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Representation Theory for High-Rate
Multiple-Antenna Code Design

Amin Shokrollahi, Babak Hassibi, Bertrand M. Hochwald, and Wim Sweldens

Abstract—Multiple antennas can greatly increase the data rate
and reliability of a wireless communication link in a fading envi-
ronment, but the practical success of using multiple antennas de-
pends crucially on our ability to design high-rate space–time con-
stellations with low encoding and decoding complexity. It has been
shown that full transmitter diversity, where the constellation is a
set of unitary matrices whose differences have nonzero determi-
nant, is a desirable property for good performance.

We use the powerful theory of fixed-point-free groups and their
representations to design high-rate constellations with full diver-
sity. Furthermore, we thereby classify all full-diversity constella-
tions that form a group, for all rates and numbers of transmitter
antennas. The group structure makes the constellations especially
suitable for differential modulation and low-complexity decoding
algorithms.

The classification also reveals that the number of different group
structures with full diversity is very limited when the number of
transmitter antennas is large and odd. We, therefore, also consider
extensions of the constellation designs to nongroups. We conclude
by showing that many of our designed constellations perform ex-
cellently on both simulated and real wireless channels.

Index Terms—Fading channels, receive diversity, space–time
coding, transmit diversity, wireless communications.

I. INTRODUCTION

I T is well known that multiple-antenna wireless communica-
tion links promise very high data rates with low error proba-

bilities, especially when the channel is known at the receiver [2],
[3]. But the design of so-called space–time codes that achieve
these promises is still in its early stages. In [4], some trellis-
based codes for known channels are developed, and in [5] some
block codes are designed. However, the assumption that the
channel is known is sometimes questionable, especially in a
rapidly changing mobile environment or when many transmitter
antennas are employed and extensive training is required. In [6],
[7], some information-theoretic and signal constellation design
issues are considered for channels that are known neither to the
transmitter nor the receiver. In particular, a class of signals called
unitary space–time signalsis developed where the transmitted
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signal matrices that form a constellation are all unitary. Further
justification for using unitary space–time signals is given in [8],
where it is shown that these signals can form their own channel
code and achieve arbitrary reliability over a single fading coher-
ence interval with a large number of transmitter antennas.

To help make unknown-channel multiple-antenna communi-
cation practical, a scheme usingdifferential unitary space–time
signals is proposed in [1] that is well-tailored for unknown con-
tinuously varying Rayleigh flat-fading channels. Differential
unitary space–time signals are unitary matrix-valued signals
that are a multiple-antenna generalization of the standard
differential phase-shift keying (DPSK) signals commonly used
with a single antenna over an unknown channel. A similar
differential multiple-antenna scheme is also described in [9]. A
two-antenna differential scheme based on orthogonal designs
is described in [10].

Although [1] describes, in full generality, the properties that a
constellation of differential matrix-valued signals should have,
only so-called “diagonal” signals are analyzed in detail. Diag-
onal signals effectively sequentially activate the antennas, one
at a time, and always in the same order. If we model the fading
paths from every transmitter antenna to the receiver antenna(s)
as independent, then the diagonal differential space–time sig-
nals provide full transmitter diversity and can lower error prob-
ability significantly. At low rates. the diagonal signals yield ex-
cellent performance. However, at higher rates it is conjectured
in [1] that there exist “fuller” matrices (no longer diagonal)
that have the necessary unitary and full diversity properties, but
would perform even better. In this paper, we show how to design
signal matrices satisfying these requirements.

As shown in [1], the design problem for unitary space–time
constellations is the following: let be the number of trans-
mitter antennas and the desired transmission rate (in bits per
channel use). Construct a setof unitary
matrices such that for any two distinct elementsand in

, the quantity is as large as possible. Any set
such that for all distinct is

said to havefull diversity. Since both the objective cost (the de-
terminant of the pairwise differences of the elements of), as
well as the constraint set (the set of unitary matrices)
are nonconvex, finding an exact solution to the design problem
appears to be computationally intractable. Further confounding
the problem is the potential size of the constellation .

Thus, to simplify the design problem it is necessary to intro-
duce some structure on the constellation set. In this paper,
we shall primarily focus on sets of unitary matrices that form a
group with respect to matrix multiplication. The use of a group
structure offers certain advantages. The first is its potential for
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good performance. If is not a group, gener-
ally may take on distinct values for .
The minimum value (equivalent to the minimum distance of the
constellation) may, therefore, be quite small. But ifis a group,
the determinant takes on at most distinct values given by

for , possibly yielding a larger min-
imum distance. Although this is not a rigorous argument, we
show that many of the groups indeed have large minimum dis-
tances and perform extremely well.

The second advantage is practical. Since differential
space–time modulation multiplies matrices into form the
transmitted signal matrix, if is a group, every transmitted
signal matrix is always an element of. Therefore, explicit
matrix multiplication is replaced by the simpler group table
lookup.

Because any abstract group has a representation in unitary
matrices, we restrict our search to groups that have representa-
tions with full diversity. In [1], full diversity sets that form an
Abelian(commutative) group are considered. This is equivalent
to constraining to be a cyclic group represented by a set of
diagonal matrices. The codes thereby generated are shown ex-
perimentally to have good performance at low rates ( ,
for example). Not explored in [1] are setsthat are noncom-
mutative groups as potential candidates for good performance
at higher rates. One of our primary goals is to find good-per-
forming high-rate noncommutative groups.

In this paper, we completely characterize the class of uni-
tary matrices that provide full diversity and form a group. The
characterization is derived using results in the theory of fixed-
point-free groups. A fixed-point-free group can be represented
as a group of unitary matrices (for some) with full diver-
sity. An early reference for fixed-point-free groups is Burnside
[11] who in 1905 showed that any group that is fixed-point-free
and has order that is a power of a prime number must be ei-
ther cyclic or a generalized quaternion group with a full-diver-
sity representation for . These full-diversity groups are
also classified for and in [9] (there, the gen-
eralized quaternion groups are also called “dicyclic”). Zassen-
haus, in a celebrated 1936 work [12], classifies many more of
these groups. However, the classification in [12] appears to be
incomplete and contains errors; we complete the classification
in its entirety. While many of the results in this paper are moti-
vated with differential modulation in mind, we should note that
the design problem of maximizing for distinct

is important also when the channel is known to the
receiver [4], [7]. However, when the channel is known it appears
to be less important to have the group unitary property of being
able to multiply the matrices in without leaving the set.

Some of the groups that emerge as good signal sets are rather
surprising. We show, for example, that if is odd, there is
only a single class of possible groups. If or ,
some of the signal sets that are excellent performers involve
SL —the special linear group in two dimensions over the
field . The classification reveals that the number of different
group structures with full diversity is very limited when the
number of transmitter antennas is large and odd. As a conse-
quence, we also consider setsthat have some of the proper-
ties of a group, but are not themselves groups, and find that there

are some simple design rules for generating nongroup constella-
tions with good performance. These allow us to construct good
signal constellations for practically all values of and .

The paper is organized as follows. The next section motivates
and states the problem that we are solving in detail. For ease
of reference, and since the paper is rather lengthy, Section III
contains a summary of the principal results in this paper and a
comparison with previous work. Section IV introduces repre-
sentation theory and gives an example of a class of non-Abelian
fixed-point-free groups. Section V classifies all full-diversity or,
equivalently, all fixed-point-free groups and gives their repre-
sentations. Sections VI and VII give some consequences of the
classification for multiple-antenna constellations. Section VIII
uses the structure of the group constellations to generate some
nongroup constellations. Section IX tabulates some of the best
group and nongroup constellations and includes some illustra-
tive performance curves for various numbers of antennas and
rates. Section X discusses fast decoding of the constellations.
Section XI provides the conclusion. Appendixes A–C develop
most of the mathematical machinery required for the results of
this paper and prove the classification theorem.

II. M ULTIPLE ANTENNA SPACE–TIME MODULATION

A. The Rayleigh Flat-Fading Channel

Consider a communication link with transmitter antennas
and receiver antennas operating in a Rayleigh flat-fading en-
vironment. The th receiver antenna responds to the symbol
sent on the th transmitter antenna through a statistically in-
dependent multiplicative complex-Gaussian fading coefficient

. The received signal at theth antenna is corrupted at time
by additive complex-Gaussian noise that is statistically

independent among the receiver antennas and also independent
from one symbol to the next. We assume that time is discrete,

.
It is convenient to group the symbols transmitted over the

antennas in blocks of channel uses. We use to
index these blocks; within theth block,

. The transmitted signal is written as an matrix
whose th column contains the symbols transmitted on the

th antenna as a function of time; equivalently, the rows con-
tain the symbols transmitted on the antennas at any given
time. The matrices are normalized so that the expected square
Euclidean norm of each row is equal to one. Hence, the total
transmitted power does not depend on the number of antennas.
The fading coefficients are assumed to be constant over
these channel uses.

Similarly, the received signals are organized in ma-
trices . Since we have assumed that the fading coefficients
are constant within the block of symbols, the action of the
channel is given by the simple matrix equation

for (1)

Here, and are matrices of
independent -distributed random variables. Because
of the power normalization, is the expected signal-to-noise
ratio (SNR) at each receiver antenna.
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B. Known Channel Modulation

We first discuss signal encoding and decoding when the re-
ceiver knows the channel . We assume that the data to be
transmitted is a sequence with .
The data then simply dictates which matrix is transmitted

Each transmitted matrix occupies time samples of the
channel, implying that transmitting at a rate of bits per
channel use requires a constellation of

unitary signal matrices.
The receiver knows and computes the maximum-likeli-

hood (ML) estimate of the transmitted data as1

(2)

where the matrix norm is the Frobenius norm

tr tr (3)

The quality of a constellation is determined by the probability
of error of mistaking one symbol of for another. In [4], [7] it
is shown that the Chernoff bound on the pairwise probability of
mistaking for with a known channel (averaged over the
statistics of ) is given by

(4)

where is the th singular value of the
matrix .

C. Differential Unitary Space–Time Modulation

When the receiver does not know the channel, one can
communicate using multiple-antenna differential modulation
[1], [9]. Multiple-antenna differential modulation is formally
similar to standard single-antenna differential phase-shift
keying (DPSK). In standard DPSK, the transmitted symbol
has unit-modulus and is the product of the previously trans-
mitted symbol and the current data symbol. The data symbol
typically is one of equally spaced points on the complex
unit circle. As a generalization, -antenna differential unitary
space–time modulation differentially encodes unitary
matrix-valued signals. We transmit an unitary matrix
that is the product of the previously transmitted matrix and a
unitary data matrix taken from the constellation. In other words,

(5)

with . We immediately see why it is useful in practice
to have form a group under matrix multiplication: from (5),
if is a group then all the transmitted matricesalso belong
to . Therefore, the transmitter sends matricesfrom a finite
set and does not need to explicitly multiply , but
rather can use a group table lookup.

