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Representation Theory for High-Rate
Multiple-Antenna Code Design

Amin Shokrollahi, Babak Hassibi, Bertrand M. Hochwald, and Wim Sweldens

Abstract—Multiple antennas can greatly increase the data rate signal matrices that form a constellation are all unitary. Further
and reliability of a wireless communication link in a fading envi-  justification for using unitary space—time signals is given in [8],
ronment, but the practical success of using multiple antennas de- \nere it is shown that these signals can form their own channel

pends crucially on our ability to design high-rate space—time con- : . S . .
stellations with low encoding and decoding complexity. It has been code and achieve arbitrary reliability over a single fading coher-

shown that full transmitter diversity, where the constellation is a €nce interval with a large number of transmitter antennas.

set of unitary matrices whose differences have nonzero determi-  To help make unknown-channel multiple-antenna communi-

nant, is a desirable property for good performance. ~ cation practical, a scheme usidiferential unitary space—time
We use the powerful theory of fixed-point-free groups and their - gigna|s js proposed in [1] that is well-tailored for unknown con-

representations to design high-rate constellations with full diver- fi | . Ravieiah flat-fadi h ls. Diff tial
sity. Furthermore, we thereby classify all full-diversity constella- Inuously varying kayleigh Tlat-lading channels. Ditrerentia

tions that form a group, for all rates and numbers of transmitter ~ UNitary space—time signals are unitary matrix-valued signals
antennas. The group structure makes the constellations especially that are a multiple-antenna generalization of the standard
suitable for differential modulation and low-complexity decoding  differential phase-shift keying (DPSK) signals commonly used
algorithms. with a single antenna over an unknown channel. A similar

The classification also reveals that the number of different group diff tial ltiol ¢ h is also d ibed in 191. A
structures with full diversity is very limited when the number of ifferential multiple-antenna scheme is also described in [9].

transmitter antennas is large and odd. We, therefore, also consider two-antenna differential scheme based on orthogonal designs
extensions of the constellation designs to nongroups. We concludeis described in [10].

by showing that many of our designed constellations perform ex-  Although [1] describes, in full generality, the properties that a

cellently on both simulated and real wireless channels. constellation of differential matrix-valued signals should have,
Index Terms—Fading channels, receive diversity, space—time only so-called “diagonal” signals are analyzed in detail. Diag-
coding, transmit diversity, wireless communications. onal signals effectively sequentially activate the antennas, one

at a time, and always in the same order. If we model the fading
paths from every transmitter antenna to the receiver antenna(s)
) ) ) ~as independent, then the diagonal differential space—time sig-
I Tis well known that multiple-antenna wireless communicas|s provide full transmitter diversity and can lower error prob-

_tion links promise very high data rates with low error probaypijity significantly. At low rates. the diagonal signals yield ex-
bilities, especially when the channelis known at the receiver [Zg|ient performance. However, at higher rates it is conjectured
[3]. But the design of so-called space-time codes that achigye[1] that there exist “fuller” matrices (no longer diagonal)
these promises is still in its early stages. In [4], some trellighat have the necessary unitary and full diversity properties, but
based codes for known channels are developed, and in [S] SQmR&id perform even better. In this paper, we show how to design
block codes are designed. However, the assumption that g’f@r]a| matrices satisfying these requirements.
chqnnel is kn_own is .somet.imes questionable, especially.in 8As shown in [1], the design problem for unitary space—time
rapidly changing mobile environment or when many transmittgpstellations is the following: let/ be the number of trans-
antennas are employed and extensive training is required. In [@liter antennas an# the desired transmission rate (in bits per
[7], some information-theoretic and signal constellation desigihannel use). Construct a 8éwof L = 28M unitary M x M
issues are considered for channels that are known neither todh&rices such that for any two distinct elemertsand B in
transmitter nor the receiver. In particular, a class of signals callgg the quantity| det(A — B)| is as large as possible. Any set
unitary space—time signals developed where the transmitted, g,ch that| det(4 — B)| > 0 for all distinct A, B € V'is

said to havdull diversity. Since both the objective cost (the de-
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good performance. [¥ is not a group] det(A — B)| gener- are some simple design rules for generating nongroup constella-
ally may take onL(L — 1)/2 distinct values ford # B € V. tions with good performance. These allow us to construct good
The minimum value (equivalent to the minimum distance of tregnal constellations for practically all valuesf and &.
constellation) may, therefore, be quite small. Butis agroup,  The paper is organized as follows. The next section motivates
the determinant takes on at mdst- 1 distinct values given by and states the problem that we are solving in detail. For ease
|det(I — A)| for I # A € V, possibly yielding a larger min- of reference, and since the paper is rather lengthy, Section Il
imum distance. Although this is not a rigorous argument, wamntains a summary of the principal results in this paper and a
show that many of the groups indeed have large minimum dismparison with previous work. Section IV introduces repre-
tances and perform extremely well. sentation theory and gives an example of a class of non-Abelian
The second advantage is practical. Since differentifiked-point-free groups. Section V classifies all full-diversity or,
space—time modulation multiplies matrices¥nto form the equivalently, all fixed-point-free groups and gives their repre-
transmitted signal matrix, il is a group, every transmitted sentations. Sections VI and VIl give some consequences of the
signal matrix is always an element ®f. Therefore, explicit classification for multiple-antenna constellations. Section VIII
matrix multiplication is replaced by the simpler group tableses the structure of the group constellations to generate some
lookup. nongroup constellations. Section 1X tabulates some of the best
Because any abstract group has a representation in unitgrgup and nongroup constellations and includes some illustra-
matrices, we restrict our search to groups that have represetitee performance curves for various numbers of antennas and
tions with full diversity. In [1], full diversity setd’ that form an rates. Section X discusses fast decoding of the constellations.
Abelian(commutative) group are considered. This is equivaleBection XI provides the conclusion. Appendixes A—C develop
to constrainingV’ to be a cyclic group represented by a set ahost of the mathematical machinery required for the results of
diagonal matrices. The codes thereby generated are shownthis paper and prove the classification theorem.
perimentally to have good performance at low ratBs< 2,

for example). Not explored in [1] are seisthat are noncom- II. MULTIPLE ANTENNA SPACE-TIME MODULATION
mutative groups as potential candidates for good performance ) i
at higher rates. One of our primary goals is to find good-peft 1he Rayleigh Flat-Fading Channel
forming high-rate noncommutative groups. Consider a communication link with/ transmitter antennas
In this paper, we completely characterize the class of umindN receiver antennas operating in a Rayleigh flat-fading en-
tary matrices that provide full diversity and form a group. Theironment. Thenth receiver antenna responds to the symbol
characterization is derived using results in the theory of fixedent on thenth transmitter antenna through a statistically in-
point-free groups. A fixed-point-free group can be representdeépendent multiplicative complex-Gaussian fading coefficient
as a group of unitary matrices (for somé) with full diver-  h,,,,. The received signal at theh antenna is corrupted at time
sity. An early reference for fixed-point-free groups is Burnside by additive complex-Gaussian noisg,, that is statistically
[11] who in 1905 showed that any group that is fixed-point-freiadependent among the receiver antennas and also independent
and has ordefL that is a power of a prime number must be eifrom one symbol to the next. We assume that time is discrete,
ther cyclic or a generalized quaternion group with a full-divet-= 0, 1, .. ..
sity representation fal/ = 2. These full-diversity groups are It is convenient to group the symbols transmitted overithe
also classified fo = 2 andL = 27 in [9] (there, the gen- antennas in blocks a¥/ channel uses. We use=0, 1, ... to0
eralized quaternion groups are also called “dicyclic”). Zassemdex these blocks; within theth block,t = 7M, ..., 7M +
haus, in a celebrated 1936 work [12], classifies many more &f — 1. The transmitted signal is written as &h x A matrix
these groups. However, the classification in [12] appears to Be whosemth column contains the symbols transmitted on the
incomplete and contains errors; we complete the classificatiorth antenna as a function of time; equivalently, the rows con-
in its entirety. While many of the results in this paper are motiain the symbols transmitted on tld¢ antennas at any given
vated with differential modulation in mind, we should note thdime. The matrices are normalized so that the expected square
the design problem of maximizinglet(A — B)| for distinct Euclidean norm of each row is equal to one. Hence, the total
A, B € Visimportant also when the channel is known to thtgansmitted power does not depend on the number of antennas.
receiver [4], [7]. However, when the channel is known it appeaf$ie fading coefficients:,,,,, are assumed to be constant over
to be less important to have the group unitary property of beitigeseM channel uses.
able to multiply the matrices it¥ without leaving the set. Similarly, the received signals are organizediinx N ma-
Some of the groups that emerge as good signal sets are rattiees X .. Since we have assumed that the fading coefficients
surprising. We show, for example, that i is odd, there is are constant within the block a¥/ symbols, the action of the
only a single class of possible groupsMf = 2 or M = 4, channelis given by the simple matrix equation
some of the signal sets that are excellent performers involve
SLy(F;)—the special linear group in two dimensions over the X-=pS-H +W,, forr=0,1,.... Q)
field F5. The classification reveals that the number of different
group structures with full diversity is very limited when theHere,H.. = {h,,,,,} andW, = {wy,, } areM x N matrices of
number of transmitter antennas is large and odd. As a conselependent A'(0, 1)-distributed random variables. Because
guence, we also consider sétghat have some of the proper-of the power normalizatiory is the expected signal-to-noise
ties of a group, but are not themselves groups, and find that thesito (SNR) at each receiver antenna.
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B. Known Channel Modulation If the fading coefficients are approximately constant @zt

We first discuss signal encoding and decoding when the féne samplesH. ~ H,_,), the received matrices turn out to
ceiver knows the channdi,. We assume that the data to b@PeY
transmitted is a sequeneg, »1, ... with 2. € {0, ..., L—1}.

s ‘s !
The data then simply dictates which matrix is transmitted X, =V X;o1 + V2 W, (6)

S. =V, . where W/ is an M x N matrix of additive independent
o CN (0, 1) noise [1], uncorrelated with the sigridl_. As shown
Each transmitted matrix occupie®/ time samples of the in [1], the ML decoder has the simple structure
channel, implying that transmitting at a rate &f bits per
channel use requires a constellativh= {V;, ..., Vp} of Fr=arg min | X7 — VeXo_1]| (7)
L = 2BM ynitary signal matrices. T
The receiver knows{, and computes the maximum-likeli- and the Chernoff bound on the pairwise probability of error with

hood (ML) estimate of the transmitted data as differential modulation on an unknown channel is
2, =arg min || X, - V. H,| 2 1 M 2 -N
=0, ...,L—1 P <> 1 p 2 . Vo .
) ) ] € 2 H |: + 4(1 4 2p) arn(w W ) (8)
where the matrix norm is the Frobenius norm m=l1
4|12 = tr (ATA) = tr (AAT) = Z Jag; 2. 3) At high SNR, both bounds (4) and (8) depend primarily on the

product of the singular values, which is the modulus of the de-
terminant ofV, — Vj,. In other words, for high SNR we may
The quality of a constellatiod is determined by the probability write

of error of mistaking one symbol &f for another. In [4], [7] it MN
is shown that the Chernoff bound on the pairwise probability of p <1 <4_O‘> _ 1
mistakingV; for V,» with a known channel (averaged over the T2\ p |det(Ve — V)2V
statistics ofH) is given by

