC and Ca\(^{2+}\) but in parallel with the inhibition of PI3K.

DISCUSSION

Our studies demonstrate the preferential use of PLCβ isoforms by GPCRs in eliciting a Ca\(^{2+}\) response in macrophages. Furthermore, they indicate that synergy in signaling by the G\(\alpha\)\(_{q}\)-coupled C5aR, together with the G\(\alpha\)\(_{q}\)-coupled P2Y6 receptor for UDP, depends on a selective use of PLCβ3. Synergy in the Ca\(^{2+}\) response to C5a and UDP correlated with synergy in IP\(_3\) production, suggesting signal convergence at the level of PLCβ activation. In contrast to Ca\(^{2+}\) activation, synergy between C5a and UDP was not observed in PI3K activation. Instead, the activation of PI3K by C5a was opposed by UDP. A similar effect was seen in the activation of macropinocytosis, which is dependent on both PLC and PI3K. Thus, synergy was selective for IP\(_3\) production and Ca\(^{2+}\) response, consistent with a selective effect on PLCβ.

The preferential use of PLC isoforms by GPCRs in macrophages did not simply reflect differential levels of expression of...
Selective PLCβ3 Use in GPCR Ca²⁺ Signaling by Macrophages

transcripts for the PLCβ isoforms. Four isoforms of PLCβ have been identified (4). We found that both BMDM and RAW264.7 cells expressed transcripts for PLCβ2, β3, and β4 but not PLCβ1, as determined by gene array analyses on Affymetrix chips and by reverse transcriptase-PCR. We have not been able to develop assays that adequately quantify differences in protein expression of these PLCβ isoforms, but our results, nonetheless, suggest that the selective use of PLCβ3 in macrophages for Ca²⁺ signaling and synergy is despite the expression of PLCβ2 and PLCβ4. Thus, in contrast to platelets and neutrophils, PLCβ3 appears to be the major functional isoform in macrophages. While this article was in preparation, Wang et al. (39) also reported reduced Ca²⁺ responsiveness to C5a by macrophages from PLCβ3-deficient mice, and they linked this to increased apoptosis, and diminished atherosclerosis. Our studies demonstrate that in macrophages UDP can use PLCβ4 as well as PLCβ3, but C5a synergizes with UDP and other activators of Goq through signals that converge at the level of PLCβ3, and responsiveness can be restored by transduction of cells with PLCβ3, showing that the defect in signaling does not reflect developmental changes in other pathways.

TABLE 1

<table>
<thead>
<tr>
<th>Measure of response</th>
<th>Ligand</th>
<th>BMDM</th>
<th>WT PLCβ2+/−</th>
<th>PLCβ3+/−</th>
<th>PLCβ4+/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak offset</td>
<td>C5a</td>
<td>100</td>
<td>118 ± 19</td>
<td>20 ± 4a</td>
<td>104 ± 6</td>
</tr>
<tr>
<td></td>
<td>UDP</td>
<td>100</td>
<td>150 ± 32</td>
<td>44 ± 3b</td>
<td>81 ± 6b</td>
</tr>
<tr>
<td></td>
<td>LPA</td>
<td>100</td>
<td>109 ± 13</td>
<td>24 ± 4a</td>
<td>86 ± 13</td>
</tr>
<tr>
<td></td>
<td>PAF</td>
<td>100</td>
<td>136 ± 4a</td>
<td>38 ± 4a</td>
<td>94 ± 3</td>
</tr>
<tr>
<td></td>
<td>FCG</td>
<td>100</td>
<td>114 ± 12</td>
<td>104 ± 10</td>
<td>87 ± 20</td>
</tr>
<tr>
<td>Integrated 60s</td>
<td>C5a</td>
<td>100</td>
<td>131 ± 28</td>
<td>18 ± 3a</td>
<td>105 ± 5</td>
</tr>
<tr>
<td></td>
<td>UDP</td>
<td>100</td>
<td>159 ± 40</td>
<td>44 ± 3b</td>
<td>73 ± 6b</td>
</tr>
<tr>
<td></td>
<td>LPA</td>
<td>100</td>
<td>98 ± 10</td>
<td>28 ± 5a</td>
<td>89 ± 13</td>
</tr>
<tr>
<td></td>
<td>PAF</td>
<td>100</td>
<td>142 ± 9a</td>
<td>34 ± 3a</td>
<td>94 ± 9</td>
</tr>
</tbody>
</table>

*p < 0.005.

* p < 0.05.

TABLE 2

RNAi against PLCβ3 and PLCβ4 in RAW264.7 reduces Ca²⁺ responses to C5a and UDP respectively

RNAi against PLCβ isoforms in RAW264.7 cells was performed by lentiviral-mediated RNAi using shRNA encoding constructs. Control lines lacking only shRNA were prepared and analyzed in parallel with each RNAi line. Ca²⁺ assays were performed with C5a (30 nM) and UDP (25 μM) and responses were quantified by peak offset and integration to 1 to 2.5 min after ligand addition. Values were normalized to responses of control lines in each assay, and results of replicate lines were pooled to present the average response as a percent of control. Results represent 2–5 lines per target with three to four assays per line and three to four samples per ligand per assay.