1To see that the scaling factor
p
� is not needed, collect the terms from ex-

panding the squared norm and use the fact thatV is unitary.

If the fading coefficients are approximately constant over
time samples , the received matrices turn out to
obey

(6)

where is an matrix of additive independent
noise [1], uncorrelated with the signal . As shown

in [1], the ML decoder has the simple structure

(7)

and the Chernoff bound on the pairwise probability of error with
differential modulation on an unknown channel is

(8)

At high SNR, both bounds (4) and (8) depend primarily on the
product of the singular values, which is the modulus of the de-
terminant of . In other words, for high SNR we may
write

where when the channel is known and when the
channel is unknown and used differentially. Hence, there is ap-
proximately a 3-dB advantage for knowing versus not knowing
the channel, and we may measure the quality of a constellation

by its so-calleddiversity product

(9)

The scaling factor guarantees that . The exponent
essentially gives the geometric mean of thesingular values
since the modulus of the determinant is the product of the sin-
gular values. Clearly, a constellation with largeris superior.
Any constellation with is said to have full diversity.
When and the SNR is high, we note that no two distinct
transmitted signals can give the same received signal, for any

. In this paper, we consider only full-diversity constellations
and, in particular, we try to find constellations with diversity
product as large as possible.

III. SUMMARY OF PRIOR WORK AND THIS PAPER

A. Prior Work

We briefly review some of the unitary space–time constella-
tions that have been considered in prior work.

Cyclic Group Codes:In [1], cyclic groups are introduced for
differential modulation. In this case, are diagonal th roots
of unity. In particular

where

and are taken from the set . Without
loss of generality, we can let . The constellation is thus
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specified by the integers . The are generally
chosen to maximize as defined in (9) and given by

(10)

In this constellation, the transmitter antennas are activated one
at a time and always in the same order.

Orthogonal Designs:The two-dimensional (2–D) orthog-
onal design for two antennas over a known channel is [14]

OD (11)

where and are complex data symbols chosen subject to a
power constraint. In [10], this design is adapted for differential
transmission by constraining ; observe that
OD then becomes unitary.

Unitary constellations of size are obtained by let-
ting and range over the th roots of unity

( -PSK symbols) yielding

OD

Throughout this paper, we assume that the OD constel-
lations are generated in this way. (If the channel is known,
better performing nonunitary constellations can sometimes
be obtained by choosing and as quadrature amplitude
modulation (QAM) symbols.)

The diversity product of this constellation with-PSK sym-
bols is

(12)

These constellations do not generally form a group; thus, when
used differentially, orthogonal designs transmit potentially arbi-
trary symbols.

Generalized Quaternion (Also Called Dicyclic) Codes:In
[9], constellations for antennas are built from cyclic
groups, and also so-called “dicyclic” groups of the form

where the notation refers to the group generated by the ele-
ments enclosed within the brackets. These are commonly called
generalized quaternion groups, and have order or rate

. They are equivalently generated by the two uni-
tary matrices

More recently, [15] extends the generalized quaternion groups
to .

For comparison, Table I lists some cyclic groups, general-
ized quaternion groups, and orthogonal designs. The cyclic
groups are chosen to have the highestfound by searching
over . (For large and
this search was done randomly.) Only for does the

quaternion group have higher than the best cyclic group.
Some of the fractional-rate groups in this table are included for
later comparison.

B. Summary of this Paper

This paper classifiesall possible finite groups of matrices
with for all numbers of antennas and all possible
rates . The groups considered in [1] and [9] appear as special
cases of our classification theorems. Our classification includes
many new groups that are neither cyclic nor quaternionic, with
large and excellent performance.

The classification is based on the theory of fixed-point-free
groups. A group is defined to be fixed-point-free if it has a rep-
resentation in matrices, for some , that has positive

. (Section IV has a much more detailed description of these
group-theoretic concepts and terms.) An early partial classifica-
tion of these groups appears in a 1905 paper of Burnside [11]
where he shows that all groups that are fixed-point-free with
order a power of a prime number must either be cyclic or
for some integer , with an matrix representation.

A 1936 paper by Zassenhaus [12] gives a more complete clas-
sification of the fixed-point-free groups. After reviewing cyclic
groups in some detail in Section IV-B, we examine a group de-
scribed by Zassenhaus in his classification and compute its rep-
resentations in detail in Section IV-C. This new group turns out
to contain all possible constellations for odd.

Zassenhaus’ classification, however, is not complete and con-
tains errors and omissions. We, therefore, complete the classi-
fication in Section V. Theorem 1 is the main classification the-
orem. Its proof is long and incorporates many of Zassenhaus’
techniques and appears in Appendix A. Having the groups does
not mean that we also automatically have the matrix representa-
tions with full diversity. Deriving these representations is often
tedious, but the result is the content of Theorem 2 and its proof
is in Appendix B.

Armed with a complete classification, we explore in Sec-
tion VI some of the implications of the classification theorems.
Because of the practical interest in transmitter antennas,
Theorem 3 explicitly lists all of the groups with full diversity
for . For odd , the possible types of groups are very
limited and are contained in Theorem 4. For some concrete ex-
amples, Section VII lists the simplest (smallest) group of each
type classified. In this section, one nonobvious example of a
fixed-point-free group that stands out is SL , the group of

matrices over the field with determinant . This group
has 120 elements and an matrix representation; its rate
is . (In this paper, all logarithms are
base .) For this group , which far exceeds

for any other constellation we have been able to generate
with and comparable rate.

Because the list of possible group structures that yield full
diversity is limited, especially when is large and odd,
we explore the design of some nongroup constellations in
Section VIII. Although not groups, these constellations have
structures that are inspired by the groups and, therefore, share
some of their properties. Unlike group constellations, however,
we make no attempt to exhaustively explore all nongroup
alternatives.
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TABLE I
SUMMARY OF SOME CYCLIC GROUP ANDM = 2 QUATERNION AND ORTHOGONAL DESIGN CONSTELLATIONS

In Section IX, the reader can find a list of some of the new
constellations in Tables III and IV, along with their performance
on a wireless fading channel. For example, Figs. 1 and 3 demon-
strate the excellent performance of SL for trans-
mitter antennas, and Fig. 7 gives the performance a binary ex-
tension of this group for antennas. We also include the
results of an experiment with three antennas in the hallways of
Bell Laboratories (Fig. 6). There are also many other groups
and nongroups whose performances are evaluated. Comparisons
are made with cyclic and quaternion groups, and orthogonal de-
signs, when they exist.

ML decoding of the group constellations requires a search
over the constellation set and can be cumbersome if the number
of signals in the constellation is large. For example,
with , there are 65 536 signals in the constella-
tion set. To simplify decoding for large, we therefore discuss
fast approximate ML algorithms in Section X. These algorithms
exploit the constellation structures and are polynomial, rather
than exponential, in the rate.

Finally, Appendixes A–C develop most of the group-theo-
retic machinery this paper requires. We have also included Ap-
pendix D, which uses an information-theoretic argument to fur-

ther motivate the design of effective constellations of unitary
matrices.

We now proceed with the paper.

IV. GROUPCONSTRUCTION

A. Group Representations

We wish to find a set of unitary matrices for which the
diversity product in (9) is as large as possible. In this sec-
tion, we constrain to form a group under matrix multiplica-
tion. Recall that a set together with a binary multiplication
operation is a group if it is closed under this operation, satisfies
the associative law, has an identity element, and contains a
multiplicative inverse for each element. With the group require-
ment, since

where is another element in , the design problem
becomes that of finding a group ofunitary -matrices
such that
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is as large as possible. (The matrixdenotes the -identity
matrix. We later omit the dimension if it is clear from the
context.)

Our construction uses the representation theory of finite
groups. For readers who are not familiar with this theory,
we briefly review the main concepts. Two good references
for more details are [16], [17]. Agroup homomorphismis a
mapping between two groups that respects group multipli-
cation. An -dimensional representationof a group is a
group homomorphism from to the group GL of
invertible complex matrices. For instance, the trivial
map taking all group elements to the identity matrix

is a representation of a group.
Two representations and of are calledequivalentif

there is an invertible matrix GL such that
for all . The direct sum of two

representations and of dimensions and , respectively,
is the -dimensional representation whose value atis
the matrix

where denotes a matrix of zeros. A representation
is calledreducibleif it is equivalent to a direct sum of two (or
more) representations. Otherwise, it is calledirreducible. Any
representation of a finite group can be represented as a direct
sum of irreducible representations [16, Theorem 8.7], called the
irreducible constituentsof .

In this paper, we are particularly interested in representations
using unitary matrices. The following standard argument shows
that any representation is equivalent to a representation using
only unitary matrices. Choose a square matrixthat satisfies

The matrix is invertible since each is invertible so that
the sum is positive definite. Because is a group, it fol-
lows that for any Thus, we see that

is a unitary matrix, and the representation
is a unitary representation.

We call a one-dimensional (1–D) representation of a group a
characterof that group. Hence, a character is a multiplicative
mapping which maps elements of the group to complex roots
of unity. A character that is injective is calledprimitive; it maps
only into .

Our strategy is to take certain groupsand use unitary rep-
resentations to build group constellations. We denote this by

. The diversity product is then given by

(13)

Equivalent representations have the same diversity products.
Although our aim is to maximize , it is at this point not

clear whether this quantity is ever nonzero for a given group.
From (13), it follows that is nonzero if and only if for
any such that , the matrix does not have
an eigenvalue at unity. Such representations have been studied

before and are calledfixed-point-free representations. We call
a groupfixed-point-freeif it has a fixed-point-free representa-
tion. Such groups arise in the investigation of near fields [12],
in geometry [18], and in the investigation of finite subgroups of
skew fields [19]. The present application of these groups, how-
ever, appears to be new.

B. Cyclic Groups are Fixed-Point-Free

We start out with a class of groups that are always fixed-
point-free: the class of cyclic groups. We denote a cyclic group

, generated by an element, as . If has order ,
then . In the following, we com-
pute all fixed-point-free representations of this group. It suffices
to determine all the irreducible fixed-point-free representa-
tions, since the irreducible constituents of a fixed-point-free
representation have to be fixed-point-free themselves. But
fixed-point-free irreducible representations of cyclic groups
are trivial: irreducible representations of Abelian groups are
1-D [16, Theorem 9.8], i.e., they are characters of the group.
A character is fixed-point-free if and only if it is primitive
(if it is not primitive, it maps a nonidentity element to one
and, therefore, has a unit eigenvalue at a nonidentity element).
Hence, irreducible fixed-point-free representations of cyclic
groups are exactly the primitive characters of the group, and
these are characters that map a generator of the group to a
primitive th root of unity.