(%]

wherea = 1 when the channel is known armd= 2 when the
M

1 p _N channel is unknown and used differentially. Hence, there is ap-
P < > H [1 + 1 o (Ve — sz)} (4) proximately a 3-dB advantage for knowing versus not knowing
m=1 the channel, and we may measure the quality of a constellation

whereo,,,(V; — Vi) is themth singular value of thé/ x A ¥ Py its so-calledliversity product

matrix V; — V. 1
¢ ‘ W, 9)

{y = % min |det(Vy — Vi)
0<e<t' <L

C. Differential Unitary Space—Time Modulation

When the receiver does not know the channel, one c&Re scaling facto guarantees th&<¢,<1. The exponent;
communicate using multiple-antenna differential modulatiopssentially gives the geometric mean of fifesingular values
[1], [9]. Multiple-antenna differential modulation is forma"ysince the modulus of the determinant is the product of the sin-
similar to standard single-antenna differential phase-shW'ar values. Clearly, a constellation with larggris superior.
keying (DPSK). In standard DPSK, the transmitted symb&ny constellation with¢y, > 0 is said to have full diversity.
has unit-modulus and is the product of the previously tran¥/heny > 0 and the SNR is high, we note that no two distinct
mitted symbol and the current data symbol. The data symBfnsmitted signals can give the same received signébr any
typically is one of L equally spaced points on the compleﬁ- In this paper, we consider only full-diversity constellations
unit circle. As a generalizatiod/-antenna differential unitary @nd. in particular, we try to find constellations with diversity
space-time modulation differentially encodesx M unitary Product¢y as large as possible.
matrix-valued signals. We transmit &d x M unitary matrix
that is the product of the previously transmitted matrix and a  Ill. SUMMARY OF PRIOR WORK AND THIS PAPER
unitary data matrix taken from the constellation. In other wordg, prior Work

S, =V. S;_1, r=1,2, ... (5) We briefly review some of the unitary space-time constella-
tions that have been considered in prior work.
with So = Ip;. We immediately see why it is useful in practice Cyclic Group Codes:In [1], cyclic groups are introduced for
to haveV form a group under matrix multiplication: from (5), differential modulation. In this casé;, are diagonal th roots
if V is a group then all the transmitted matricgsalso belong of unity. In particular
to V. Therefore, the transmitter sends matriSesrom a finite
set and does not need to explicitly multigy = V._S,_;, but V, =V, where V; = diag [@i%ul/L . ez‘%w/L}
rather can use a group table lookup.

1o see that the scaling factqy7 is not needed, collect the terms from ex-@Ndu1, ..., uys are takenfromthe sgo, ..., L—1}. Without
panding the squared norm and use the facthas unitary. loss of generality, we can let; = 1. The constellation is thus
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specified by the integerss, ..., uy;. Thew,, are generally quaternion group have higher than the best cyclic group.
chosen to maximizé as defined in (9) and given by Some of the fractional-rate groups in this table are included for
later comparison.

(10) B. Summary of this Paper

This paper classifieall possible finite groups of matrices
In this constellation, the transmitter antennas are activated omiéh ¢y > 0 for all numbers of antenna® and all possible
at a time and always in the same order. ratesR. The groups considered in [1] and [9] appear as special
Orthogonal Designs:The two-dimensional (2-D) orthog- cases of our classification theorems. Our classification includes
onal design for two antennas over a known channel is [14] many new groups that are neither cyclic nor quaternionic, with
large¢y, and excellent performance.
OD(z, y) = 1 [x _y*} The classification is based on the theory of fixed-point-free
V2 Ly z* groups. A group is defined to be fixed-point-free if it has a rep-
resentation im/ x A matrices, for somé{, that has positive

wherex andy are complex data symbols chosen subject 0@ (gection IV has a much more detailed description of these

power constraint. In [10], this d2e5|gn |32adapt.ed for differentig) o theoretic concepts and terms.) An early partial classifica-

transmission by constra|n|r)|g:| = lyI* = 1; observe that tion of these groups appears in a 1905 paper of Burnside [11]

OD(x.’ y) then becomes unitary. ) , where he shows that all groups that are fixed-point-free with

. Unitary constellations of sizé = ¢ are obta;nsg by 1t order a power of a prime number must either be cycli€gr

t'gg(gf‘g% range over theth roots of unityl, e™™/%, ..., ¢ some integep, with anM = 2 matrix representation.

¢ (@-PSK symbols) yielding A 1936 paper by Zassenhaus [12] gives a more complete clas-

_ i/ Q 2ri(Q—1)/Q sification of the fixed-point-free groups. After reviewing cyclic

V= {OD(x’ u) ‘ Y e {1’ ¢ AR } } " groups in some detail in Section IV-B, we examine a group de-

Th hout thi that th el scribed by Zassenhaus in his classification and compute its rep-
roughout this paper, we assume that the(2y) constel- resentations in detail in Section IV-C. This new group turns out

lations are generated in this way. (If the channel is know[b contain all possible constellations for odfl

better performing nongnitary constellations can SOmetimesZassenhaus’ classification, however, is not complete and con-

be obta!ned by choosing and y as quadrature ampl'“"detains errors and omissions. We, therefore, complete the classi-
modulat_|0n (.QAM) symbols._) . . fication in Section V. Theorem 1 is the main classification the-

Th_e diversity product of this constellation wig-PSK sym- orem. Its proof is long and incorporates many of Zassenhaus’

hals is techniques and appears in Appendix A. Having the groups does

sin(r/Q) not mean that we also automatically have the matrix representa-

- tions with full diversity. Deriving these representations is often

V=g
) tedious, but the result is the content of Theorem 2 and its proof
These constellations do not generally form a group; thus, whghn Appendix B.

used differentially, orthogonal designs transmit potentially arbi- Armed with a complete classification, we explore in Sec-

trary symbols. _ o tion VI some of the implications of the classification theorems.
Generalized Quaternion (Also Called Dicyclic) Coddst  Because of the practical interestifi = 2 transmitter antennas,

[9], constellations ford = 2 antennas are built from cyclic Theorem 3 explicitly lists all of the groups with full diversity

(12)

groups, and also so-called “dicyclic” groups of the form  for A7 = 2. For oddM, the possible types of groups are very
0 5 et 1 limited and are contained in Theorem 4. For some concrete ex-
Qp={o,nlo™ =L =0" ,non""=0"7),  p=1 amples, Section VI lists the simplest (smallest) group of each

where the notatior) refers to the group generated by the elet_ype classified. In this section, one nonobvious example of a

ments enclosed within the brackets. These are commonly cal\;'é(c? dz'%Z?rtij;ieosgL:E;?i‘:ﬁstavr\;gﬁ gz:elfrﬁgézﬁthfh?sml}lguc’f
generalized quaternion groups, and have ofder 27+ or rate X ° : group

. as 120 elements and &l = 2 matrix representation; its rate
R= 1)/2. They are equivalently generated by the two uni- . )
tary r(rfaJtrric)e/s y q Y9 y IFSR = log(120)/2 = 3.45. (In this paper, all logarithms are

base2.) For this group(sr.,F,) = 0.3090, which far exceeds
i/’ 0 0 1 ¢y for any other constellation we have been able to generate
<[ } ’ [_1 0} > with A/ = 2 and comparable rat&.
Because the list of possible group structures that yield full
More recently, [15] extends the generalized quaternion grougisersity is limited, especially wher/ is large and odd,
toM > 2. we explore the design of some nongroup constellations in
For comparison, Table | lists some cyclic groups, generéection VIII. Although not groups, these constellations have
ized quaternion groups, and orthogonal designs. The cyddituctures that are inspired by the groups and, therefore, share
groups are chosen to have the highédound by searching some of their properties. Unlike group constellations, however,
overuz, ..., uy € {0,...,L — 1}. (For largeL and M we make no attempt to exhaustively explore all nongroup
this search was done randomly.) Only fBr = 1.5 does the alternatives.

0 e—27ri/2”
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TABLE |
SUMMARY OF SOME CYCLIC GROUP AND M = 2 QUATERNION AND ORTHOGONAL DESIGN CONSTELLATIONS

&

M L ¢ comments

0.7071 orthogonal design with +1

0.7071 cyclic group u = (1,1)

0.7071 quaternion group Q1

0.5946 cyclic group u = (1,3)

0.7071 quaternion group Q»

0.5000 orthogonal design with 4th-roots of unity
0.3827 cyclic group u = (1,7)

0.3827 quaternion group Q3

0.2494  cyclic group u = (1,7)

0.1951 quaternion group Q4

0.2706 orthogonal design with 8th-roots of unity
0.1985 cyclic group u = (1,19)

0.0980 quaternion group Qs

[o e N )
W

2

2

2

2

2

2 16

2 16

2 16

2 32

2 32

2 64

2 64

2 64

2 121 3.46 0.1992 orthogonal design with 11th-roots of unity
2 120 345 0.1353 cyclic group u = (1,43)

2 128 3.5 0.0491 quaternion group Qg

2 128 3.5 0.1498 cyclic group u = (1,47)
2
2
2
2
3
3
3
4
4
4
5
5
6
6
7
7

[V I}

w

240 395 0.1045 cyclic group u = (1,151)
256 4 0.1379 orthogonal design with 16th-roots of unity
256 4 0.0988 cyclic group u = (1,75)
256 4 0.0245 quaternion group Q7
8 1 0.5134 cyclic group u = (1,1, 3)
63 1.99 0.3301 cyclic group u = (1,17, 26)
64 2 0.2765 cyclic group u = (1,11,27)
16 1 0.5453  cyclic group v = (1, 3,5,7)
240 198 0.2145 cyclic group u = (1,31,133,197)
256 2 0.2208 cyclic group u = (1,25,97,107)
1 0.4095 cyclic group v = (1,5,7,9,11)
2 0.1787 cyclic group u = (1,31, 355,425, 581)
1 0.3792 cyclic group u = (1,7,15,23,25,31)
409 2 0.1428 cyclic group v = (1,599, 623, 1445, 1527,1715)
1 0.3487 cyclic group v = (1,13, 17,27, 29, 45, 49)
2 0.1213  cyclic group v = (1,1875, 5207, 5551, 7687, 7827, 9013)

In Section IX, the reader can find a list of some of the nether motivate the design of effective constellations of unitary
constellations in Tables Il and 1V, along with their performancmatrices.
on a wireless fading channel. For example, Figs. 1 and 3 demon¥We now proceed with the paper.
strate the excellent performance of $E;) for A = 2 trans-
mitter antennas, and Fig. 7 gives the performance a binary ex- IV. GROUP CONSTRUCTION
tension of this group fod/ = 4 antennas. We also include theA
results of an experiment with three antennas in the hallways of
Bell Laboratories (Fig. 6). There are also many other groupsWe Wish to find a seV of L unitary matrices for which the
and nongroups whose performances are evaluated. Comparighygfsity productcy in (9) is as large as possible. In this sec-

are made with cyclic and quaternion groups, and orthogonal dién, we constrain to form a group under matrix multiplica-
signs, when they exist. tion. Recall that a sef together with a binary multiplication

ML decoding of the group constellations requires a Sear@graﬁon is a group if it is closed under this operation, satisfies
over the constellation set and can be cumbersome if the num gsgom_anv_e law, has an identity eleml?@t and contains a
of signals in the constellatioh = 2%V is large. For example multiplicative inverse for each element. With the group require-

with M = R = 4, there ard. = 65536 signals in the constella-MeNt since

tion set. To_5|mpI|fy decod_lng for Iargé,_we therefore dlscgss | det(V; — V)| = |det(I — V; V)| = |det(I — V)|

fast approximate ML algorithms in Section X. These algorithms

exploit the constellation structures and are polynomial, rathwhereV' = V, V5 is another element i, the design problem
than exponential, in the ratg. becomes that of finding a group éfunitary M x M-matrices