TABLE 3

Ca²⁺ response synergy in PLCβ3-isotype-deficient BMDMs

BMDMs derived from four to seven individual PLCβ3-deficient (−/−) mice were subjected to Ca²⁺ assays for near maximal concentrations of several GPCR ligands: C5a (10 nM), UDP (2.5 μM), LPA (2.5 μM), and PAF (12.5 nM). Three to four assays per cell population and ligand were performed with three to four replicate samples per assay. Responses were normalized to the matched WT BMDMs in each assay and the table reports the average response of each isotype −/− as % of WT response. Values are shown for peak-offset and integration to 60-s measurements of the Ca²⁺ responses. PLCβ3-deficient BMDM showed reduced responsiveness to four GPCR ligands but not following ligation of FcγRI (FCG). PLCβ4-deficient BMDM showed a reduced Ca²⁺ response phenotype for UDP only.

Synergy in the macrophage Ca²⁺ response was observed both in the initial, rapid release of Ca²⁺ from intracellular stores and in the sustained elevation of cytoplasmic Ca²⁺ levels.

Figure 7. The synergistic Ca²⁺ response shows selective use of the PLCβ3 isoform. Matched wild-type (+/+) versus PLCβ3- or PLCβ4-deficient (−/−) BMDMs were assayed for their ability to reflect synergistic responses to C5a plus UDP. A, intracellular Ca²⁺ responses were measured in Fura2-loaded BMDM. Each line in the graphs represents the average of three to four individual wells per assay. Cells were stimulated with C5a (0.75 nM), UDP (500 nM), or both ligands. Data shown are from representative experiments of n = 9–19 with similar results. B, IP₃ production in PLCβ3-isofom-deficient BMDMs. Cells were stimulated with C5a (10 nM), UDP (2.5 μM), or simultaneous C5a and UDP as indicated, and signaling was stopped by cell lysis at 1 min after stimulation. IP₃ was measured using a competitive binding assay for the IP₃ receptor, and results are reported as picomole/10⁶ cells. Data represent pooled results from two to four assays with 2 replicate samples per condition per assay. * p < 0.005.

FIGURE 7.
This observation is important, as there are examples of ligand interactions that increase \([\text{Ca}^{2+}]\), only via the influx of \([\text{Ca}^{2+}]\) through plasma membrane \([\text{Ca}^{2+}]\) channels (40).

Synergy between \(\text{G}\alpha_i\) and \(\text{G}\alpha_q\)-coupled receptors has previously been observed in other cell types. In several systems, including smooth muscles, astrocytes, and kidney epithelial cells, \(\text{G}\alpha_i\)-coupled GPCRs may alone not trigger a \([\text{Ca}^{2+}]\) response, but responses may be facilitated in combination with, or after priming by, \(\text{G}\alpha_q\)-coupled receptors (41–43). This synergy is reflected in the generation of IP3 as in our current studies of macrophages, implicating PLC in the pathway of synergy.

Our findings narrow the possible mechanisms by which synergy in \([\text{Ca}^{2+}]\) signaling by macrophages may occur. All PLC\(\beta\) isoforms can bind \(\text{G}\alpha_q\) subunits, albeit with differing affinities (44–48), and under certain conditions PLC\(\beta4\) demonstrates the highest specific activity for hydrolyzing PIP(2) (49). Consistent with this, the absence of PLC\(\beta4\) reduced mobilization of \([\text{Ca}^{2+}]\), by all ligands that activate \(\text{G}\alpha_q\), including UDP, LPA, and PAF. The loss of PLC\(\beta4\), however, did not impair synergy but instead increased it. Thus, PLC\(\beta4\) appears to inhibit rather than promote synergy in macrophages. PLC\(\beta2\) and -\(\beta3\) are both potently activated by \(\text{G}\beta\gamma\) (25, 47, 50, 51), whereas PLC\(\beta4\) is not (49). Although most \([\text{Ca}^{2+}]\) synergy was lost in mice lacking PLC\(\beta3\), we could still detect low levels of synergy. We hypothesize that PLC\(\beta2\) may be capable of mediating synergy, but in macrophages the contribution of PLC\(\beta2\) is small in relation to that of PLC\(\beta3\). In all, these results suggest that synergy between C5a and UDP in \([\text{Ca}^{2+}]\) signaling in macrophages does not require multiple isoforms of PLC\(\beta\) but instead involves the convergence of molecular mechanisms that primarily activate PLC\(\beta3\), but which may to a lesser extent activate PLC\(\beta2\).