The Abelian group has characters given by
for , but not all are primitive. The char-

acter is primitive if and only if and are relatively prime,
implying that there are primitive characters, where
is theEuler totient functionof (which denotes the number of
positive integers less thanthat are relatively prime to ). An

-dimensional representation of is built as a direct sum
of characters

...
...

.. .
...

...
...

.. .
...

For the representation of , we use the fact that is a mul-
tiplicative map. Hence, for all . This
implies that

...
...

.. .
...

(14)

These reducible representations are identical to the diagonal
code constructions given in [1], and they are fixed-point-free if
and only if are relatively prime to . As shown in
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[1], either an exhaustive or random search can find thewith
the highest diversity product ; see also Table I.

We see that an Abelian group is fixed-point-free if and only if
it has a primitive character. Recall that a primitive character de-
fines an injective map from the Abelian group into the group
of nonzero complex numbers. Hence, the image of this map
is a subgroup of the nonzero complex numbers, isomorphic to
the original Abelian group. But subgroups of the nonzero com-
plex numbers are necessarily cyclic. (This is a well-known fact:
all elements of a finite subgroup of orderof are solutions
to , hence are th roots of unity.) We conclude thatan
Abelian group has a nonzero diversity product if and only if it
is cyclic.

As shown in [1], the performance of cyclic groups when used
for multiple-antenna constellations is good at low rates, when

, but degrades for . This is probably because the an-
tennas are activated only one at a time and always in the same
order. Since we seek groups with superior performance, we nec-
essarily must consider non-Abelian groups.

C. A Non-Abelian Class of Fixed-Point-Free Groups

An early reference to fixed-point-free representations is a
paper of Burnside [11]. An almost complete classification of
fixed-point-free groups appears in a paper of Zassenhaus [12].
We use the qualifier “almost” because Zassenhaus’ description
does not cover some classes of groups that are fixed-point-free.
In this paper, we fix the oversight and make the classification
complete. The complete classification appears in Section V.

In Section V, we give the matrix representations of all the
fixed-point-free groups. As it is often difficult and tedious to
compute these representations, we generally omit the details.
In this section, we, therefore, indicate how these computations
are done by computing the fixed-point-free representations of a
particular class of fixed-point-free groups in detail. As shown in
Section V, this class is the only class of groups with odd order,
and the only class with irreducible representations in an odd
dimension .

Let

where is the order of modulo (i.e., is the smallest pos-
itive integer such that ), ,
and we have . (We use the notation for

to mean the element .) The group has order
because it contains the subgroup of order and index (the
term “index” refers to the number of cosets). Note that the class
of groups contains the class of cyclic groups since
is cyclic of order .2 Appendixes A and B show that
is fixed-point-free if and only if all prime divisors of divide

. When is cyclic, we have that and,
therefore, all cyclic groups are fixed-point-free; this just con-
firms what we already know from the previous section. We now
compute all the irreducible fixed-point-free representations of

.
The cyclic group is a normal subgroup of .

(A subgroup is normal in if for all

2
r = 1 impliesn = 1 andt = 1. Thus,� = � and soG = h�i.

and .) We need to study how the representations of
interact with . Denote the restriction of a representationto

by . If is fixed-point-free, so is . Because
is cyclic has to be equivalent to a direct sum of primitive
characters of (see Section IV-B).

Alternatively, representations on subgroups induce represen-
tations on the group itself. Suchinduced representations(see,
e.g., [17, Sec. 5.9]) can be computed from the restricted rep-
resentation. Let be an irreducible representation of the cyclic
group . The induction of to is denoted , and
its dimension is given by the dimension oftimes the index of

in . We can use as block entries to construct .
For a representation of and we consider the rep-

resentation with . (Note that because
is a normal subgroup of , then is a valid representa-

tion of .) The inertia groupof is the group of all
such that is equivalent to . It is easy to see that the inertia
group of the 1-D representation of is equal to if is
primitive. Hence, by [17, Theorem 5.20, Corollary 3],
is irreducible if is primitive, i.e., fixed-point-free. To get the
representations of , we may thus compute the inductions to
of fixed-point-free representations of. We choose this route
because, as shown in Section IV-B, the fixed-point-free repre-
sentations of are simple to compute when is cyclic.

These inductions can be computed as follows; see, for ex-
ample, [17, Sec. 5.9]. Note that
is a set of representatives of the cosets . For the element

, we ask if , for ? If yes,
then the th block of is set equal to .
If no, then this block is set to zero. But if and only
if . Therefore,

...
...

. . .
...

(15)

For the element , we ask in a similar fashion whether
, for ? If yes, then the th

block of is set equal to .
If no, then this block is set to zero. But if and
only if . For , this holds if

, and in this case . But
for , this holds if , and in this case

. Therefore,

...
...

...
. . .

... (16)

Since is an irreducible representation of the cyclic sub-
group , it is in fact 1-D, i.e., it is a character. Becauseis
a primitive character, where is a primitive th root
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of unity. Substituting for into (15) and (16) gives the ex-
plicit representation given by

(17)

where , , , is the
order of modulo , and where

...
...

...
...

...
...

...
. . .

... (18)

These matrices are suitable for transmission with an-
tennas because they are unitary and have dimension.

In computing the fixed-point-free irreducible representation
of , we have not explicitly chosen the primitiveth
root of unity . But it is easy to see that the choice ofdoes not
change the group generated by and . Any such choice
makes the representationirreducible and fixed-point-free and
does not affect the diversity product .

Even though the constellation (taken in its entirety) does not
depend on the choice of, the representations obtained from
different are not necessarily equivalent. There are, in fact,

pairwise inequivalent fixed-point-free irreducible rep-
resentations of and they are obtained by choosingas

where runs over a set of representatives of
modulo the subgroup of ordergenerated by . To see
this, let be the irreducible representation of map-
ping to , and let be another representation mappingto

. Then, and are equivalent if and only if there
exists an invertible -matrix such that

(19)

Let . The equality on the left involving implies that
for all . Hence, if is not in the group

generated by , then for all , and the repre-
sentations and are inequivalent. On the other hand, if

for some , then setting for
and otherwise, satisfies both the above relations and
shows that and are equivalent. A similar argument applies
to the equality on the right side of (19) involving. Thus, there
are pairwise inequivalent fixed-point-free irreducible
representations of .

The value of for the representations characterized in
this section can be computed via the following lemma.

Lemma 1: For any fixed-point-free representation
of , we have

(20)

where and .
Proof: We need to compute the determinant of

for all or, equivalently, the determinant of

for all , , such that
. This is done using the matrix representations (18) and

Lemma 6 in Appendix C.

We now present a few examples of the fixed-point-free groups
.

Example 1 (Three Antennas):Let and take and
. Then we have , ,

, and all prime divisors of (i.e., the prime ) divide . Hence,
is a fixed-point-free group. Thus, if we set ,

and

then the 63 matrices , , , form a
group under matrix multiplication. We have .
This three-antenna, 63-element constellation is one element shy
of having rate .

Example 2 (Nine Antennas):Let and take and
. Then we have and , , and

all prime divisors of divide . Hence is fixed-point-
free. Thus, if we set , and

where denotes the diagonal matrix with di-
agonal entries , then the 513 matrices , where

and form a group under matrix
multiplication. We have . This nine-antenna,
513-element constellation exceeds rateby one element.

V. A CLASSIFICATION OF FIXED-POINT-FREEGROUPS

In this section, we classify all fixed-point-free groups and
compute all the irreducible fixed-point-free representations of
these groups.

A. The Group Types

One type of fixed-point-free group is presented in Sec-
tion IV-C, but there are five more types. Since the groups

are an important part of the classification theorem, the
following convention is introduced. Given a pair of integers

, we implicitly define to be the order of modulo ;
we define ; and . We call the pair
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admissible, if , and all prime divisors of
divide . The six group types are as follows.

1) (These appear in Section IV-C.):

where is admissible. The order of is
.

2) :

where is even, is admissible, ,
, and , where is the highest

power of dividing . The order of is
.

3) :

where is admissible, is odd, and is divis-
ible by . The order of is .

4) :

where is admissible, is odd, is divisible by
, is not divisible by , , ,

and . The order of is .
5) :

SL

where is admissible, , and
SL is the group of -matrices over with de-
terminant . SL has the generators and relations

SL

The order of is .
6) :

with the relations

where and are as in , and where ,
The order of is .

We can now state our first main result.

Theorem 1: A finite group is fixed-point-free if and only if
it is isomorphic to either , , , , ,
or .

The proof that a fixed-point-free group must be one of these
types appears in Appendix A. Next, we concentrate on showing

that the above groups are fixed-point-free and computing their
fixed-point-free representations. In all cases, all the inequiva-
lent irreducible representations of the same group yield the exact
same set of matrices (in different order). Hence, the signal con-
stellations produced by inequivalent representations of the same
group are identical. We therefore present only one of the in-
equivalent representations.

Theorem 2:

1) for admissible has an irreducible -dimen-
sional fixed-point-free representation given by

...
...

...
. . .

...

...
...

...
. . .

...

and . The corresponding constellation is
given by the matrices , ,

. We note here (and omit in the
remaining descriptions) that, implicitly, in this represen-
tation the matrix becomes a scalar and becomes
undefined when because is cyclic.

2) with admissible has an irreducible -di-
mensional fixed-point-free representation given by

...
...

...
. . .

...

...
...

...
. . .

...

where . The corresponding constellation is
given by , , ,

.
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3) for admissible has an irreducible -dimen-
sional fixed-point-free representation given by

...
...

...
. . .

...

...
...

...
. . .

...

...
...

...
...

. . .
...

...
...

...
...

. . .
...

where if divides , and otherwise. The
corresponding constellation is given by ,

, , , .
4) If or , then with admis-

sible has an irreducible -dimensional represen-
tation given by

where are the matrices defined for the
group , and if divides , and
otherwise. If and , then
has an irreducible 2-D fixed-point-free representation
given by

where , , and are the matrices defined
for . The corresponding constellation is given by

, where , ,
, , .

5) has an irreducible -dimensional fixed-point-free
representation given by

...
...

...
. . .

...

...
...

...
. . .

...

where , , and denotes Kro-
necker product.The corresponding constellation consists
of the matrices , ,

, , and runs over
the set , , , , , , ,

, , , ,
.

6) has an irreducible -dimensional fixed-point-
free representation given by

...
...

...
. . .

...
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...
...

...
. . .

...

where , , and denotes Kronecker
product. The corresponding constellation is given by

, , ,
, , and runs over the set , ,

, , , , , , ,
, , .

A proof of this theorem can be found in Appendix B. Table II
summarizes the results of this section. The first column indicates
the type of the group, the second its order, and the third the
dimension of its representation.