Finally, Appendixes A—-C develop most of the group-theduch that

retic machinery this paper requires. We have also included Ap- 1 )
: : . . . (v =3 min |det(lpy — V)
pendix D, which uses an information-theoretic argument to fur- 2 r#vey

Group Representations

1
M




2340 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 6, SEPTEMBER 2001

is as large as possible. (The matfixdenotes thed x d-identity before and are callefixed-point-free representationgve call

matrix. We later omit the dimensiod if it is clear from the a groupfixed-point-freeif it has a fixed-point-free representa-

context.) tion. Such groups arise in the investigation of near fields [12],
Our construction uses the representation theory of finibe geometry [18], and in the investigation of finite subgroups of

groups. For readers who are not familiar with this theorgkew fields [19]. The present application of these groups, how-

we briefly review the main concepts. Two good referencewver, appears to be new.

for more details are [16], [17]. Ayroup homomorphisns a

mapping between two groups that respects group multiph- Cyclic Groups are Fixed-Point-Free

cation. An M -dimensional representatioaf a groupG is @ We start out with a class of groups that are always fixed-

group homomorphisma(-) from G to the group Gl (C) of  point-free: the class of cyclic groups. We denote a cyclic group

invertible A x M complex matrices. For instance, the trivialy, generated by an element asG = (0). If G has orderL,

map taking all group elements to tli¢ x M identity matrix thenG = {o‘|£=0, ..., L —1}. Inthe following, we com-

Inr is a representation of a group. pute all fixed-point-free representations of this group. It suffices
Two representationa and A’ of ¢ are calledequivalentf to determine all the irreducible fixed-point-free representa-

there is an invertible matrif’” € GL,,(C) such thatA(g) = tions, since the irreducible constituents of a fixed-point-free

TA(g)r~ forall g € G. Thedirect sumA & A’ of tWo  representation have to be fixed-point-free themselves. But
representationd andA’ of dimensions! andd’, respectively, fixed-point-free irreducible representations of cyclic groups
is the(d + d')-dimensional representation whose valug & are trivial: irreducible representations of Abelian groups are

the matrix 1-D [16, Theorem 9.8], i.e., they are characters of the group.
Alg)  Ogsea A character is fixed-point-free if and only if it is primitive
(A A)(g) = [ , } (if it is not primitive, it maps a nonidentity element to one

Oarxa  A'(g) and, therefore, has a unit eigenvalue at a nonidentity element).

where0y,,., denotes & x £ matrix of zeros. A representationHence- irreducible fixed-point-free representations of cyclic
is calledreducibleif it is equivalent to a direct sum of two (or 90UPS are exactly the primitive characters of the group, and

more) representations. Otherwise, it is caliedducible Any these are characters that map a generator of the group to a

representationh of a finite group can be represented as a direBfimitive Lth root of unity. . ,

sum of irreducible representations [16, Theorem 8.7], called th Thf LAbellan groupi hasL characters given by..(o") =

irreducible constituentsf A. >t/ L fory,=0, ..., L—1, but notall are primitive. The char-
In this paper, we are particularly interested in representatiofisl€"x« iS primitive if and only if« and are relatively prime,

using unitary matrices. The following standard argument shogP'ying that there are:(L) primitive characters, wherg(L)

that any representation is equivalent to a representation using1€Euler totient functiorof L (which denotes the number of
only unitary matrices. Choose a square maffithat satisfies positive integers less thanthat are relatively prime td.). An
M-dimensional representatiah of G is built as a direct sum

™ = Z A" (9)A(g). of M characters
4€C Xwlo) 0 0

The matrixZ” is invertible since each(g) is invertible so that Ao) = 0 Xulo) - 0
the sumI™7T is positive definite. Becausg is a group, it fol- o : : ' :
lows thatA*(¢)T*TA(g) = T*T, for any g Thus, we see that
TA(g)T~! is a unitary matrix, and the representatib\7"—* 0 0 T Xua(9)
is a unitary representation. n*t 0 - 0

We call a one-dimensional (1-D) representation of a group a 0 2 .. 0
characterof that group. Hence, a character is a multiplicative = ) . ] ; n =X/,
mapping which maps elements of the group to complex roots : : ' :
of unity. A character that is injective is call@dimitive; it maps 0 0 .- phu

only 15 into 1.
Our strategy is to take certain groufisand use unitary rep- For the representation of', we use the fact thah is a mul-
resentations to build group constellationsWe denote this by tiplicative map. Hence, for aly € G A(g*) = A(g)‘. This

V = A(G). The diversity product is then given by implies that
. i a0 0
Caqe = 3 min |det(In — A(g))]™. (13) K
la#g 0 né'uz e 0
. . . . A(O’é) = . . . . . (24)
Equivalent representations have the same diversity products. : : - :
Although our aim is to maximiz€x ), itis at this point not 0 0 ... gluw

clear whether this quantity is ever nonzero for a given griGup
From (13), it follows that(x () is nonzero if and only if for ~ These reducible representations are identical to the diagonal
anyg € G such thaty # 14, the matrixA(g) does not have code constructions given in [1], and they are fixed-point-free if
an eigenvalue at unity. Such representations have been studied only ifuy, ..., uas are relatively prime td.. As shown in
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[1], either an exhaustive or random search can finddheavith andh € H.) We need to study how the representation&'gf .
the highest diversity produch ); see also Table I. interact withH. Denote the restriction of a representatiario

We see that an Abelian group is fixed-point-free if and only iff by A | H. If A is fixed-point-free, so i\ | H. Becaused
it has a primitive character. Recall that a primitive character dis-cyclic A | H has to be equivalent to a direct sum of primitive
fines an injective map from the Abelian group into the groupharacters off (see Section IV-B).
of nonzero complex numbers. Hence, the image of this mapAlternatively, representations on subgroups induce represen-
is a subgroup of the nonzero complex numbers, isomorphicttdions on the group itself. Suéhduced representationsee,
the original Abelian group. But subgroups of the nonzero core-g., [17, Sec. 5.9]) can be computed from the restricted rep-
plex numbers are necessarily cyclic. (This is a well-known fagesentation. Lef” be an irreducible representation of the cyclic
all elements of a finite subgroup of orderof C are solutions groupH = (o). The induction off" to G is denoted” T G, and
to 2™ — 1, hence areth roots of unity.) We conclude thain its dimension is given by the dimension Bftimes the index of
Abelian group has a nonzero diversity product if and only if it7 in G. We can usé as block entries to construét T G.
is cyclic For a representatioh’ of H andy. € G we consider the rep-

As shown in [1], the performance of cyclic groups when use#ésentationf* with F#(h) = F(uhpu~1t). (Note that because
for multiple-antenna constellations is good at low rates, whdi is a normal subgroup off, then F# is a valid representa-
R < 2, but degrades faR>2. This is probably because the antion of H.) Theinertia groupof F is the group of all. € G
tennas are activated only one at a time and always in the sasaeh thatF"# is equivalent taF. It is easy to see that the inertia
order. Since we seek groups with superior performance, we ngmup of the 1-D representatidi of H is equal toH if F'is

essarily must consider non-Abelian groups. primitive. Hence, by [17, Theorem 5.20, Corollary 3],T G
_ _ _ is irreducible if I is primitive, i.e., fixed-point-free. To get the
C. A Non-Abelian Class of Fixed-Point-Free Groups representations @, we may thus compute the inductionso

An early reference to fixed-point-free representations is & fixed-point-free representations &f. We choose this route
paper of Burnside [11]. An almost complete classification dfecause, as shown in Section IV-B, the fixed-point-free repre-
fixed-point-free groups appears in a paper of Zassenhaus [1$gntations of{ are simple to compute whefd is cyclic.

We use the qualifier “almost” because Zassenhaus’ descriptionf hese inductions can be computed as follows; see, for ex-
does not cover some classes of groups that are fixed-point-fra@ple, [17, Sec. 5.9]. Note thét - H, 7 - H, ..., 7"~' - H}

In this paper, we fix the oversight and make the classificatid® a set of representatives of the cosg(&{. For the element
complete. The complete classification appears in Section V. o € G, we askifr'or™/ € H,forz, j =0, ..., n—1?Ifyes,

In Section V, we give the matrix representations of all théhenthe(é, j)thblock of (£ T G)() is setequaltd™(r'or ).
fixed-point-free groups. As it is often difficult and tedious tdf no, then this block is set to zero. Butor—7 € H if and only
compute these representations, we generally omit the detdfis. = j. Therefore,

In this section, we, therefore, indicate how these computations

are done by computing the fixed-point-free representations of a F(o) 0 ... 0

particular class of fixed-point-free groups in detail. As shown in 0 Floy 0

Section V, this class is the only class of groups with odd order,(F 1Q) (o) = (@) - . (15)
and the only class with irreducible representations in an odd : : ' :

dimensioni/. 0 0 Floy -1

Let
m " t - - For the element € G, we ask in a similar fashion whether
Go,p={o,7|cm=1L1"=0", 0" =0")

rirr™i € H,fori, =0, ..., n — 1? If yes, then thei, j)th

wheren is the order of- modulom (i.e.,n is the smallest pos- PIoCk of (F' T G)(7) is set equal taF' (r'r77) = F(r*+1 ),
itive integer such that” = 1 modm), ¢ = m/ ged (r — 1, m), 'f nO, then this block is set to zero. But™'~/ ¢ H if and

and we havecd(n, ¢) = 1. (We use the notation™ for o, 7 ¢~ ONly if j —¢ =1 mod n. Fori =0, ..., n — 2, this holds if
G to mean the elementrr—1.) The groupG,,, . has ordemn  J = i + 1, and in this casé™(r"+1=7) = F(7%) = F(1). But
because it contains the subgrdap of orderm and index: (the ~ for # = n — 1, this holds ifj = 0, and in this casé’(r**!~7) =
term “index” refers to the number of cosets). Note that the clad™") = F'(¢*). Therefore,

of groupsG,,, - contains the class of cyclic groups sirGg, 1

is cyclic of orderm.2 Appendixes A and B show that,, , 0 F(1) 0 )

is fixed-point-free if and only if all prime divisors of divide

ged(r — 1, m). WhenG,, ,. is cyclic, we have that = 1 and, 0 0 FQ) 0
therefore, all cyclic groups are fixed-point-free; this just con-(£' T G)(7) = : : : E . (16)
firms what we already know from the previous section. We now 0 0 0 - F(1)
compute all the irreducible fixed-point-free representations of

Gy F(o)t 0 o - 0

The cyclic groupH = (o) is a normal subgroup o, ..