Synergy between the \(\text{G}\alpha_q\) receptor C5aR and \(\text{G}\alpha_q\) receptors does not establish that \(\text{G}\alpha_q\) itself participates in the synergy. \(\text{G}\beta\gamma\) signaling may differ between C5a and UDP, and synergy could reflect interactions between their unique \(\text{G}\beta\gamma\) pathways. Indeed, loss of \(\text{G}\beta2\) subunits via RNAi disrupts C5a but not UDP \([\text{Ca}^{2+}]\) responses in RAW264.7 cells (Ref. 52, and data not shown).

In our studies, C5a synergized not only with UDP, but also with PAF and LPA in stimulating a rise in \([\text{Ca}^{2+}]\). Studies of \(\text{G}\alpha_q\)-deficient BMDM confirmed that both PAF and LPA utilize \(\text{G}\alpha_q\), but they also revealed important and interesting differences between these ligands and UDP. Unlike UDP, neither PAF nor LPA was fully dependent on \(\text{G}\alpha_q\). The remaining \([\text{Ca}^{2+}]\) signaling with PAF utilized \(\text{G}\alpha_q\), as interruption of this pathway with PTX in the absence of \(\text{G}\alpha_q\) removed all \([\text{Ca}^{2+}]\) signaling in response to PAF. In contrast, LPA \([\text{Ca}^{2+}]\) signaling was not reduced by PTX. Instead it was markedly increased. The G proteins used by LPA to elevate \([\text{Ca}^{2+}]\), in \(\text{G}\alpha_q\)-deficient BMDM are unknown, but it appears that they are normally inhibited by \(\text{G}\alpha_q\).

At high ligand concentrations, C5a also demonstrated some PTX-insensitive activation of \([\text{Ca}^{2+}]\) signaling. We found that this response was still present in \(\text{G}\alpha_q\)- or \(\text{G}\alpha_{15}\)-deficient mice, suggesting coupling of C5a to the more promiscuous \(\text{G}\alpha_{15}\), as has been observed by others (27). However, no \([\text{Ca}^{2+}]\) synergy was observed with the combination of two \(\text{G}\alpha_q\) family-linked ligands. Optimal synergy was observed at low concentrations of C5a, where the C5a-stimulated \([\text{Ca}^{2+}]\) response was entirely PTX sensitive, so we infer that the synergy is attributable to the \(\text{G}\alpha_q\) activation by C5aR. In BMDM, the C5a receptor was the only \([\text{Ca}^{2+}]\) signaling receptor identified that was primarily dependent on \(\text{G}\alpha_q\).

GPCR-mediated PLC\(\beta3\) activation can be regulated by positive or negative feedback loops. The pleckstrin homology domain of PLC\(\beta\) preferentially binds to the phosphatidylinositol 3-phosphate product of PI3K (4) and thus PI3K has the potential to modulate PLC\(\beta\) activity. In our studies, however, inhibition of PI3K by LY294002 did not alter the \([\text{Ca}^{2+}]\) synergy, indicating that PI3K does not measurably contribute to synergy. PKC may interact with PLC at several levels. It can directly phosphorylate PLC\(\beta\), inactivating it (53). It can also phosphorylate and regulate signaling via GPCRs, and can phosphorylate some G protein-coupled receptor kinases (54). In our studies, however, inhibition of PKC with either Calphostin C or staurosporine did not alter \([\text{Ca}^{2+}]\) synergy.
Selective PLCβ3 Use in GPCR Ca²⁺ Signaling by Macrophages

The acute nature of the synergy observed (occurring within seconds of dual ligand addition) and the demonstrated requirement for simultaneous dual receptor occupancy argue against the possibility that one receptor might drive “priming” events affecting responses to the second receptor. Mechanisms for synergy reflecting priming effects have been proposed in a number of other systems (55). The immediate synergy in macrophages precludes changes in receptor or other protein expression levels. Alternatively, a priming event could increase the supply of the PLC substrate PIP2 to enhance production of expression levels. Alternatively, a priming event could increase the supply of PIP2 to enhance production of Ca²⁺ signaling unless increases in the supply of PIP2 were lost rapidly (we tested 3 min after 1st ligand removal by which time synergy was lost).

The consequences of combined signaling by C5a and UDP in macrophages may be particularly important in areas of inflammation, where C5a is produced, and where UDP may be released from dying cells (59). C5a in particular plays a central role in inflammation, and consequences of Ca²⁺ signaling would be augmented by UDP, whereas consequences of PI3K activation would be inhibited. The recent report describing a reduction of atherosclerosis in PLCβ3-deficient mice, due to macrophage hypersensitivity to apoptotic induction, links inflammatory outcome to Ca²⁺ signaling and survival in macrophages (39).

Acknowledgments—We thank K. Rose Finley, Michael McWay, Christina Moon, and Amanda Norton, San Francisco Veterans Affairs Medical Center; and Joelle Zavzavadjian, Jamie Liu, Leah Santat, Lucas Cheadle, and Estelle Wall, Caltech, for excellent technical assistance.

REFERENCES

Selective PLCβ3 Use in GPCR Ca^{2+} Signaling by Macrophages

5297–5301