Remark 1: Theorems 8 and 16 in Zassenhaus’ paper [12]
classify the fixed-point-free groups. Although the proof tech-
niques in the paper are novel and essentially correct, the final
assertions contain errors and omissions. For instance, Zassen-
haus’ classification does not cover the groups for odd

, nor does it cover some subtypes of the groups and
. The explicit description of the groups in [12, Part (E) of

Theorem 7, p. 203] appears to be incorrect, since (in
his terminology) and are incompatible require-
ments. Furthermore, only necessary conditions are proven for a
group to be fixed-point-free, although it is hinted that these nec-
essary conditions are also sufficient.

Despite these shortcomings, we emphasize that our classifica-
tion closely follows Zassenhaus’ elegant techniques and would
not have been possible without his work.

VI. CONSEQUENCES OF THECLASSIFICATION FOR

AND ODD

We present some immediate consequences of the main clas-
sification theorem.

The most elementary consequence (that we already know
from Section IV-B) is that cyclic groups are fixed-point-free,

TABLE II
THERE ARE SIX TYPES OFFIXED-POINT-FREE GROUPS: FOR EACH GROUP

G, L IS THE ORDER OFG (THE SIZE OF THE CONSTELLATION) AND

M IS THE DIMENSION OF THE REPRESENTATION OFG (NUMBER OF

TRANSMITTER ANTENNAS)

because in our classification a cyclic group of ordercor-
responds to : in this case, because the order of

is .
A class of fixed-point-free groups that appears in [9] as a

constellation for differential multiple antenna modulation is the
generalized quaternion groups, reviewed in Section III and de-
fined as

In our classification, we have . In [9], it is
proved that if is a fixed-point-free group that has ele-
ments for some integer, and has a fixed-point-free represen-
tation of dimension , then is either cyclic or a generalized
quaternion group (also called a “dicyclic group” in that paper).
This theorem is actually quite old, going back to Burnside [11]
in a more general form (see Theorem 7 in Appendix A). It is also
consistent with our classification, and we may make a stronger
conclusion: assume only that is a fixed-point-free group of
order (do not impose any restriction on the dimension of
its representation); then is either a or a . (It
cannot be of the or types since they require that

be odd, which contradicts the assumption that the number
of elements, and , be powers of two. It also cannot
be or since the number of elements, and

, can never be powers of.) If , then has
to be a power of . Suppose both and are even. Then, since

, must be odd. But since , this
can only happen if is odd. This, on the other hand, con-
tradicts since both and are even. Thus,
and cannot be simultaneously even, and so either , or

. Since contradicts the admissibility of (all
prime divisors of have to divide and hence ), this implies
that . This means that is cyclic.

If , then and , hence
, which shows that is a generalized quaternion

group and, therefore, has a 2-D irreducible representation. Note
that we did not need to assume anything about the dimension of
the representation for ; the dimension came as a conclusion.

Our classification shows that all non-Abelian fixed-point-free
groups of order have their irreducible fixed-point-free repre-
sentations in two dimensions. Because it is often practical to
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use two transmitter antennas, one may ask more generally for
a classification of all fixed-point-free groups whose irreducible
fixed-point-free representations are 2-D. The following result
answers this question.

Theorem 3: Any fixed-point-free group that has an irre-
ducible 2-D fixed-point-free representation is isomorphic to
one of the following:

1) such that is admissible and the order of
modulo is ;

2) ;

3) ;

4) for ;

5) .

Conversely, any of these groups has an irreducible 2-D fixed-
point-free representation.

Proof: The proof follows by noting that , the order of
modulo , is if and only if , and comparing with

Table II.

Using the classification in this paper, we can also produce
constellations for an odd number of antennas.

Theorem 4: Any group with a fixed-point-free representation
of odd dimension is isomorphic to for some admissible

.
Proof: If has a fixed-point-free representationof odd

dimension, then it has an irreducible fixed-point-free represen-
tation. Since all irreducible fixed-point-free representations of

have the same dimension(see Table II), the dimension of
is a multiple of . Hence, if the dimension of is odd, then

must be odd. It, therefore, suffices to consider only groups
that have an irreducible fixed-point-free representation of odd
dimension. A look at Table II reveals that has to be isomor-
phic to .

VII. SOME EXPLICIT SIMPLE CONSTELLATIONS

In this section, we produce simple examples of some of the
classes of fixed-point-free groups. For simplicity, we identify
the groups by their fixed-point-free representations and list the
group elements as matrices.

Using Theorem 3, we start with groups that have an irre-
ducible fixed-point-free representation for transmitter
antennas.

1) The smallest example of a having a 2-D irre-
ducible fixed-point-free representation is . The
corresponding constellation consists of the 12 matrices

, , , where

and . Its rate is , and
its diversity product is . This value for is
not particularly impressive because, as we have seen from
Table I, the orthogonal designs (although they are not a
group) have the same, but with .

2) The smallest example of the group is the quater-
nion group of order given as the set of
matrices , , , where

We have . This group appears in
Table I.

3) The smallest example of a group is the group
of order . This group is isomorphic to SL [12],
the group of 2-D matrices over with determinant .
The constellation is given by the 24 matrices ,
where , , , and

Its rate is , and , which outperforms
all constellations with in Table I.

4) The smallest example of a group is the group
which has 48 elements. It consists of the matrices

, where , , ,
, and are as above while

Because , the matrix does not appear. The con-
stellation has rate , and

5) The smallest example of is which is iso-
morphic to SL . This constellation has 120
elements given by the matrices , where

, runs over the set
,

, and

where . It has rate , and

This group performs remarkably, as described in Sec-
tion IX.

6) The simplest example of a fixed-point-free group with
irreducible fixed-point-free representations for
is the group described in Section IV-C.

7) The smallest example of a fixed-point-free group with
an irreducible four-dimensional (4-D) fixed-point-free
representation is . It has 24 elements, with
rate , and .
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This performance is not very impressive since the group
with elements (rate ) has

. The elements of this constellation are
given by , where , ,
runs over the same set as in 5), but with

We defer a detailed description of the performance of these
multiple-antenna constellations until Section IX.

VIII. G ROUP-INSPIREDCONSTELLATIONS

Theorems 1 and 2 are key because they allow us to compute
all fixed-point-free groups of finite order. For many com-
binations of and these groups result in constellations
with excellent and performance, as shown in Section IX.
For other combinations of and , groups with irreducible
fixed-point-free representations do not exist, especially when

is large and odd. We can consider reducible representations,
but then the groups can have large cyclic components and
sparse matrix representations, which do not necessarily per-
form well. For example, Theorem 1 shows that it is not possible
to construct irreducible constellations with for matrix
dimensions and , since there exist no irreducible
fixed-point-free group representations for with ,
or with .

To construct constellations for arbitrary and , it appears
that we need to consider also nongroups. We are, therefore, once
again considering the problem of constructing an-element set
of unitary matrices with large—but we do not start
from scratch. We show how the group constellations can suggest
simple nongroup constellations that perform well.

We consider three specific structures. The first, called Hamil-
tonian constellations, works only for and has some
similarities with the orthogonal designs described in Section II.
These exist for any rate. The second is a nongroup generaliza-
tion of the group . These yield constellations, for arbitrary

and , that effectively boost the size of any diagonal con-
stellation by the factor without decreasing. The rate of the
diagonal constellation is increased by . The third is a con-
stellation based on the matrix product of two different represen-
tations of any finite fixed-point-free group. This doubles the rate

of the constellation and appears to yield excellent high-rate con-
stellations. These three constructions just scratch the surface of
the problem of designing nongroup constellations from groups.

A. Hamiltonian Constellation

A Hamiltonian constellation is defined to be a set of
unitary matrices that can be built from points on the unit sphere
in . We start with the parameterization of a unitary
matrix

where and . Unlike with orthogonal
designs, the constraint is not imposed. These matrices
form the (infinite) group of Hamiltonian quaternions of norm
. The pairwise diversity product between two such matrices is

given by

(21)

Consider the natural embedding of in . Then and
are points on the unit sphere in and the pairwise

diversity product between and is simply one
half their Euclidean distance. The Hamiltonian constellation is
formed by building the unitary matrices from a set of points on
the sphere in . It immediately follows that the behavior of the
diversity product for the Hamiltonian constellation is given by

for large . If we impose the constraint , we are effec-
tively restricted to a 2-D torus, and the asymptotic behavior of
the orthogonal design (OD) is given in (12)

Hence, for large rates orthogonal designs underperform Hamil-
tonian constellations.

Some references for large-minimum-distance packings
of points on a sphere in include [20], [21]. Any of the
packings immediately builds a Hamiltonian constellation.
Thus, Hamiltonian constellations essentially exist for any rate.
The Hamiltonian constellations, like the orthogonal designs, in
general do not form a group. The only exceptions are the ones
mentioned in Theorem 3.

Decoding Hamiltonian constellations is simple because we
need to choose a point from our constellation with least Eu-
clidean distance in from our measurement. Given that the
points are well separated, a standard technique such as buck-
eting [22] does this in constant time as a function of the rate.

B. Nongroup Generalization of

As shown in Theorem 2, the group has a
fixed-point-free representation of dimension, where
is the order of modulo . We now let be arbitrary, and
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let and be primitive th and th roots of unity, and let
be integers. Consider the matrices

...
...

.. .
...

...
...

...
.. .

... (22)

and the set consisting of the matrices where
and , where .

Note that if we take , for , and
, where is any admissible pair, then we

obtain the group . In general, the set is not a group.
Nonetheless, the structure of allows to be computed in
closed form. We can, therefore, determine whether the resulting
constellation is fully diverse or not.

Since the matrices and are unitary, it follows that

Furthermore, since the matrices form a
group, is given by

For , we have

and for

since . Thus, for , we may write
the first expression at the bottom of the page and, for

, the second expression at the bottom of the page, where
in the second step of both equalities we have used Lemma 6 in
Appendix C.

We thus have the following result.

Lemma 2 ( for ): Let and be primitive th and th
roots of unity, respectively, and let be integers. De-
note by the set of matrices where ,

, and , with and given by
(22). Then

(23)

where .

Remarks:

1) The nongroup constellation has elements.
From (9), we observe that for a general nongroup constel-
lation, is the minimum of pairwise distances
between the elements of the constellation. However, (23)
shows that has at most dis-
tinct pairwise differences. Hence, even though is not
necessarily a group, it exhibits a considerable amount of
symmetry. Compare the maximum of pairwise
distances with the maximum of distances found in
a group.

2) Lemma 2 allows us to construct constellations for any
number of antennas and any target rate .
We need only to set and decomposeas ,
with , and then use (23) to maximize the value of
by performing a search over the integers (all
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of which lie between and ) and . In practice,
one can always take .