(A subgroupH is normal inG if ghg—' € H forall g € G Since F is an irreducible representation of the cyclic sub-

group H, it is in fact 1-D, i.e., it is a character. BecauBeis
2 = 1 impliesn = 1 andt = 1. Thus,r = ¢ and s0G.,, 1 = (o). a primitive characterf’(¢) = n wheren is a primitiverth root
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of unity. Substituting forF' (o) into (15) and (16) gives the ex- Lemma 1: For any fixed-point-free representatidn= F |
plicit representation\ given by G of G = G4y, -, We have

n

q

AGns) = {(F1 &) (F 1 G)H)| G = i, [[[ (10" 57) @0

£=0,....,m—1, k:(),...,n—l} a7 "é{f)#(oﬁf j=
whereged(r — 1, m) = 7o, rot = m, ged(n, t) = 1, nis the Whereg = ged(n, k) andn = 2™/, _
order ofr modulom, and where Proof: We need to compute the determinanfpf— (F' 1
G)(g) forall g € G,,, - or, equivalently, the determinant of
n 00 L = (F TG o)((F 1 G) ()
Alo) = o0 n -0 forall/=0,...,m—1,k=0,...,n—1,suchthats, k)
I B : (0, 0). This is done using the matrix representations (18) and
0 0 77,,”71 Lemma 6 in Appendix C. O
1 0 0 We now present a few examples of the fixed-point-free groups
G, r-
0 1 0
A= | o 18 Example 1 (Three Antennas).etn = 3 and taker = 4 and
(M=1: :: B (18) 1, = 21. Thenwe haveg = 3,t = 7,gcd(n, t) = ged(3, 7) =
0o 00 -1 1, and all prime divisors of, (i.e., the prime3) dividery. Hence,
g0 0 - 0 G2&74 is a fixed-point-free group. Thus, if we set= ¢27/21,
an
These matrices are suitable for transmission Wifth= » an- n 0 O 0 1 0
tennas because they are unitary and have dimemsion A=]o0o ot o B=lo o 1
In computing the fixed-point-free irreducible representation 0 0 6 7 0 0
n n

of G = G, », we have not explicitly chosen the primitiveth
root of unitys. But it is easy to see that the choicerofloes not then the 63 matriced“B*, ¢=0, ..., 20, k=0, 1, 2, form a
change the group generatedAyr) andA(7). Any such choice group under matrix multiplication. We hayg (., ,) ~0.3851.
makes the representatidnirreducible and fixed-point-free and This three-antenna, 63-element constellation is one element shy
does not affect the diversity produgt ). of having rateR = 2.

Even though the constellation (taken in its entirety) does nOtExampIe 2 (Nine Antennas):et» = 9 and taker = 4 and

depend on the choice of, the representations obtained from _ -~ ton we have, = 3 andt = 19, ged(n, ¢) = 1, and

different » are not necessarily equivalent. There are, in fac‘;" prime divisors ofn. divide ro. HenceGsy 4 is fixed-point-

w(m)/n pairwise inequivalent fixed-point-free irreduci_ble "®Pfree. Thus, if we seb = ¢27/57, and

resentations of7,,, ,. and they are obtained by choosings ) 4 16 7 98 55 40 25 43

¢2™i=/™ wherez runs over a set of representative Bfmz)* A=diag(n, 7m0 0™, 0, 7 n™)

modulo the subgroup of ordergenerated by mod m. To see 0 Ig

this, let " be the irreducible representation Hf = {(¢) map- B < 19 g )

ping o to n, and letZ”* be another representation mappintp ) K _ S

n°. Then,F 1 G andF* 1 G are equivalent if and only if there wherediag(ay, ..., a,) denotes the diagonal matrix with di-

exists an invertible: x n-matrix " such that agonal entrieg+, ..., a,, then the 513 matriced* B*, where

£=0,...,56,andk = 0, ..., 8 form a group under matrix

T(F1G) (o) =(F* 1 G)(o)T multiplication. We have ;. ,) ~ 0.361. This nine-antenna,

513-element constellation exceeds ratey one element.
T(F1G)(r)=(F 1 G)(r)T. (19)
LetT = {t;;}. The equality on the left involving implies that V- A CLASSIFICATION OF FIXED-POINT-FREE GROUPS
tim"j*l :tiﬂf”H for all 4, j. Hence, ifs is not in the group I this section, we classify all fixed-point-free groups and
generated by mod m, thent;; =0 for all 4, j, and the repre- compute all the irreducible fixed-point-free representations of
sentationd” andF® are inequivalent. On the other handsi these groups.
7% mod m for somea, then setting;; =0 for i Zj+a mod m,
andt;; = 1 otherwise, satisfies both the above relations arftt The Group Types
shows that andF™* are equivalent. A similar argument applies One type of fixed-point-free group is presented in Sec-
to the equality on the right side of (19) involving Thus, there tion IV-C, but there are five more types. Since the groups
are p(m)/n pairwise inequivalent fixed-point-free irreducibleG,,, ,. are an important part of the classification theorem, the
representations o, ... following convention is introduced. Given a pair of integers

The value of¢a(¢) for the representations characterized ifm, ), we implicitly definen to be the order of modulom;

this section can be computed via the following lemma. we definerg = ged(r — 1, m); andt = m/ro. We call the pair
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(m, r) admissibleif gcd(n, t) = 1, and all prime divisors of that the above groups are fixed-point-free and computing their

n divide ro. The six group types are as follows. fixed-point-free representations. In all cases, all the inequiva-
1) G, . (These appear in Section IV-C.): lentirreducible representations of the same group yield the exact
G = (o, 7|o™ =1, 7" =ot, 67 = o") same set of matrices (in different order). Hence, the signal con-

m,r — 9 — 1, — 9 —

stellations produced by inequivalent representations of the same

where(m, r) is admissible. The order @, IS L = group are identical. We therefore present only one of the in-

mn. equivalent representations.
2) Drn,r,f: Th 5
- eorem 2:
Dnl,r,Z:<aa Ta’7|arn:1a Tn:ata 07-201’ a"/:aé’ .. . . .
77 =l 42 = pnrol2) 1) Gy, for admissible(sm, r) has an irreducible-dimen-
=7t 2=

sional fixed-point-free representation given by
wherenry is even,(m, r) is admissible/?= 1 mod m,

/=1 mod n,and/= —1 mod s, wheres is the highest ¢ 0 0 0
power of2 dividing mn. The order ofD,, ., is L = 0o ¢ o - 0
2mn. co—A=10 0 5”2 0
3) B, .o . .
Ern,r = <07 7, Nv ,7 | O—nl = 17 Tn = Utv O—T = O—Tv . . . 7;_1
00 0 ... ¢
o/t _ o/t _ 4_ 1 222
pt =yt =y =1t =7, 10 0
pW=pmh T =y =) 01 0
where(m, r) is admissiblemn is odd, andurg is divis- i B = :
ible by 3. The order ofE,, , is 8mn.
4) Frn,r,é: 0 00 -1
Fnl,?’,é:<o—7 Ty Ky 7 V|O—Tn:17 Tn:O—tv O—T:O—Tv St 00 0
ot it .. and¢ = ¢*™/™. The corresponding constellation is
H = TV HEETT AT given by the matricesd*B*, s = 0,...,m — 1,
pt=1 0= 0 =t v =l k = 0,...,n — 1. We note here (and omit in the
. . . I . remaining descriptions) that, implicitly, in this represen-
ol =0t T =T =y Y =) tation the matrixA becomes a scalar anfl becomes
where(m, r) is admissiblemn is odd,r is divisible by undefined whem = 1 because&7,,_ ; is cyclic.
3, nis notdivisible by3, #> =1 mod m, ¢ =1 mod n, 2) Dy, ¢ With admissibleg/m, r) has an irreduciblén-di-
and/ = —1 mod 3. The order off,, ;. ; is 16mn. mensional fixed-point-free representation given by
5) Jrn,r: AO 0
o— A=
Jrn, r = SLQ(":S) X Grn, r < 0 Aé)
where (m, ) is admissible,ged(mn, 120) = 1, and ¢ o0 0 - 0
SLo(F3) is the group o x 2-matrices oveF 5 with de- 0o ¢& 0 - 0
terminantl. SLy(F5) has the generators and relations 2
2_ 3 5 4 do=10 0 & -0
SLa(Fs) = (s v p” =" = (), = = 1). S :
The order otJ,, , is 120mn. et
6) K, r o o0 0 - &
B 0
Krn, r, { = <Jrn,1’7 V> T— B = < 0 )
0 B
with the relations
A =pd i = () () v () oo
’ 0 0 1
’YV =+, ol = 0_57 7V = 7_[ BO _ . . .

wherey, andy are asin/,,, ., and wheré? = 1 mod m,
£ =1 mod n. The order ofK,, , ( is 240mn.

o
o
o
—

We can now state our first main result. & 00 0
Theorem 1: A finite group is fixed-point-free if and only if N R= < 0 IN>
it is isomorphic to eithet,, », D, v ¢ B vy En, v 04 Jim, ey I, 0

OF Ko, r, - whereé = ¢¥*/™_The corresponding constellation is
The proof that a fixed-point-free group must be one of these  givenbyA*B*R/,s =0, ..., m—1,k=0, ..., n—1,
types appears in Appendix A. Next, we concentrate on showing j = 0, 1.
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3) E,,, . foradmissiblgm, r) has anirreduciblen-dimen-
sional fixed-point-free representation given by

Ag. 0 0 - 0
0 A5, 0 0
c—A.=| 0 0 h. 0
0 0 I
s = cL07i/8 2miz/m <1 1)
’ V2 T
0 L 0 - 0
0 0 I, --- 0
R
0 0 0 L
A5, 0 0 0
F, 0 0 0 0
0 Ff 0 0 0
0 0 F 0 0
po = 0 0 Fy 0
0 0 0 0 Fin—1mod3)
FF 0 0 0 0
F, 0 0 0
0 0 F, O 0
TmREl Y 0 0 R 0
0 0 0 0 Fn mod 3)

v ) ae(
50 )

wherez = 1if 9 dividesm, andz = 3 otherwise. The

corresponding constellation is given By B* P/ Qr, s =

0,...,m—1,k=0,...,n=-1,7=0,...,3,p=0, 1.
4) If n>1orf#1 mod (m/3), thenF,, , . with admis-

0 1
-1 0

sible(m, =) has an irreduciblén-dimensional represen-

tation given by

A, 0
a3 3)
0 A
P <P 0)
— =

()
v— R=
-1y, O

where A., B., P, @ are the matrices defined for the
group E,, ,, andz = 1 if 9 dividesm, andz = 3
otherwise. Ifr = 1 and? =1 mod (m/3), thenF,, 1 ¢
has an irreducible 2-D fixed-point-free representation
given by

o= A=Ay s, B =1, p— P =F
1 — 1
’yl—>Q—F1, VHR_E(—]_ 'L)

where Aq 3, Fp, and Fy are the matrices defined
for E,, . The corresponding constellation is given by
A®B*PiQrR1, wheres=0, ..., m—1,k=0, ..., n—1,
j=0,...,3,p=0,1,¢=0, 1.