3) Note that we may write (23) more explicitly as

.

(24)

The expression for is the for a diagonal constel-
lation with (see Section IV-B). Thus, if

then is determined by the of the diagonal constel-
lation. Since this can often be arranged by choosing
appropriately, we conclude that with our construction it
is possible to boost the size of the diagonal constellation

by the factor while keeping unchanged. This is
effectively done by post-multiplying the constellation by

.

4) When is prime, the expressions simplify considerably
since when , and otherwise. In this
case, (24) reduces to

.

(25)

This expression simplifies further if we assume

(26)

in which case

(27)

The first of the above expressions depends only on,
while the second depends only on. Thus, it is always
possible to choose so that the minimum is provided by
the second term and the constellation inherits the same
as a diagonal constellation with elements.

We have observed that the constraint (26) does not af-
fect the performance of the diagonal constellation ad-
versely. Therefore, in searching for good constellations
we have found this constraint useful, even for nonprime

.

5) The increase in the constellation size by the factor
over the diagonal constellation increases the rate by

.

C. Products of Group Representations

The constellations described above have the advantage that
they can be constructed for any and , and that
they are times larger than an equivalent diagonal constella-
tion. However, the matrices in the constellations are sparse (only
one transmit antenna is active at any given time). We seek con-
stellations that achieve better performance at high rates by em-
ploying more “full” matrices.

The group constellations have the property that, because
of their symmetry, they reduce the pairwise
distances between the elements of the constellation to at
most distinct distances. We would like to relax our
group requirement, but still maintain this distance property.
Thus, consider two fixed-point-free groups, and , and
let and be

unitary representations of these groups. Assume that
.

Consider the set of pairwise products

(28)

Clearly, has at most distinct elements. This
results in a constellation of rate at most , where

and . The diversity
product for this set is

and are unitary

and are groups

One concludes that even though is not necessarily a group,
it has the desirable property of having at most , rather
than , distinct pairwise distances. In particular,
depends only on the “co-distance” between the elements of the
constellations and .

It remains to choose the constellations and . Assume
; we are therefore doubling the rate of the original

group constellation. The case where can be treated
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in a similar fashion and is omitted for brevity. We also assume
that and are equivalent representations, i.e., there exists
a unitary matrix such that

(29)

In particular

(30)

By letting we see that for to be nonzero the group
must be fixed-point-free. Thus, we may use any of the

groups of Theorem 1 as a candidate for. However, the next
result shows that the only representations ofthat can lead to
a nonzero arereduciblerepresentations.

Theorem 5 (Products of Group Representations):Let
be an -dimensional representation of the fixed-point-

free finite group . Assume that there exists some unitary
such that

Then, the representation must be reducible, and must
be odd.

Proof: Note that if the representation has an element
that is a scalar, i.e., for some and , then
must be zero since

for any unitary . We show that the fixed-point-free representa-
tions of Theorem 2, all of which are irreducible representations,
have scalar elements. In addition, we show that if the group has
even order, thenall irreducible fixed-point-free representations
of the group contain the negative of the identity matrix. Thus,
any representation that leads to a nonzeromust be reducible,
and the size of the group must be odd. In the following,will
denote an identity matrix of appropriate dimension.

1) : We show that is scalar. Note that is cyclic,
since the smallest integersuch that
is , and all 1-D fixed-point-free groups are cyclic.
Moreover, all elements of its representation are scalar and
so is zero. Thus, let and . Since all
prime divisors of must divide ,
we conclude that and . Now

But for all , the quantity is a
multiple of because

and, hence, . Therefore, . Fur-
thermore, if is even, then is even since is
admissible. In that case, for any
choice of as a primitive th root of unity.

2) : We show that . We first assert
that is even. Since must be
even, this is true when is odd. It is also true when

is even since all prime divisors of must divide .
Thus, must also be even. On the other hand,

must be odd, since . Consider now
. Since is the smallest

integer, such that , it is also the smallest integer
such that . Therefore,

because is odd.

3) : .

4) : .

5) : .

6) : .

Thus, we are left only with the possibility of using reducible
representations of fixed-point-free groups. These are essentially
obtained by forming a direct sum of two (or more) inequivalent
representations of any of the irreducible representations of The-
orem 2. In what follows, we shall, for simplicity, focus on re-
ducible representations of cyclic groups.

As noted in Section IV-B, -dimensional reducible repre-
sentations of cyclic groups take the form

where is a primitive th root of unity and are
integers between and . The next result gives us the
family of cyclic groups that yield nonzero .

Theorem 6 (Products of Cyclic Group Representations):Let
be an -dimensional reducible representation

of a cyclic group

Then there exists a unitary matrixsuch that

(31)

if and only if, for all , there exists no -tuple
such that

(32)

Moreover, if (32) holds, then (31) holds generically for all uni-
tary .

Proof: Let us partition the identity matrixand the unitary
matrix into its columns

and
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Fig. 1. Block error rate performance of the group SL( ) compared with constellations from previous constructions forM = 2 transmitter antennas and
N = 1 receiver antenna. The solid line is SL( ), which hasL = 120 unitary matrices (R � 3:45). The dashed line is an orthogonal design with 11th roots of
unity (R � 3:46). The dashed-dotted line is the best diagonal (Abelian group) construction(R � 3:45). The dotted line is the quaternion group withL = 128
matrices(R = 3:5). (The latter three constellations are listed in Table I).

Then we may write

where in the second step we use .
Since the rank-one matrices

are (generically) linearly independent, is singular
if and only if at least of the coefficients

are zero. This can happen if, and only if, at least
of the scalars or of the

scalars are identical. Assuming, without loss
of generality, that this is true of the first set of scalars means
that there must exist some-tuple such that

or, equivalently,

This last condition can be written as

which is equivalent to

This establishes the first claim of the theorem. The second claim
follows from the fact that all our claims about rank and nonsin-
gularity are generic in terms of the unitary matrix.

Remarks:

• The condition (32) essentially states thatis nonzero if
and only if no element of the cyclic group has
equal diagonal entries.

• A simple sufficient condition that guarantees nonzero
is that be prime.

• Once we have found a cyclic group for which is
nonzero we can optimize the value of by performing
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Fig. 2. Same as in Fig. 1, except the receiver is assumed to know the channel perfectly and demodulate coherently. The performance gain is approximately 3 dB
over the unknown channel.

a search over the set of unitary matrices and
using (30). Intuitively, the matrix should be a “full”
matrix with the property that the constellations and

be “spread apart” from one another,
since depends on the co-distance between these two
constellations. Since the search space is small (it is a
single unitary matrix), methods such as random
search can be used to find a good.

• When is not cyclic, one can use reducible
representations

...

where to are irreducible fixed-point-free represen-
tations of whose dimensions add up to .

• It is also possible to use representations of two different
groups and .

IX. CONSTELLATIONS AND THEIR PERFORMANCE

In this section, we display the performance of some of the
group and nongroup constellations derived in the previous sec-
tions. To evaluate the performance, we use the differential trans-
mission framework described in Section II-C, with a receiver
that does not know the channel and decodes using the metric
(7).

Most of the constellations were computer-simulated with
fading coefficients that were chosen randomly but held constant
for two consecutive matrix-valued signals, as described in
Section II-C. In one exceptional case described below, the
constellation was transmitted over a functional three-trans-
mitter-antenna wireless channel. The resulting figures plot the
block probability of decoding a matrix incorrectly, denoted,
as a function of the SNR.

A. Group Constellations

Fig. 1 displays the simulated performance of the group
SL which has 120 elements, and, therefore, has rate

. We also compare the best Abelian
group we could find (which is necessarily cyclic), and the
orthogonal design with 121 elements obtained by filling the
matrix (11) with 11th roots of unity. The excellent performance
of SL is evidenced by the approximately 2.5-dB im-
provement over the orthogonal design (which is not a group),
the 6.5-dB improvement over the Abelian group, and the
13-dB improvement over the quaternion group. Table III in
Section IX and Table I in Section II list more details about
these constellations.

Fig. 2 is the same as Fig. 1 except that the receiver is assumed
to know the channel and demodulate coherently. The constel-
lation performances all gain approximately 3 dB over the un-
known channel, as explained in Section II-C.
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Fig. 3. Same as in Fig. 1, except withN = 2 receiver antennas. The coding advantage of the group SL( ) becomes more pronounced as the number of receiver
antennas increases.

Fig. 3 is also the same as Fig. 1 except that we now assume
receive antennas. The difference in performance of the

various constellations becomes more pronounced, and there is a
clear advantage of having two receivers over one receiver.

Fig. 4 compares the performances of various constellations
with . The group constellation is with

elements . The other constellations are the best
orthogonal design, diagonal constellation and quaternion groups
of comparable rate.

Fig. 5 shows the performance advantage of the an-
tenna 63-element group compared with the
best three-antenna 63-element diagonal constellation. We were
also able to transmit this constellation over a wireless appa-
ratus located within a hallway at Bell Laboratories, Murray Hill,
NJ. The three transmit antennas were separated from the one
receive antenna by approximately 10 m around a bend in the
hallway lined with metal walls and equipment, thus creating
a quasi-static scattering environment. Fig. 6 shows the perfor-
mance; the figure caption has more technical details about the
experiment.

Fig. 7 shows the performance of , the binary exten-
sion of SL for transmitter antennas, and compares
it with the best Abelian group we found. Again, the performance
gain of this group over the Abelian group is evident.

Table III collects together some of the group constellations
that we have found with highfor different numbers of antennas

and rates . The list includes many of the constellations that

are also described in other sections of this paper, but it is not ex-
haustive. There are many other groups within our classification
that we have not explored and are therefore not on the list.

B. Nongroup Constellations

For comparison, Table IV collects some of the nongroup con-
stellations with high .

Fig. 8 shows the performance of the nongroup ,
constellation compared with the best group constellation.
The only group constellation with and is a re-
ducible (diagonal) representation of an Abelian (cyclic) group,
since the closest nondiagonal group is which has 125
elements and corresponds to . We can see the per-
formance advantage of the nondiagonal nongroup constellation
over the diagonal constellation.

Fig. 9 shows the performance of nongroup constel-
lations of Table IV for transmitter antennas and

receiver antenna. We see the diversity gain of increasing
the number of transmit antennas.

X. FAST DECODING

As shown in Section II-C, a constellationconsist of
symbols and the ML decoder is given by

The ML decoder can be computed by simply trying all
and retaining the one that minimizes the above
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Fig. 4. Block error rate performance of the groupF forM = 2 transmitter antennas andN = 1 receiver antenna. The solid line isF , which has
L = 240 unitary matrices(R � 3:95). The dashed line is an orthogonal design with 16th roots of unity(R = 4). The dashed-dotted line is the best diagonal
(Abelian group) construction(R � 3:95). The dotted line is the quaternion group withL = 256 matrices(R = 4). (The latter three constellations are listed in
Table I).

expression, but the search time of this naive algorithm is
exponential both in the rate and the number of antenna .
Therefore, for large or it is important in practical applica-
tions to look for a faster, i.e., polynomial-time, algorithm, even
if the algorithm is only approximate. We touch briefly upon
such algorithms.

A. Cyclic Groups

In [24], a fast approximate ML algorithm for decoding cyclic
groups is proposed, which we briefly review and then adapt for
our noncyclic constellations. For simplicity, we focus on
receive antenna.

The received signals form a length vector whose ele-
ments we denote as . The ML decoder for diagonal codes
can be written as

The summands are equal to

Given that only the cosine depends on, the ML decoder is
equivalent to

(33)

where

and .
From this we see that -dimensional representations of

cyclic groups can be thought of as-dimensional lattices. The
cosine function in (33) is periodic and the arguments thus
can be reduced to the interval ; the argument of the th
term can be written as

If we define the -vector , then the vectors
for form the part of a lattice which

lies in . The cosine can be approximated as
. Hence we can approximate the maximization of (33)

by a minimizing of the sum of the squares of the arguments
of the cosines. Then, the expression becomes the square of a
Euclidean distance
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Fig. 5. Block error rate performance of the groupG , which has an irreducible representation ofL = 63 matrices forM = 3 antennas(R � 1:99), and
best diagonal (Abelian group) constellation with the same rate, described in Table I, forN = 1 receiver antenna.

The vectors with components form a lat-
tice where each dimension has been scaled by . Approx-
imating the ML decoding with a problem involving the closest
point in a lattice does not immediately lead to fast decoding
because finding the closest point in a lattice is NP-hard in.
However, there is a well-known approximation algorithm intro-
duced by Lenstra, Lenstra, and Lovász in [25] and commonly
referred to as “the LLL algorithm.” Its complexity is polyno-
mial in and hence polylog in ( for some ).
The LLL algorithm relies on the observation that when a lattice
has an orthogonal basis, the closest point can be found trivially
by rounding each component to the closest lattice component.
Thus, for a given lattice, the LLL algorithm attempts to find the
“most orthogonal” basis, or more precisely the basis with the
shortest vectors, and then use component-wise rounding to ap-
proximate the closest lattice point. Finding the basis with the
shortest vectors itself is an NP-hard problem; LLL tries to find
a basis with reasonably short vectors. In [24], it is shown that for
constellations with over 16 elements, lattice decoding is much
faster than a complete ML search and has comparable perfor-
mance. Lattice decoding can be easily implemented on digital
signal processors (DSPs).

B. Non-Abelian Groups

Most of the non-Abelian groups discussed in this paper
have large cyclic subgroups and we can apply fast lattice
decoding within these subgroups and use a naive method across

subgroups. We illustrate this using the groups introduced
in Section IV-C. From (17), we see that the constellation is
given by

Here, is a diagonal matrix with th roots of unity on the
diagonal. ML decoding is

If we define to be , then the problem can be
written as

For each , the inner minimization can be approximated using
the fast lattice decoding for cyclic groups described above, while
the outer minimization can be solved naively. Because the di-
mension of the representation is equal to the number of
transmitter antennas , the resulting algorithm is still
polynomial in .

A similar algorithm works for the nongroup generalizations
of described in Section VIII-B. We omit the details.

C. Hamiltonian Constellations

As mentioned in Section VIII-A, decoding the Hamil-
tonian constellations has constant complexity in the rate.
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Fig. 6. Block error rate performance of the groupG (as in Fig. 5) transmitted over three-antenna wireless apparatus in a Bell Laboratories hallway. The
carrier frequency was 880 MHz, the transmitted signals were raised cosine, the symbol rate was 10 ksymbols/s occupying approximately 20-kHz bandwidth and
several milliwatts of total transmitted power that was increased or decreased to vary the SNR. A/D and D/A samplers operating at 200 ksamples/s with 12bits of
precision were used to modulate/demodulate and decode the signals with a computer; more details of the antenna testbed may be found in [23].

D. Products of Groups

We next consider decoding the products of groups introduced
in Section VIII-C. The constellation is given by

where is a diagonal matrix with th roots of unity on the di-
agonal and is an artfully chosen unitary matrix. ML decoding
is

(34)

Using the fast lattice decoding for cyclic codes, the problem
(34) can be solved approximately for a fixedwith complexity
polylog in . By checking every, an approximate answer can
be found in since .

XI. CONCLUSION AND FUTURE WORK

Future wireless communication systems will probably incor-
porate multiple antennas to boost system capacity and lower
error probability, but the use of multiple transmit antennas re-
quires effective full-diversity space–time signals. Prior studies
have indicated that groups of unitary matrices could serve as
effective space–time signals. In this paper, we have completely
characterized all groups of full-diversity unitary space–time sig-
nals. In the process, we have found many nontrivial groups with
excellent performance at high rates, especially for four or fewer

transmitter antennas. We hope that these groups will have prac-
tical significance, especially since many of them can be de-
coded quickly using algorithms that can be easily implemented
on DSPs.

We have also found that groups with full-diversity irreducible
representations do not exist for all combinations ofand .
This led to the design of some nongroup constellations with
good high-rate performance. These nongroups have some of the
symmetry properties inspired by the group constellations, but
they do not generally have the size or dimension constraints.
Nevertheless, our proposed designs of nongroup constellations
for all numbers of antennas and rates sometimes require trial and
error. It is, therefore, still an open problem to find a systematic
design of nongroup constellations for all rates and for which
decoding is not a burden when .

There are many other aspects to the unitary signal design
problem that we have only touched upon. For example, while
we have characterized all the groups, we have not tested the-
mall for performance, and, specifically, we have not examined
all possiblereduciblerepresentations that have these groups as
constituents. The diagonal constellations represent the simplest
form of a reducible representation, but there may be others that
may perform much better.

Many of the best groups have orderthat is not a power
of two, making bit assignment nontrivial. One simple way to
assign bits chooses and such , and maps a block
of bits of size to a block of matrices of size by a radix



SHOKROLLAHI et al.: REPRESENTATION THEORY FOR HIGH-RATE MULTIPLE-ANTENNA CODE DESIGN 2357

Fig. 7. Block-error rate performance of the groupK compared with the best diagonal code forM = 4 transmitter antennas andN = 1 receiver antenna.
The solid line isK the binary extension of the group SL( ) havingL = 240 unitary matrices(R � 1:98). The dashed line is the diagonal construction
with the same rate, described in Table I.

TABLE III
SUMMARY OF SOME GROUPCONSTELLATIONS AND THEIR DIVERSITY PRODUCTS

conversion. The data rate of the fixed-point-free groupis then
effectively multiplied by . We can always chooseand

large enough so that this ratio is as close to one as desired.
Alternatively, if the group property is not essential, one could
always trim a group to the desired size by removing matrices,
or generate one of the nongroups given in Section VIII.

In this paper, our classification considered only finite fixed-
point-free groups. The unitary group (in any dimension) is in-
finite but clearly does not have full diversity. We may ask, is it
possible to classify the infinite subgroups of the unitary group
that have full diversity? A partial answer appears in [26], where
all such Lie groups are classified.
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TABLE IV
SUMMARY OF NONGROUPCONSTELLATIONS WITH BEST DIVERSITY PRODUCT

Fig. 8. Block-error rate performance forM = 5 transmitter antennas,N = 1 receiver antenna, and rateR = 1. The solid line is the nongroupS having 33
elements(R � 1:01). The dashed line is the bestR = 1 group construction: in this case the best 32-element diagonal constellation.
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Fig. 9. Block error rate performance forM = 2; 3; 4 transmitter antennas and rateR = 4. The constellations are described in Table IV.

APPENDIX A
A CLASSIFICATION OF FIXED-POINT-FREE GROUPS

Our aim in this section is to give a proof of “half of” The-
orem 1. We show that if is fixed-point-free, then it is isomor-
phic to one of the groups classified in Section V-A. The converse
statement is proven, along with Theorem 2, in Appendix B.

We start our classification of fixed-point-free groups
by recalling several useful theorems. Since subgroups
of fixed-point-free groups are fixed-point-free themselves, it
makes sense to classify the Sylow subgroups of fixed-point-free
groups. The following theorem is due to Burnside [11] (see
also [27, Theorem 18.1]).

Theorem 7: Let be a fixed-point-free -group. If is odd,
then is cyclic. If is even, then is either cyclic or a gener-
alized quaternion group.

A group in which all Sylow subgroups are cyclic is called a
Z-group. Note that the previous theorem implies that all fixed-
point-free groups ofoddorder are Z-groups. By [12, Theorem 5]
any Z-group is isomorphic to a for some and some .
Not all Z-groups are fixed-point-free, however. A classification
of all fixed-point-free Z-groups is given in the following [27,
Theorem 18.2]

Theorem 8: Any Z-group is isomorphic to . Moreover,
it is fixed-point-free if and only if is admissible.

Later, we compute all the fixed-point-free representations of
.

The next step is to classify allsolvable fixed-point-free
groups. For this, we need the following theorem of Zassenhaus
[12, Theorem 6].

Theorem 9: Let be a solvable fixed-point-free group. Then
has a normal subgroup which is a Z-group such that

is isomorphic to either the trivial group, or a cyclic group of
order , or the alternating group on four elements, or the
symmetric group on four elements.

For a proof of a weaker version of this theorem we refer the
reader to [27, Theorem 18.2]. We now use Theorem 9 to derive
descriptions of solvable fixed-point-free groups in terms of gen-
erators and relations. This has already been essentially done in
Zassenhaus’ paper [12, Theorem 7, 8], and we use most of his
proof techniques.

Given , we freely refer to as the order of modulo
, to as , and to as . The following

remark is quite useful. For a proof see [19, p. 362].

Remark 2: Let be an admissible pair. Then
.

Theorem 10:Any solvable fixed-point-free group is isomor-
phic to , , , or .

Proof: We use Theorem 9. Let be a fixed-point-free
group and be the normal subgroup of with the proper-
ties stated in that theorem.

1) If is the trivial group, then is a
Z-group and we are done.
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2) Suppose that is isomorphic to a cyclic group of
order . We may assume that is not a Z-group itself,
since we are done otherwise. If has odd order, then all
the Sylow subgroups of are cyclic, and is a Z-group.
We may, therefore, suppose that has even order. From
Theorem 8, is isomorphic to for some admis-
sible . We want to show that is odd. Suppose,
on the contrary, that is even. Then is odd (otherwise

is odd, hence not congruent tomodulo ), and
is even, a contradiction. Therefore,

is odd, and since the order of which is equal to is
even, we have that is even.