5) J,. » has an irreducibl@n-dimensional fixed-point-free
representation given by

&0 0 .- 0
0& 0 - 0
c—A=Lolo 0o & .. 0
00 0 et
0
01
T—B=L® :
0
& 00 -~ 0
1 (= -t
o P=Ro b, PO_ﬁ(n—n‘* 773—772>

1 (n—n" -1
Qo=—7 < 3.4 3)
Vi \1-n* n*—n
wheren = ¢2™/% ¢ = ¢?™/™ and® denotes Kro-
necker product.The corresponding constellation consists
of the matricesASB"‘(PQ)jX =0,...,m— 1,
k=0,...,n—-1,7=20,...,9, andX runs over
the set {IQ,“ P, Q, QP, QPQ QPQP, QPQ?,
QPQPQ, QPQPQ* QPQPQ*P, QPQPQ*PQ,
QPQPQ*PQP}.
6) K, ¢ has an irreducibleln-dimensional fixed-point-
free representation given by

<410 0 )
o— A=

WHQ:QO@)ITM

& 0 0 .- 0
0 & 0 - 0
dg=he|0 0 & - 0
00 0 ... &t

< )
T B =
0 BS
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TABLE 1
THERE ARE SIX TYPES OFFIXED-POINT-FREE GROUPS FOR EACH GROUP
G, L |Is THE ORDER OF G (THE SiIZE OF THE CONSTELLATION) AND
Bo=L® M s THE DIMENSION OF THE REPRESENTATION OFG' (NUMBER OF
TRANSMITTER ANTENNAS)

0 0 O 1
&0 0 0 Group type L M  Comments
ur—>P:<PO ?)@In 1. Gmgr mn n
0 P 2. Dngse 2mn 2n
Py 1 <772 — 773 n— 774 ) 3. Eng 8mn 2n |
VE\n—nt 7*—n? 4. Frpre 16mn  4n ifn>1lorf# 1modm/3
. 0 —1 Frae 16mn 2 if£=1modm/3
0= <1 0) 5. Ty 120mn  2n
0 <Q0 0 ) o1 6. Ky 240mn  4n
0 Qo "
1 (n—n* 7n*—-1 because in our classification a cyclic group of oraercor-
Qo = NG <1 g - 773) responds tdx,, 1: in this case;» = 1 because the order of

1 mod mis 1.
Vs R— < 0 I2n> A class of fixed-point-free groups that appears in [9] as a
L, 0 constellation for differential multiple antenna modulation is the
generalized quaternion groups, reviewed in Section IIl and de-
wheren = ¢>™/°, ¢ = /™ and® denotes Kronecker fined as
product. The corresponding constellation is given by

; 21171 n_ _1>
AB¥(PQYXRP,s=0,...,m—1,k=0,...,n—1, .

sz(a,n|02p=1,772=a ,ol=¢

j=0,...,9,p=0,1 andX runs overthe setl,, P, N our classification, we havé€), = D 1 —1. In [9], it is
Q QP, QPQ, QPQP, QPQ?, QPQPQ, QPQPQQ, proved that ifG is a fixed-point-free group that h@s+! ele-
QPQPQP, QPQPQ2PQ, QPQPQPQP}. ments for some integer, and has a fixed-point-free represen-

. . ] tation of dimensior2, thend is either cyclic or a generalized
A proof of this theorem can be found in Appendix B. Table Ifyaternion group (also called a “dicyclic group” in that paper).
summarizes the results of this section. The first column indicategjs theorem is actually quite old, going back to Burnside [11]

the type of the group, the second its order, and the third tha more general form (see Theorem 7 in Appendix A). Itis also
dimension of its representation. consistent with our classification, and we may make a stronger

Remark 1: Theorems 8 and 16 in Zassenhaus’ paper [1§Pnclusion: assume only thét is a ﬂxe_d-point-free_ group of
classify the fixed-point-free groups. Although the proof teci2rder2** (do not impose any restriction on the dimension of
niques in the paper are novel and essentially correct, the fif{ representation); the@ is either aG,y,, » or a Dy, . ¢. (It
assertions contain errors and omissions. For instance, Zas&&fnot be of the,, . or F,,, .. ¢ types since they require that
haus’ classification does not cover the groups, . ; for odd " be odd, which contradicts the assumption that the number
n, nor does it cover some subtypes of the grouihs ,. and of elementsgmn an_lemn, be powers of two. It also cannot
F,n. ¢ The explicit description of the groups in [12, Part (E) oP€ /m, » O K, ¢ Since the number of elements}0mn and
Theorem 7, p. 203] appears to be incorrect, siR@e= P (in  240mn, can never be powers @f) If G = G, ,,, thenmn has
his terminology) and? AR~ = A’ are incompatible require- 0 be a power o2. Suppose botim a_ndn are even. Then, since
ments. Furthermore, only necessary conditions are proven fé¥(t; 7) = 1,# must be odd. Butsince= ged(r — 1, m), this
group to be fixed-point-free, although it is hinted that these neg@n only happen if — 1 is odd. This, on the other hand, con-
essary conditions are also sufficient. tradicts»™ = 1 mod m since both- andm are even. Thusp

Despite these shortcomings, we emphasize that our classifiggd” cannot be simultaneously even, and so either 1, or

tion closely follows Zassenhaus’ elegant techniques and wodtd= 1- Sincem = 1 contradicts the admissibility dfn, ) (all
not have been possible without his work. prime divisors ofn have to divider, and hencen), this implies

thatn = 1. This means that? is cyclic.
If G = Dy, ¢ thenn = 1 andm = 2?7, hencel =
VI. CONSEQUENCES OF THECLASSIFICATION FOR M = 2 —1 mod m, which shows that7 is a generalized quaternion
AND M ODD group and, therefore, has a 2-D irreducible representation. Note
that we did not need to assume anything about the dimension of
We present some immediate consequences of the main ctag-representation fd#; the dimension came as a conclusion.
sification theorem. Our classification shows that all non-Abelian fixed-point-free
The most elementary consequence (that we already kngroups of orde2? have their irreducible fixed-point-free repre-
from Section IV-B) is that cyclic groups are fixed-point-freesentations in two dimensions. Because it is often practical to
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use two transmitter antennas, one may ask more generally for2) The smallest example of the grodp, 1, . is the quater-
a classification of all fixed-point-free groups whose irreducible nion group@» = D, ; _; of order8 given as the set of

fixed-point-free representations are 2-D. The following result matricesP’Qr, j =0, ..., 3,p =0, 1, where
answers this question. .
p_(?t 0 0= 0 1
Theorem 3: Any fixed-point-free group that has an irre- S \0 i S \-1 0)°

ducible 2-D fixed-point-free representation is isomorphic to
one of the following:

1) G,,, . such that(m, r) is admissible and the order of )

modulom is 2: 3) The smallest example of a groip,, ; is the groupEs, ;

of order24. This group is isomorphic to SI(F3) [12],

We have(g, = v/2/2 ~ 0.7071. This group appears in
Table I.

2) D165 the group of 2-D matrices ovéfs with determinantl.
3) Em,1; The constellation is given by the 24 matricasP’ QP,
4) F,, 1 forf =1 mod m/3; wheres =0,1,2,7=0,...,3,p=0, 1,and

5) ']rn, 1. A B elOTri/S 1 1 P B i 0
Conversely, any of these groups has an irreducible 2-D fixed- Y/ i —1 T \0 -1

point-free representation. 0 1
Proof. The proof follows by noting that, the order of Q= <_1 0) .
7 modulom, is 1 if and only if » = 1, and comparing with , )
Table II. 0 Its rate isR = 2.29, and(g, , = 0.5, which outperforms

all constellations withi?>>2 in Table I.
Using the classification in this paper, we can also produce4

constellations for an odd number of antenids ) The smallgst example of a gmdp’%l:_é is the group
Is 1 _; which has 48 elements. It consists of the matrices
Theorem 4: Any group with a fixed-point-free representation A*PIQPR?, wheres =0,1,2,j=0,...,3,p=0, 1,
of odd dimension/ is isomorphic ta4,,_ .. for some admissible g =0, 1, andA, P, Q are as above while
(m, 7). .
Proof: If G has a fixed-point-free representatiarof odd R= 1 < - 1) .
dimension, then it has an irreducible fixed-point-free represen- ZANa
tation. Since all irreducible fixed-point-free representations of ~ Because: = 1, the matrixB does not appear. The con-
G have the same dimensiah(see Table Il), the dimension of stellation has rat& = 2.79, and
A is a multiple ofd. Hence, if the dimension ah is odd, then
d must be odd. It, therefore, suffices to consider only graéps Cryy o =\2—V2/2~0.3868.

that have an irreducible fixed-point-free representation of odd

dimension. A look at Table Il reveals théthas to be isomor- ~ 5) The smallest example of,, .- is J1 1 which is iso-

phic toG,, ... O morphic to Sk(F;). This constellatiqn has 120

elements given by the matricesPQ)’X, where

i=0,...,9, X runs over the se{l, P, @, QP QPQ,

QPQP, QPQ*, QPQPQ, QPQPQ’, QPQPQ’P,,
In this section, we produce simple examples of some of the ) popPQ2pQ, QPQPQ?PQPY, and

classes of fixed-point-free groups. For simplicity, we identify

VII. SOME EXPLICIT SIMPLE CONSTELLATIONS

the groups by their fixed-point-free representations and list the p_t <772 -7 n—n' )
group elements as matrices. Vi \n—n* -1
Using Theorem 3, we start with groups that have an irre- 1 /-1 7°-1
ducible fixed-point-free representation f&f = 2 transmitter Q=—7= < s 4 3) ,
antennas. Vo \1=n® gt =
1) The smallest example of &, ,. having a 2-D irre- wheren = ¢*™/5. It has rateR = 3.45, and
ducible fixed-point-free representation &g _;. The _ \/7r~
corresponding constellation consists of the 12 matrices CSLa(Fs) = % (3 - \/5)/2 & 0.3090.
AB*¥ s=0,...,5 k=0, 1, where This group performs remarkably, as described in Sec-
tion IX.
&0 0 1
A= <0 5_1> B= <_1 0) 6) The simplest example of a fixed-point-free group with

irreducible fixed-point-free representations fof = 3

and¢ = 27/ Its rate isR — log(12)/2 = 1.79, and is the group(isy, 3 described in Section IV-C.

its diversity product i, _, = 0.5. This value for¢ is 7) The smallest example of a fixed-point-free group with
not particularly impressive because, as we have seenfrom an irreducible four-dimensional (4-D) fixed-point-free
Table I, the orthogonal designs (although they are not a  representation iDs _1 _;. It has 24 elements, with
group) have the samg but withR = 2. rate R = log(24)/4 = 1.15, and(p, _, _, = 0.5.
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This performance is not very impressive since the grougd the constellation and appears to yield excellent high-rate con-

Ky 1 1 with L = 240 elements (ratd? = 1.98) has stellations. These three constructions just scratch the surface of
Ck, . -, = 0.5. The elements of this constellation areghe problem of designing nongroup constellations from groups.

given by(PQ)? XRP, wherej =0, ...,9,p=0,1, X

runs over the same set as in 5), but with A. Hamiltonian Constellation
-1 n-n* 0 0 A Hamiltonian constellation is defined to be a set2ok 2
1 IR, S B 0 unitary matrices that can be built from points on the unit sphere
. n—=n n n . 4 . . .
P= 7 N in R*. We start with the parameterization of2ax 2 unitary
9 0 0 0 =5 mairix
0 0 V5 0
z —y*
n—m n*-1 0 0 H(x’y):{y w}
1 | 1=-7° nt=n> 0 0
Q= NG 0 0 n—-n2 -1 wherez, y € C and|z|? + |y|*> = 1. Unlike with orthogonal
s 4 designs, the constraiht| = |y| is notimposed. These matrices
0 A form the (infinite) group of Hamiltonian quaternions of norm
0 0 1. The pairwise diversity product between two such matrices is
0 0 given by
R=

C(H(z, y), H', ¥') =5 Ve —2P+ly— > (21)

|

—

o
= -
©c o~ o

Consider the natural embedding@f in R*. Then(z, ) and
(«', /) are points on the unit sphere R* and the pairwise
We defer a detailed description of the performance of thegversity product betweeH(x, y) andH(z’, ') is simply one

multiple-antenna constellations until Section IX. half their Euclidean distance. The Hamiltonian constellation is
formed by building the unitary matrices from a set of points on
VIIl. G ROUPINSPIREDCONSTELLATIONS the sphere iR:. It immediately follows that the behavior of the

diversity product for the Hamiltonian constellation is given b
Theorems 1 and 2 are key because they allow us to compute yp ¢ y

all fixed-point-free groups of finite order. For many com-
binations of M and R these groups result in constellations

with excellent{ and performance, as shown in Section IXfor large L. If we impose the constraift| = |y, we are effec-

For other combinations a#/ and R, groups with irreducible . . i )

i . . . . tively restricted to a 2-D torus, and the asymptotic behavior of
fixed-point-free representations do not exist, especially wh 0 orthoaonal desian (OD) i given in (12)
M is large and odd. We can consider reducible representations, 9 9 9

(V) = O(L™V/3)

but then the groups can have large cyclic components and sin /\/f)
sparse matrix representations, which do not necessarily per-  ((Vop) = BRIV O(L™Y%) < ¢(Vy).
form well. For example, Theorem 1 shows that it is not possible V2

to construct irreducible constellations with ~ 1 for matrix
dimensionsV = 5 andM = 7, since there exist no irreducible
fixed-point-free group representations far = 5 with L = 32,
or M = 7 with L ~ 128.