Since is a Z-group, its 2-Sylow subgroup is cyclic,
and generated by an elementof order , say. Since
is not a Z-group, its 2-Sylow subgroup is a generalized
quaternion group by Theorem 7. Therefore,contains
an element of order that is not in . Since is
of order , is an element in , hence it equals
which is in the center of . So, conjugation with de-
fines an automorphism of orderof . It is easily seen
that the only cyclic subgroup of of order is the
group generated by the element. Hence, for
some integer such that . The only sub-
groups of order of are generated by conjugates of

. These are . Since their number
is , which is odd, and since conjugation withis an au-
tomorphism of order on , at least one of these groups
of order is fixed under conjugation with . Hence,
there is some element conjugate to in , such that

for some . Without loss of generality, let
. Note that

Further

This shows that , hence
. Observe that

and

This shows that . Chinese remaindering
shows that we can find such that and

. It follows that and
, and , .

To prove that is isomorphic to , we are left
with showing that , where is the highest
power of dividing . To this end, consider the 2-Sylow
subgroup of contained in the cyclic group , and
assume that it is generated by , say. together
with an element of order of generate a 2-Sylow
subgroup of , which is a generalized quaternion group.
We may, without loss of generality, assume thatis .
Then , and . Hence,

.

3) Suppose now that is isomorphic to . In [12, p.
203] it is proved that contains a normal subgroup

of odd order which commutes with a 2-Sylow subgroup
of , such that is a normal subgroup of

index of , and such that there exists an element
of odd order with . We may assume that is a

generalized quaternion group since otherwisewould be
isomorphic to a Z-group and we would be done. We will
first show that is, in fact, a quaternion group of order
. Conjugation with defines an automorphism of order
on because and and commute. By

[28, Exercise 56, p. 94] we know that the automorphism
group of a generalized quaternion group of order larger
than is a -group, whereas the automorphism group of
the quaternion group of order has 24 elements. This
shows that is a quaternion group of order, and there
are and such that

One automorphism of orderof is given by ,
, as is easily checked. It can be shown thatany

automorphism of order of is conjugate (in the auto-
morphism group of ) to either this automorphism, or to
its square. Thus, by replacingwith if necessary, and
by replacing and with two other appropriate genera-
tors of , we may assume that and .

Since is a normal subgroup of , conjugation with
leaves invariant, so is a subgroup of of

odd order . Hence, and generate a group iso-
morphic to for some admissible

We want to show that and . If
, this would show that

, since and commute. If ,
this would show that , and , so inter-
changing and would take us back to the previous case,
and hence to the description of .

Suppose first that . Then does not di-
vide , so divides , since divides , the order
of . By Remark 2, we see that does not divide

. This shows that . So, , since
and commute. On the other hand, , which
shows that . This contradicts the assump-
tion , and proves that is in .

Suppose now that . This shows that ,
since, otherwise, . Therefore, divides ,
since . But , which contradicts
the assumption. Therefore, , and we are done.

4) Suppose that is isomorphic to the symmetric group
. Obviously, contains a normal subgroup of index

such that is isomorphic to . Hence, is ei-
ther of type or of type . If is of type ,
then we are back in case 2), since is cyclic of order
. So, we may suppose that is of type . We de-

note the generators of this group by . In [12, p.
204], it is proved that there is an elementof order in

such that conjugation with leaves
fixed. Since fixed-point-free groups have at most one el-
ement of order , we see that . Hence, com-
mutes with all the elements of , and conjugation with
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is an automorphism of orderon . In the same way
as in 2), it can now be shown that and ,
where and . Conjugation
with is an automorphism of orderof , the 2-Sylow
subgroup of (this is because is a characteristic sub-
group). As in part 3), we may without loss of generality
(w.l.o.g.) that and . To see that

, we compute the quantity

Note that , , and , so
if and only . Since , we also
conclude that does not divide . On the other hand,
divides since contains the group of type .
As a result, divides .

The next step of the classification theorem consists of iden-
tifying the nonsolvable fixed-point-free groups. As it turns out,
the prototype of nonsolvable fixed-point-free groups is given by
the group SL of -matrices of determinantover the
field GF . This group has the following generators and rela-
tions [12, p. 210]:

SL (A1)

We gather some basic useful facts about this group.

Lemma 3:

1) The right cosets of SL modulo the cyclic subgroup
of order generated by are given by

2) The group generated byand is
a 2-Sylow subgroup of SL and it is isomorphic to a
quaternion group.

Proof:
1) This assertion can be proved using any of the usual coset

counting algorithms like the Todd–Coxeter algorithm. We
have used the computer algebra package GAP [29] to
compute the cosets.

2) The 2-Sylow subgroups of SL are of order . Fur-
ther, it is easily checked that . This
shows that . Further, , as can be
checked directly. Hence, is a generalized quaterion
group and the assertion is proved.

The following theorem classifies all nonsolvable fixed-point-
free groups. It has been essentially proved in [12, Theorem 16]
and [27, Theorem 18.6]. Our contribution is the derivation of
the group description in terms of generators and relations.

Theorem 11:Let be a nonsolvable fixed-point-free group.
Then is isomorphic to one of the following groups.

1) The group

SL

with admissible such that .

2) The group

with the relations

where , , and .
Proof: By [27, Theorem 18.6], contains a normal sub-

group of index or where SL with
admissible and . If , then we

are in case 1) and are done. Otherwise, letdenote a 2-Sylow
subgroup of . Since any 2-Sylow subgroup of is a 2-Sylow
subgroup of SL , is a quaternion group of order by
Lemma 3 part 2). By the same lemma, we may take ,
where is the generator of SL as given in (A1), and is,
as before, the element .

Hence, the 2-Sylow subgroups of are generalized quater-
nion groups of order . Let be a 2-Sylow subgroup of
such that . Then has two generators such
that , , , , and . The
element satisfies , , and .
To compute we proceed as follows. Let . Then we
have

Further, using the definition of, we see that

We search over all 120 elements of SL to find an element
satisfying the above equality together with . This

reveals that there are only two possibilities for: or
. Both these choices lead to isomorphic groups; namely, if

, then replace by . This preserves the relations
among and , and additionally implies . (All these
steps require calculations in the group SL which we did
using GAP [29].)

This explains the action of on the characteristic subgroup
SL of . Since is also a characteristic subgroup of

, together with generate a group of type , and
we obtain the relations and .

APPENDIX B
IRREDUCIBLE REPRESENTATIONS OF THE

FIXED-POINT-FREE GROUPS

In this appendix, we prove Theorem 2 which will also provide
the proof of the second half of Theorem 1.

The fixed-point-free representations of the groups are
computed in Section IV-C. We briefly summarize the method.
The cyclic group generated by is a normal subgroup of

. If is an irreducible fixed-point-free representation of
, then is a direct sum of primitive characters of. On

the other hand, if is a primitive character, then its inertia group
is , which means that the induction ofto is irreducible.
Hence, all irreducible fixed-point-free representations ofare
obtained as inductions of primitive characters of. Two such
inductions only differ by a Galois conjugation (since any two
primitive characters of differ only by a Galois conjugation),
hence, either they are all fixed-point-free, or none of them is
fixed-point-free. Invoking [12, Theorem 9] or Lemma C.1, we
see that indeed all these representations are fixed-point-free.
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Our strategy for computing the fixed-point-free representa-
tions of the classified groups is similar to the above. For solv-
able groups, we study restrictions of fixed-point-free represen-
tations to normal subgroups, compute their inertia groups, and
then extend and/or induce those representations. For nonsolv-
able groups, the strategy is moread hocand is explained below.

The first part of this appendix considers solvable groups.

Proof of Theorem 2—Solvable Groups:In this part we prove
items 1)–4) of Theorem 2.

1) Let be a fixed-point-free representation of .
The restriction of to is a direct sum of primi-
tive characters of . On the other hand, it is easily shown
that the inertia group of any primitive character ofco-
incides with . Hence, by Frobenius reciprocity [30, Sec.
XVIII, Theorem 6.1], all irreducible fixed-point-free rep-
resentations of are obtained as inductions of primitive
characters of . These inductions are given in the state-
ment of the theorem and are derived in Section IV-C.
We only need to show that all of them are indeed fixed-
point-free. Note that Theorem 10 implies that the condi-
tion of being admissible is necessary forto be
fixed-point-free. Hence, we are left with proving the suf-
ficiency of this condition. To do this, we need to show
that for any and ,

the matrix is invertible, where
and are defined in the statement of Theorem 2. The

assertion is obviously clear for . Hence, we may
suppose that . Now we invoke the determinant for-
mula (C1) to obtain

(B1)

where . It is required to
show that this determinant is nonzero. This is the case if

or, equivalently, if

for all , , and
. But by Lemma 5 (which is proven later)

this is true since is admissible.

2) Let . We first prove that the induction
of a fixed-point-free representation of to is
irreducible. By [17, Theorem 5.20, Corollary 3] it is suf-
ficient to show that there is no invertible matrix such
that and . This
is left to the reader. This shows that the inertia group of

is , hence the induction of to is irreducible. On
the other hand, the restriction of any fixed-point-free rep-
resentation of to is a direct sum of fixed-point-free
representations of . Invoking the Frobenius reciprocity
[30, Sec. XVIII, Theorem 6.1], we see that all irreducible
fixed-point-free representations of are obtained from
inductions of irreducible fixed-point-free representations
of . The representations given in the statement of the
theorem are precisely these inductions. We only need to

prove now that the representations computed are in fact
fixed-point-free. For this, we need to show that for any

, , ,
, the matrix is in-

vertible, where are as in the statement of the
theorem. If , then this follows from the previous
part by noting that is admissible. Hence, we may
suppose that . In this case, we immediately obtain

Since it suffices to show that

In view of the previous part, this is equivalent to showing
that

Equivalently, we need to show that

Let . Then, the latter condition is equivalent
to , or . Suppose that
Since all elements of commute with ,
this condition shows that and generate
an Abelian group of order which is not cyclic. But
this is a contradiction, since the 2-Sylow subgroups of

are generalized quaternion groups and they do
not contain a noncylic subgroup of order.

3) We compute the irreducible fixed-point-free representa-
tions of by considering the tower of normal
subgroups

First, observe that . Hence, using the pre-
vious step, we see that has exactly one irreducible
fixed-point-free representation given by

can be extended to an irreducible representation of
(which we denote by as well). Indeed, it can be shown
that any matrix for which is a multiple
of

We may thus set for some constant which
can be determined using the identity . Be-
cause divides , we have ,
where . This shows that ,
where and are coprime (otherwise there is a power
of other than which is the identity matrix). It is easy
to check that the inertia group of is equal to , so that
the induction of to is irreducible. This induction has
been given in the statement of the theorem. Conversely,
any fixed-point-free representation of restricted to
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is a direct sum of irreducible fixed-point-free representa-
tions of , and by Frobenius reciprocity we see that all ir-
reducible fixed-point-free representations are inductions
of irreducible fixed-point-free representations of.