To construct constellations for arbitrafy and R, it appears

Hence, for large rates orthogonal designs underperform Hamil-
tonian constellations.

Some references for large-minimum-distance packings
of points on a sphere iR* include [20], [21]. Any of the

ackings immediately builds a Hamiltonian constellation.

g]iti\rlwv?:gs;g;?ir?ortﬁfe:(?lﬁgr:%?%;onusrtjrsﬁ:t\i/ﬁ areél?rﬁreerf?i’togﬁﬁs, Hamiltonian constellations essentially exist for any rate.
9 9 P ga The Hamiltonian constellations, like the orthogonal designs, in

of M x M unitary matrices with largé—but we do not start ld f Th | X h
from scratch. We show how the group constellations can Sugg%]gpe_ra © not form a group. The only exceptions are the ones
' entioned in Theorem 3.

smvl\?elecgggi%reoﬁﬁrceoenssil(l:?fti'ggijzzjrgirf_?g: f\i,\rlst”'calle d Hamil- Decoding Hamiltonian constellations is simple because we
. . P ' ' need to choose a point from our constellation with least Eu-
tonian constellations, works only fa¥/ = 2 and has some

Do BUTIST : o .~ clidean distance iR* from our m rement. Given that th
similarities with the orthogonal designs described in Section ﬁ dean distance i" from our measurement. Given that the

These exist for anv ratg. The second is a nonarou eneralizapomts are well separated, a standard technique such as buck-
y ' groupg eting [22] does this in constant time as a function of the Fate

tion of the group,,, . These yield constellations, for arbitrary
M and R, that effectively boost the size of any diagonal con- L

stellation by the factod/ without decreasing. The rate of the B. Nongroup Generalization @y,

diagonal constellation is increasedb%}l. Thethirdisacon- As shown in Theorem 2, the grougs, ,. has a
stellation based on the matrix product of two different represefixed-point-free representation of dimensiom, where n
tations of any finite fixed-point-free group. This doubles the rais the order ofr modulom. We now letn be arbitrary, and
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let » and 8 be primitive mth and sth roots of unity, and let and for—p < —£<0

u1, ..., Uy D€ integers. Consider thex n matrices
B—k _ /j_an_k
0 0
0 7% ... 0 since B*B"* = pI,,. Thus, for0<k < p, we may write
A= : - : the first expression at the bottom of the page and,fpr <
' ) C —k<0, the second expression at the bottom of the page, where
0 0 U in the second step of both equalities we have used Lemma 6 in
010 --- 0 Appendix C.
00 1 - 0 We thus have the following result.
B=|: ¢ (22) Lemma 2( for S,,, 5): Letnandg be primitivernth andsth
roots of unity, respectively, and let, ..., u, be integers. De-
000 -1 note bys,,,. , the set of matriced‘ B¥ where/ = 0, ..., m—1,
g 0 0 --- 0 k=0,...,p—1,andp = min(s, n), with A andB given by
(22). Then
and the setS,, s consisting of the matriced* B* where/ =
0,...,m—1landk =0,...,p— 1 wherep = min(s, n). g - »
Note that if we takes; = r*~ 1, fpr i=0, R 1, gnds = _ % min H <1 _ /3%771 Sl uiﬁj) (23)
ged(r—1, m)=n, where(m, r) is any admissible pair, then we R O e
obtain the grougr,, .. In general, the sef,, . is not a group. (€,k)7#(0,0)

Nonetheless, the structure 8f, . allows¢ to be computed in
closed form. We can, therefore, determine whether the resultifgeres = ged(n, |kl).
constellation is fully diverse or not. Remarks:

Since the matriced and B are unitary, it follows that 1) The nongroup constellatiaf),, , hasL = mp elements.

From (9), we observe that for a general nongroup constel-

gk _ gl gkoy| — Gl _ gke—k1
[det(A™ B ARBY)| = |det(4 = ) lation, ¢ is the minimum ofL(L —1)/2 pairwise distances

= [det(] — A=~ Bk between the elements of the constellation. However, (23)

shows thatS,,, . has at mostn(2p — 1) = 2L — m dis-

Furthermore, since the matrices,, 4, ..., A™~! form a tinct pairwise differences. Hence, even thody , is not
group,(s is given by necessarily a group, it exhibits a considerable amount of

symmetry. Compare the maximum 2f — m pairwise

(s=1 min |det(In — A'B%) w distances with the maximum d@f — 1 distances found in
£ 0 1

..... a group.
é k 0, 0
( )#( ) 2) Lemma 2 allows us to construct constellations for any
For 0<k < p, we have number of antenna¥/ and any target ratg = % log L.
We need only to se¥/ = n.and decomposkasL = mp,
k On—ryxk  Lin—ryx(n—n) with p<n, and then use (23) to maximize the value ef
\ Bl Ok (n—k) by performing a search over the integeis . . ., u, (all

0 n—k . dia llll ey Dby — g
det(I, — A'B¥) = det (I, — | l’ (n—k)xk l’ g(n ntin=k)
diag(Bntvr—r+1, ... Bnten) O (1)

q n_q
= H <1 - /anlEz o Wi qﬂ) , q = ged(n, n — k) = ged(n, k)

[
—

Ok x (n—1k) diag(p=tntm ., 3—1771uk)>>
diag(n“s+1, ..., n¥) Otn—iyn

H <]_ -3 qnlzzﬂgl i q+:>

i=1

det(I, — A“B*) = det <I,,, - <
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of which lie betweerd andn — 1) ands<p. In practice,
one can always take = n.

3) Note that we may write (23) more explicitly as

c 1
S = 2 £=0,...,m—1
k=—p+1,...,

CRE(00)

T (- o) F=0
j=1
1
q n_ "
H <1—/3%77[Ziqoluiq<#j> , 0< |k| < p.
L |7=1

(24)

The expression fok = 0 is the( for a diagonal constel-

lation with w4, ..., u, (see Section IV-B). Thus, if
1
" o
: _ s
min (1=
j=1
1
q ' %71 1
< :Olnin H <1 — /3577[ pI uz‘q+j>
k=—pF1,..,p—1 |j=1
(€,k)7#(0,0)

then(s is determined by thé of the diagonal constel-

2349

The first of the above expressions depends only3on
while the second depends only gnThus, it is always
possible to choosA so that the minimum is provided by
the second term and the constellation inherits the same
as a diagonal constellation with elements.

We have observed that the constraint (26) does not af-
fect the performance of the diagonal constellation ad-
versely. Therefore, in searching for good constellations
we have found this constraint useful, even for nonprime
n.

The increase in the constellation size by the faetor

M over the diagonal constellation increases the rate by
1 -
a7 log M.

5)

C. Products of Group Representations

The constellations described above have the advantage that
they can be constructed for afy and R = ﬁ log L, and that
they are)M times larger than an equivalent diagonal constella-
tion. However, the matrices in the constellations are sparse (only
one transmit antenna is active at any given time). We seek con-
stellations that achieve better performance at high rates by em-
ploying more “full” matrices.

The group constellations have the property that, because
of their symmetry, they reduce th&(L — 1)/2 pairwise
distances between the elements of the constellation to at
most L — 1 distinct distances. We would like to relax our

lation. Since this can often be arranged by chooging 970UP requ?rement, put stiII_maintain this distance property.
appropriately, we conclude that with our construction it "US, consider two fixed-point-free group$, and G, and

is possible to boost the size of the diagonal constellati

{A%} by the factom while keeping, unchanged. This is

Bt Vs = {41, ..

.y ALA} andV]; = {Bl, ey BLR} be
M x M unitary representations of these groups. Assume that

effectively done by post-multiplying the constellation byAO = Bo = I.

B*.

4)
sinceq = n whenk = 0, andg = 1 otherwise. In this
case, (24) reduces to

n

H(l—né“j) , k=0
j=1 (25)
1
‘1 a0 < k] < p.
This expression simplifies further if we assume
n—1
Z #;+1 =0 mod m (26)
=0
in which case
(s :1 min min |1 —
2 0<|k|<p ’
1
: [’u]'
o, (L@ )@

Whenn is prime, the expressions simplify considerably s, ; = {A;Br,j=1,...,La,k=1,..., Lg}.

Consider the set of pairwise products
(28)

Clearly,S4, g has at most. = L 4Lg distinct elements. This
results in a constellation of rate at mdét= R4 + Rp, where

R4 = (1/M)logL4 andRg = (1/M)log L. The diversity

product for this set is

(s : |det(A; Bx — Aj By )|

= — min
2 (4, R)#EG K

1

= — min
2 (4,k)A3 K

det(A;,lAj — Bk/Bljl)

(A and By, are unitary

E
= min M

det A — B 7
(6,508, o 1€t = Be)

1
2
(G4 andGp are groups

One concludes that even thou§h g is not necessarily a group,
it has the desirable property of having at mést- 1, rather
than L(L — 1)/2, distinct pairwise distances. In particulgg
depends only on the “co-distance” between the elements of the
constellations’y andVg.

It remains to choose the constellatiols andVg. Assume
Ga Gp; we are therefore doubling the rate of the original
group constellation. The case whe&fe # Gp can be treated
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in a similar fashion and is omitted for brevity. We also assume  and, hencep —Y* = 1. Therefore,A* = ntI. Fur-
thatV4 andVp are equivalent representations, i.e., there exists  thermore, ifmn is even, therm is even sincém, r) is

a unitary matrixZ” such that admissible. In that case{™/? = /2] = —I for any
. . choice ofr as a primitivernth root of unity.
By =TAT",  j=1...La (29) 2) Do We show thatA™/2 = —]. We first assert
In particular thatry = ged(r — 1, m) is even. Sincewr, must be
even, this is true whem is odd. It is also true when
(s=3% min |det(4; — TAT™) i (30) n is even since all prime divisors af must dividery.
2 (GK)#(0,0) Thus,m = rot must also be even. On the other hand,
By letting Ay = I,, we see that fot's to be nonzero the group ¢ must be odd, 5'”20@2[521 mod m. Consider now
G4 must be fixed-point-free. Thus, we may use any of the A™? = diag (Am/ Ag™'?). Sincem is the smallest
groups of Theorem 1 as a candidate or. However, the next integer, such thag™ = 1, it is also the smallest integer
result shows that the only representationg gfthat can lead to such thatd§* = I = ¢**I. Therefore,

a nonzerc s arereduciblerepresentations.