To show that the representations computed are in fact
fixed-point-free, we proceed as follows. We first show
that the restriction of the representation to
is fixed-point-free. We recall that if divides and
is otherwise. First, we show the assertion in the case

. Here we have to check the eigenvalues
of the 24 matrices generated by

We leave this simple calculation to the reader.
Next, note that, for any, we have the following:

where . We will now have to show that
does not have eigenvalueif it is not the

identity matrix. Let . Then ,
where . Note that the eigenvalues of are
roots of unity of even order if is not the identity matrix,
since the group has order . On the other hand,

is a root of unity of odd order (since is a root of
unity of odd order). Hence has eigenvalue if and
only if and is the identity matrix, i.e., if and
only if is the identity matrix. Next suppose
that . Then , where

is a matrix in . Since has order , all ma-
trices in this group have eigenvalues which are 24th roots
of unity. So, if has eigenvalue one, then
is a 24th root of unity, i.e.,
If divides , then , and this implies that

, which is a contradiction. If does
not divide , then , and the condition is

, which implies . In that
case, has to be the identity matrix, since we know that

is fixed-point-free, and has eigenvalue
by assumption. Altogether, this shows that
has eigenvalue only if it is the identity matrix. The
case is handled analogously. This com-
pletes the proof of the fact that the restriction of the rep-
resentation given in the statement of the theorem tois
fixed-point-free.

Next, we study for
, , and . We may

suppose that , since we have already shown that the

restriction of the representation to is fixed-point-free.
A slight generalization of Lemma C.1 shows that

where . Let . Note that
for and any ,

since is a normal subgroup of the constellation.
Collecting terms, we see that

for some . Since we have shown that the
restriction of the representation to is fixed-point-free,
we know that the matrix above is invertible if it is nonzero.
But since the order of is odd and that of is a power
of , the matrix is nonzero if and only if

for any , , and
. Lemma 5 proves that the latter condition

is satisfied if is admissible, and we are done.

4) has the normal subgroup
of type of index . Let be one of the irreducible
fixed-point-free representations of as computed in
the previous part of the proof. It is easily checked that

is not equivalent to if , by considering
. In this case, the induction of

to is irreducible, and it has been computed in the
assertion of the theorem. If , then may or
may not be extendable to . To see when it is and
when it is not, we first look at and .
From this, we easily check that any matrixfor which

has to be a multiple of . By checking
the condition , we arrive at

. This shows that
and since and are coprime, we see that

, which also shows that ,
since . Hence, . Altogether,
this shows that in case and ,
representations mapping to with divisible by
are extendable to ; and if does not divide , then the
induction of this representation is irreducible.

If can be extended, then for some con-
stant which is determined by the requirements

, . Since , this leaves the
choices and of which we choose .

The proof that the computed representations are indeed
fixed-point-free is similar to part 3).
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Next we concentrate on computing the irreducible fixed-
point-free representations of the nonsolvable groups of the
previous section. We need the following isolated result.

Lemma 4: The only fixed-point-free representations of
SL are the two 2-D representations given by

where .
Proof: It can be easily verified that the given maps

are indeed fixed-point-free representations of the group
SL . One needs to check that

and . Further, it is easily checked that the two represen-
tations given are inequivalent.

Showing that these representations are the only fixed-point-
free representations of is slightly involved. Basically, we need
to compute all the irreducible representations of, and test
whether they are fixed-point-free. We sketch an alternative to
this method by using the character table ofrather than all
the representations. Thecharacterof a representation at a given
group element is the trace of the representation evaluated at
that element. Characters are obviously constant on conjugacy
classes of . The character table of is an -matrix where
is the number of conjugacy classes of, whose rows are indexed
by the irreducible representations ofand whose columns are
indexed by the conjugacy classes. Position of this matrix
contains the value of the character of theth irreducible repre-
sentation of at an arbitrary element of theth conjugacy class.

Let denote the character of a representationand suppose
that is -dimensional. Then, for any elementin the eigen-
values of can be recovered from
(up to permutation). To see this, note that equals

, where are the eigenvalues of .
Hence, if we know the character table of, and, for each
element , the conjugacy class of , then we can
compute for each irreducible representation the eigenvalues of
that representation on the group elements and test whether we
encounter the eigenvalue.

The character table of can be found in [31, p. 155]. Ap-
plying the procedure outlined above, we see that the only fixed-
point-free representations of are the ones given above.

Proof of Theorem 2—Nonsolvable Groups:Here, we con-
centrate on proving items 5) and 6) of Theorem 2. The assertions
on the explicit form of the constellations follows from Lemma 3
part 1).

5) The irreducible representations of SL are of
the form , where and run over a set of pairwise
inequivalent irreducible representations ofand ,
respectively. Clearly, for to be fixed-point-free,
both and have to be fixed-point-free. This necessary
condition is also sufficient if . (To
see this, note that the eigenvalues of are products of
the eigenvalues of and . If and have eigenvalues
that are roots of unity of coprime orders, the products

of these eigenvalues cannot be one.) So, the irreducible
fixed-point-free representations of SL are
given by , , ,

, with the matrices given
above.

6) SL is a normal subgroup of of
index . It is easily seen that the inertia groups of the rep-
resentations computed in the previous part coincide with
SL ; hence their induction is irreducible,
and all irreducible fixed-point-free representations are
obtained this way. The representation given in the state-
ment of the theorem is an induction of a fixed-point-free
representation of SL along the
cosets . It is easy to show that the representations
given are in fact fixed-point-free. The proof can be
accomplished along the lines of the other proofs of this
type outlined in the paper, and is left to the reader.

We close this section by stating and proving a lemma that has
been used extensively above.

Lemma 5: Let be an admissible pair of integers,
be the order of modulo , , ,

, and . Furthermore,
let and . Then we have

Proof: We first transform the statement of the theorem
into a simpler form. Since , we can replace

with , so that we may assume w.l.o.g. that . Further,
it is well known and easy to prove that an equation

has a solution for if and only if divides
. Hence, denoting by the value ,

we see that the statement of the theorem is equivalent to
. We now prove that any primedividing also di-

vides . This proves the desired result, since the primecannot
divide (since ), it also cannot divide (since

), and so cannot divide (otherwise, any
prime factor of would have to divide either or ). Let

be a prime dividing . Since is admissible, any
prime divisor of divides , which implies that

. Now

which proves the desired assertion.

APPENDIX C
THE DETERMINANT OF DOUBLY BANDED MATRICES

Lemma 6: Let , be arbitrary, and let
. Define the doubly banded matrix as shown

in the matrix at the bottom of the next page. Then

(C1)

where . In particular, when , we have

(C2)



SHOKROLLAHI et al.: REPRESENTATION THEORY FOR HIGH-RATE MULTIPLE-ANTENNA CODE DESIGN 2365

Proof: We first prove the result for , using induction
on . For , we have

as desired. Assume now that for all matrix dimensions less than
, whenever , (C2) holds. We shall show that (C2)

holds for matrices of dimension . Let be chosen such that
and assume, without loss of generality, that
(we can always arrange this by considering

the transpose of ). Partition as

where

and

...
...

...
. . .

We have the equation shown at the bottom of the page. Note that
is an doubly banded matrix

and that . Thus,

so that

which is the desired result.
When , can be partitioned

into diagonal blocks, as shown in the equation at the top
of the following page, where

diag

Repeating the arguments for , to the above block diagonal
matrix (since and diagonal matrices com-
mute), we have

which yields the desired result (C1).

APPENDIX D
INFORMATION-THEORETIC ASPECTS OFDIFFERENTIAL

MODULATION

We briefly justify the design of good constellations of
unitary space–time signals by computing the information
rates theoretically achievable with differential modulation. We
show that, for large , differential modulation as presented in
Section II-C can theoretically achieve rates of approximately

, only slightly less than the space–time autoca-
pacity of the channel [8] (achievable as ).
Thus, differential modulation can attain a significant fraction
of the channel capacity without further channel coding. To
save space, our reasoning is intuitive and physical and avoids
extensive rigor.

...
...

.. .
...

...
...

. . .
...

...
...

. . .
...

...
...

.. .
...

...
...

. . .
...

...
...

. . .
...

...
...

.. .
...

...
...

. . .
...

...
...

. . .
...
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...
...

. . .
. . .

A. Mutual Information for Differential Unitary Space–Time
Modulation

We refer to the model (1) and employ differential modulation
(5), where the channel is constant over time samples. Thus,

(D1)

where , , and are matrices of independent
-distributed random variables. We assume that our

constellation of differential signals is well approximated by
a constellation of randomly chosen isotropically distributed
unitary matrices. An isotropically distributed random matrix
has a probability distribution that does not change when the
matrix is pre- or post-multiplied by a deterministic unitary
matrix (see, e.g., [6], [8]). Therefore, the matricesand
are and unitary and are independent and isotropically
distributed.

In [8], it is proven that there is a space–timeautocapacity
given by associated with transmitting infor-
mation in a single block of symbols, as . We,
therefore, consider the mutual information within a differential
modulation block and compare it to the autocapacity. The mu-
tual information between the transmitted signals and
the received signals is

(D2)

where denotes entropy. (We normalize the mutual infor-
mation by the factor for convenience, since is the
number of time samples.) Note that , conditioned
on , are zero-mean Gaussian-distributed random ma-
trices. Computing the covariance matrix of shows
that

(D3)

Since is complex Gaussian, if we perform the
decomposition , then is isotropically dis-

tributed and independent of, which is upper triangular.
We may write

(D4)

where and are independent and
isotropically unitary random matrices. Furthermore

where the second step uses the conditional independence and
identical distributions of and .

We focus on this expression when grows but remains
fixed, for then converges (with probability one) to an

identity matrix. We, therefore, have

On the other hand, in this regime behaves as an
matrix of independent random variables. Thus,
has the same entropy as a zero-mean complex Gaussian
random matrix with variance , implying that

Combining this result with (D3) yields

(D5)

Because two consecutive signals are overlapped
in differential space–time modulation, the maximum achievable
rate is twice (D5), or
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At high SNR, this mutual information is ,
which is approximately 3 dB less in SNR than ,
the space–time autocapacity of this channel. (It suffices to say
that the autocapacity is the rate theoretically achievable in one
channel use as [8].) Thus, for constellations that are
composed of approximately independent and isotropically dis-
tributed random matrices, differential modulation can achieve
a significant fraction of the channel capacity.
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