2wl

2 I) = diag(_-[na _In)

m/2 : 2
A = diag (e 2
Theorem 5 (Products of Group Representationis@t V4 =

{A;} be anM-dimensional representation of the fixed-point- because is odd.
free finite groupG 4. Assume that there exists some unitdry 3) E,, P2 — _J.
such that 4) Froppi P2 = —1.
CS = % G kI)TiE) 0) |det(Aj — TAkT*) 3 > 0. 5) Jm T ( Q)S
’ ’ 6) K 1 R2=—1. O
Then, the representation, must be reducible, anj@ 1| must

Thus, we are left only with the possibility of using reducible
representations of fixed-point-free groups. These are essentially
obtained by forming a direct sum of two (or more) inequivalent
representations of any of the irreducible representations of The-
orem 2. In what follows, we shall, for simplicity, focus on re-

Aj - TAT = ST _ T — ducible reprgsentatjons of cyclic.group_s. .

As noted in Section IV-BM -dimensional reducible repre-
for any unitaryZ’. We show that the fixed-point-free representasentations of cyclic groups take the form
tions of Theorem 2, all of which are irreducible representations, A = A% — diag(n k. puok wark
have scalar elements. In addition, we show that if the group has “** — = diag(n™ ", 9™, 0™,
even order, theall irreducible fixed-point-free representations k=0,....,La—1
of the group contain the negative of the identity matrix. Thus
any representation that leads to a nonzgranust be reducible,
and the size of the group must be odd. In the followihgyill
denote an identity matrix of appropriate dimension.

1) G, .- We showthatit is scalar. Note thaf,, ; is cyclic, Theorem 6 (Products of Cyclic Group Representatiorsgt

be odd.

Proof: Note that if the representatidmi,; } has an element
that is a scalar, i.e4,; = ¢'*I for somej anda # 0, then(s
must be zero since

Wheren is a primitive L 4th root of unity anduy, ... uas are
integers between and L4 — 1. The next result gives us the
family of cyclic groups that yield nonzerg.

since the smallestintegeisuchthat” =17 =1 mod m Ao, ..., Ar,,—1 beanM-dimensional reducible representation
isn = 1, and all 1-D fixed-point-free groups are cyclic.2f @ cycI|c group
Moreover, all elements of its representation are scalar and Ay = AF = diag (gF, geek L gk,

S0 (s is zero. Thus, let* > 1 andn > 1. Since all
prime divisors ofn must dividery = ged(m, r — 1),
we conclude thaty > 1 andt = m/ry < m. Now

k=0,...,Li—1.

Then there exists a unitary matfixsuch that

t oy .t ot Pl 1 1
A" =diag (77 R ) {s== min |det —TA*T|™ >0 (31)
2 (4,1)#(0,0)
oot (r—L)t4t (T —1)t4t ) ) .
=diag (77 1 SN ) if and only if, for all K > M/2, there exists nak-tuple

Ui, ... U, ) such that
Butforallk = 1, ...n — 1, the quantity(r* — 1)t is a (s, irc)

multiple of m because ged (|ugy — Wil +ovs [ja_y —wjec], La) > 1. (32)
k=Dt =t 1) (= 1t Moreover, if (32) holds, then (31) holds generically for all uni-
R tary 1.
=024 4 1) . rot Proof: Letus partition the identity matrikand the unitary
0

matrix 7" into its columns

(k1 i
_(7 ++1) m II(Cl C]w) and TI(tl t]w).
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Fig. 1.

Block error rate performance of the group.8E;) compared with constellations from previous constructionsMbr= 2 transmitter antennas and

N = 1 receiver antenna. The solid line is SIF 5 ), which hasL = 120 unitary matricesR = 3.45). The dashed line is an orthogonal design with 11th roots of
unity (R = 3.46). The dashed-dotted line is the best diagonal (Abelian group) constrétiea 3.45). The dotted line is the quaternion group with= 128

matrices(R = 3.5). (The latter three constellations are listed in Table ).
Then we may write
M M
Ak — TA[T* = Znuikeiej — Z U'uiétit;(
i=1 i=1

M M-1
w; k * wily gk
= E nteie; — E ity
=1 =1
M-1

M
_ numé <Z CZ‘C;( _ Z tﬁ:)
=1 =1

M-1

= > (=Yt
7=1

where in the second step we UB&™ = 1.
Since the2M — 1 rank-one matrices

* * * *
{61617 cevey CMCpp, tltlv LR t]\l—lt]w_l}

are (generically) linearly independent;, — T'A,T* is singular
if and only if at leastK; > M of the2A/ — 1 coefficients
{77’11,1]&‘_77’11,]\/117 s 77'11,Mk_/?,]'u,;\/[l7 77'11,11_77'11,;\417 . J/]'U,M,ll_n'u,Ml}

are zero. This can happen if, and only if, at le&st> M/2
of the M scalars(n“t*, ... n*»*)or K > M/2 of the M

scalargn“tt, ..., n*«*) are identical. Assuming, without loss
of generality, that this is true of the first set &f scalars means
that there must exist sonfé-tuple (w;, , ...w;, ) such that

nuilk — nuizk — ... = 77 K
or, equivalently,
Uy k = upk = =y k mod L.

This last condition can be written as

(wiy, = wig )k = (wik — i) = oo = (Uige_, — iy )

=0 mod L4
which is equivalent to
ng (|U’21 - U’iK|7 L) |U'iK*1 = Uiy |7 LA) > 1.

This establishes the first claim of the theorem. The second claim
follows from the fact that all our claims about rank and nonsin-
gularity are generic in terms of the unitary matfix O

Remarks:

« The condition (32) essentially states tkjgtis nonzero if
and only if no element of the cyclic group h&s> M /2
equal diagonal entries.

« A simple sufficient condition that guarantees nonz&o
is thatZ. be prime.

« Once we have found a cyclic group for whic is
nonzero we can optimize the value @f by performing
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Fig. 2. Same asin Fig. 1, except the receiver is assumed to know the channel perfectly and demodulate coherently. The performance gain isygppi®ximatel
over the unknown channel.

a search over the set @f x M unitary matricesl” and Most of the constellations were computer-simulated with

using (30). Intuitively, the matrix” should be a “full” fading coefficients that were chosen randomly but held constant
matrix with the property that the constellatiofid, } and for two consecutive matrix-valued signals, as described in
{B; = TA;T*} be “spread apart” from one anotherSection II-C. In one exceptional case described below, the
since s depends on the co-distance between these twonstellation was transmitted over a functional three-trans-
constellations. Since the search space is small (it isnd@tter-antenna wireless channel. The resulting figures plot the
single M x M unitary matrix), methods such as randonblock probability of decoding a matrix incorrectly, denotéd

search can be used to find a gdtid as a function of the SNR.
 When g, is not cyclic, one can use reducibl x A
representations A. Group Constellations
Aq(g:
A = 1(9:) ) Fig. 1 displays the simulated performance of the group
L K SLy(F5) which has 120 elements, and, therefore, has rate
Ax(g:) R = log(120)/2 ~ 3.45. We also compare the best Abelian
whereA; to A, are irreducible fixed-point-free represengroup we could find (which is necessarily cyclic), and the
tations ofG 4 whose dimensions add up id. orthogonal design with 121 elements obtained by filling the
« Itis also possible to use representations of two differeAtatrix (11) with 11th roots of unity. The excellent performance
groupsG. andgp. of SL»(F5) is evidenced by the approximately 2.5-dB im-

provement over the orthogonal design (which is not a group),
the 6.5-dB improvement over the Abelian group, and the
13-dB improvement over the quaternion group. Table Il in
In this section, we display the performance of some of tHgection IX and Table | in Section Il list more details about
group and nongroup constellations derived in the previous séleese constellations.
tions. To evaluate the performance, we use the differential trans¥ig. 2 is the same as Fig. 1 except that the receiver is assumed
mission framework described in Section 1I-C, with a receivdo know the channel and demodulate coherently. The constel-
that does not know the channel and decodes using the melation performances all gain approximately 3 dB over the un-
. known channel, as explained in Section II-C.

IX. CONSTELLATIONS AND THEIR PERFORMANCE
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Fig.3. Same asin Fig. 1, except with = 2 receiver antennas. The coding advantage of the groufFS1) becomes more pronounced as the number of receiver
antennas increases.

Fig. 3 is also the same as Fig. 1 except that we now assuare also described in other sections of this paper, but it is not ex-
N = 2receive antennas. The difference in performance of thaustive. There are many other groups within our classification
various constellations becomes more pronounced, and theretisat we have not explored and are therefore not on the list.
clear advantage of having two receivers over one receiver.

Fig. 4 compares the performances of various constellatiofis
with B ~ 4. The group constellation i$%5 1 11 with L = For comparison, Table IV collects some of the nongroup con-
240 elementg R = 3.95). The other constellations are the besstellations with hight.
orthogonal design, diagonal constellation and quaternion group$-ig. 8 shows the performance of the nongradp= 5, R = 1
of comparable rate. constellationS;;, 3 compared with the best group constellation.

Fig. 5 shows the performance advantage ofifie= 3 an- The only group constellation with/ = 5andR = 1is a re-
tenna 63-elemert? = 1.99) groupGs1, 4 compared with the ducible (diagonal) representation of an Abelian (cyclic) group,
best three-antenna 63-element diagonal constellation. We weifice the closest nondiagonal groupls; ¢ which has 125
also able to transmit this constellation over a wireless appglements and corresponds b~ 1.39. We can see the per-
ratus located within a hallway at Bell Laboratories, Murray Hillformance advantage of the nondiagonal nongroup constellation
NJ. The three transmit antennas were separated from the emer the diagonal constellation.
receive antenna by approximately 10 m around a bend in theig. 9 shows the performance & = 4 nongroup constel-
hallway lined with metal walls and equipment, thus creatingtions of Table IV fordM = 2, 3, 4 transmitter antennas and
a quasi-static scattering environment. Fig. 6 shows the perfd¥-= 1 receiver antenna. We see the diversity gain of increasing
mance; the figure caption has more technical details about the number of transmit antennas.
experiment.

Fig. 7 shows the performance &f; ; _;, the binary exten- X. FAST DECODING
sion of SLx(F5) for M = 4 transmitter antennas, and compares As shown in Section II-C, a constellation consist of, =
itwith the best Abelian group we found. Again, the performancg? sympolsy; and the ML decoder is given by
gain of this group over the Abelian group is evident. _ M _arg min X, — ViX, 1.

Table Il collects together some of the group constellations T €=0,...,.L—1
that we have found with highfor different numbers of antennasThe ML decoder can be computed by simply trying all
M and ratesz. The list includes many of the constellations thaty, ..., Vz,_; and retaining the one that minimizes the above

Nongroup Constellations
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Fig. 4. Block error rate performance of the gralip; 1, 11 for M = 2 transmitter antennas aid = 1 receiver antenna. The solid linef3, 1, 11, which has

L = 240 unitary matrices R ~ 3.95). The dashed line is an orthogonal design with 16th roots of (dity= 4). The dashed-dotted line is the best diagonal
(Abelian group) constructiof? = 3.95). The dotted line is the quaternion group with= 256 matrices(R? = 4). (The latter three constellations are listed in
Table I).

expression, but the search time of this naive algorithm @Given that only the cosine depends fnthe ML decoder is
exponential both in the rat® and the number of antenrd. equivalent to

Therefore, for largé/ or R it is important in practical applica- M

tions to look for a faster, i.e., polynomial-time, algorithm, even  2ML — apa max Z A2 cos((uml — om) 21 /L) (33)
if the algorithm is only approximate. We touch briefly upon At

such algorithms. where

A. Cyclic Groups Ay = Ty T 1 [V

In [24], a fast approximate ML algorithm for decoding cyclicand(pm = arg(Trim/Tr—1,m) L/ 2m.
groups is proposed, which we briefly review and then adapt for rrom this we see that/-dimensional representations of
our noncyclic constellations. For simplicity, we focusSn= 1 cyclic groups can be thought of a-dimensional lattices. The
receive antenna. cosine function in (33) i2r periodic and the arguments thus
The received signals form a lengii vector X' whose ele- ¢an be reduced to the intenjal 2r); the argument of theuth
ments we denote as.. ,,. The ML decoder for diagonal codesierm can be written as

can be written as
[(wmf — ¢m) mod L]2r/L.

M= arg min || X — Ve Xo4|)? If we define theM-vectoru = [u; --- uy]*, then the vectors
fu mod Lforé =0, ..., L—1formthe part of a lattice which
& " 2 lies in [0, L)™. The cosine can be approximateda@as o ~
= argih D |rim e Tr—lim| - 1 — a2 /2. Hence we can approximate the maximization of (33)
m=l by a minimizing of the sum of the squares of the arguments
The summands are equal to of the cosines. Then, the expression becomes the square of a
) ) Euclidean distance
|-T‘r;m,| +|$T—1§nl| min Z Arn, ((U/rn,g _ (pm) mod L)2 )
2 |Trim Tr—1:m]| COS(ALE Ty — AT T 1, — 27U £/ L). .



SHOKROLLAHI et al. REPRESENTATION THEORY FOR HIGH-RATE MULTIPLE-ANTENNA CODE DESIGN 2355

10 T T T T T T
107 E E
I M=3 ]
1072} N=1 3
3 R=1.99 ]
107} —— Gag E
o — — - Diagonal
107t E
10°} i
10°F 3
10-7 ] 1 ] ]
0 5 10 15 20 25 30 35

SNR (dB)

Fig. 5. Block error rate performance of the grai¥p:, 4+, which has an irreducible representation/ot= 63 matrices forM = 3 antennagR =~ 1.99), and
best diagonal (Abelian group) constellation with the same rate, described in TabléVl,#od receiver antenna.

The vectors with component$,,,u,,£ mod A,,L form a lat- subgroups. We illustrate this using tG&, , groups introduced

tice where each dimension has been scaled b¥,,,. Approx- in Section IV-C. From (17), we see that the constellation is

imating the ML decoding with a problem involving the closesgiven by

point in a lattice does not immediately lead to fast decodiqg: [AB* |4 =0 m—1.k=0 n—1

because finding the closest point in a lattice is NP-hard/in T ’ Y ’

However, there is a well-known approximation algorithm intro- A=(F1G)(0), B=FT1G) (1)}

duced by Lenstra, Lenstra, and Lovasz in [25] and commoriiere, A is a diagonal matrix withmth roots of unity on the

referred to as “the LLL algorithm.” Its complexity is polyno-diagonal. ML decoding is

mial in M and hence polylog it (log” L for someg > 0). min HX _AlBEY H

The LLL algorithm relies on the observation that when a lattice =0, m—1 "7 7ot

has an orthogonal basis, the closest point can be found trivially

by rounding each component to the closest lattice compondiitve define X;, __, to be B*X,_,, then the problem can be

Thus, for a given lattice, the LLL algorithm attempts to find thevritten as

“most orthogonal” basis, or more precisely the basis with the ni : HXT _A'X 1” )

shortest vectors, and then use component-wise rounding to ap- k=0,...,n—1£=0,...,m—1 T

proximate the closest lattice point. Finding the basis with theor eachk, the inner minimization can be approximated using

shortest vectors itself is an NP-hard problem; LLL tries to finthe fast lattice decoding for cyclic groups described above, while

a basis with reasonably short vectors. In [24], it is shown that ftihe outer minimization can be solved naively. Because the di-

constellations with over 16 elements, lattice decoding is muatiension of the representatign) is equal to the number of

faster than a complete ML search and has comparable perfgansmitter antennas/ = »), the resulting algorithm is still

mance. Lattice decoding can be easily implemented on digifslynomial inA.

signal processors (DSPs). A similar algorithm works for the nongroup generalizations
of G',, - described in Section VIII-B. We omit the details.

B. Non-Abelian Groups

Most of the non-Abelian groups discussed in this pap& Hamiltonian Constellations
have large cyclic subgroups and we can apply fast latticeAs mentioned in Section VIII-A, decoding thid = 2 Hamil-
decoding within these subgroups and use a naive method actosgan constellations has constant complexity in the fate
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Fig. 6. Block error rate performance of the grotip;, 4 (as in Fig. 5) transmitted over three-antenna wireless apparatus in a Bell Laboratories hallway. The
carrier frequency was 880 MHz, the transmitted signals were raised cosine, the symbol rate was 10 ksymbols/s occupying approximately 20-kihahdndwid
several milliwatts of total transmitted power that was increased or decreased to vary the SNR. A/D and D/A samplers operating at 200 ksamplbg&ssafith 12
precision were used to modulate/demodulate and decode the signals with a computer; more details of the antenna testbed may be found in [23].

D. Products of Groups transmitter antennas. We hope that these groups will have prac-

We next consider decoding the products of groups introduciig@! significance, especially since many of them can be de-
in Section VIII-C. The constellation is given by coded quickly using algorithms that can be easily implemented
on DSPs.

V=ATAT* |j,k=0,...,Ly—1 We have also found that groups with full-diversity irreducible
representations do not exist for all combinations\éfand R.
whereA is a diagonal matrix witi s th roots of unity on the di- This led to the design of some nongroup constellations with
agonal and”is an artfully chosen unitary matrix. ML decodinggood high-rate performance. These nongroups have some of the

IS symmetry properties inspired by the group constellations, but
. ; . they do not generally have the size or dimension constraints.
_ AJ ko
}?1,3} HXT ATATT XT_1H ) (34) Nevertheless, our proposed designs of nongroup constellations

for allnumbers of antennas and rates sometimes require trial and

L:l%s;ling thi fastl Iatc';ice decgdintglfofr cycfl_ic‘(;\cl).ctiﬁs, thel pr'ct)bleg}ror_ It is, therefore, still an open problem to find a systematic
( )Can € Solved approximately for a fixgaith complexity design of nongroup constellations for all rates and for which
polylogin L 4. By checking every, an approximate answer can

. : decoding is not a burden whed > 2.
B _ B _ 72
be found inO(L 4log" L) = O(\/Zlog L)sincel = Lj. There are many other aspects to the unitary signal design

problem that we have only touched upon. For example, while
we have characterized all the groups, we have not tested the-
Future wireless communication systems will probably incomall for performance, and, specifically, we have not examined
porate multiple antennas to boost system capacity and lovedirpossiblereduciblerepresentations that have these groups as
error probability, but the use of multiple transmit antennas reenstituents. The diagonal constellations represent the simplest
quires effective full-diversity space—time signals. Prior studidsrm of a reducible representation, but there may be others that
have indicated that groups of unitary matrices could serve may perform much better.
effective space—time signals. In this paper, we have completelyMany of the best groups have ordérthat is not a power
characterized all groups of full-diversity unitary space—time sigf two, making bit assignment nontrivial. One simple way to
nals. In the process, we have found many nontrivial groups wiissign bits chooses and» suchL™ = 2™, and maps a block
excellent performance at high rates, especially for four or fewef bits of sizen to a block of matrices of sizen by a radix

XI. CONCLUSION AND FUTURE WORK
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Fig. 7. Block-error rate performance of the gralip, 1, —: compared with the best diagonal code fdr= 4 transmitter antennas afid = 1 receiver antenna.
The solid line isi{y 1, — 1 the binary extension of the group SIF 5 ) havingL = 240 unitary matriceg R ~ 1.98). The dashed line is the diagonal construction

with the same rate, described in Table I.

TABLE Il
SUMMARY OF SOME GROUP CONSTELLATIONS AND THEIR DIVERSITY PRODUCTS
M L R ¢ Comments Reference
- 2 - 1 {I,—I} forany M
2 24 229 05000 Es3; = SLy(F3) Sec. VII
2 48 279 03868 F3i_ Sec. VII
2 120 3.45 0.3090 J;; = SLo(Fs) Sec. VI & Figs. 1,2 & 3
2 240 395 02257 Fisan Fig. 4
3 9 106 0.6004 cyclic group Gy withu = (1,2, 5)
3 63 199 03851 Goig Sec. IV-C & Fig. 5
3 513 3.00 0.1353 Girips (t=19)
3 4095 4.00 0.0361 G1365716 t =91
3 32445 5.00 0.0131 Giosis,ae (E = T721)
4 240 198 05000 K1, Fig. 7
5 1025 2.00 0.1679 Gogs 16 (t = 41)
5 33825 3.01 0.0503 Ggres,i6 (t =451
5 1021025 399 0.0037 Gooapos,21 (t = 40841)
7 16513 2.00 0.0955 Gaszsgs (t = 337)
9 513 1.00 03610 Gs74 Sec. IV-C

conversion. The data rate of the fixed-point-free gréig then

In this paper, our classification considered only finite fixed-

effectively multiplied by2™ /L™. We can always chooseand point-free groups. The unitary group (in any dimension) is in-
m large enough so that this ratio is as close to one as desirfite but clearly does not have full diversity. We may ask, is it
Alternatively, if the group property is not essential, one coulpossible to classify the infinite subgroups of the unitary group
always trim a group to the desired size by removing matricabat have full diversity? A partial answer appears in [26], where

or generate one of the nongroups given in Section VIII.

all such Lie groups are classified.
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TABLE [V
SUMMARY OF NONGROUPCONSTELLATIONS WITH BEST DIVERSITY PRODUCT
M L R ¢ Comments Ref.
81 3.17 0.2417 product of groups, L4 = 9, u = (1,2)
289 4.09 0.1625 product of groups, Ly = 17, u = (1,12) Fig. 9
1089 5.04 0.0794 product of groups, Ly = 33, u = (1, 26)
4225 6.02 0.0436 product of groups, L = 65, u = (1,19)
16641 7.01 0.0212 product of groups, L4 = 129, u = (1, 80)
66049 8.01 0.0106 product of groups, L4 = 257, u = (1, 186)
57 1.94 04845 Syggu=(1,7,11)
529 3.02 0.1863 product of groups, L4 = 23, u = (1,13,19)
4225 4.01 0.0933 product of groups, L4 = 65, u = (1,17,23) Fig. 9
34969 5.03 0.0458 product of groups, L4 = 187, u = (1, 30, 114)
289 2.04 0.3105 product of groups, Ly = 17, u = (1,3,4,11)
4225 3.01 0.1539 product of groups, L4 = 65, u = (1, 14,21, 34)
66049 4.00 0.0678 product of groups, L4 = 257, u = (1, 148, 160, 229) Fig. 9

33 101 05580 Syps,u=(1,3,4,5,9) Fig. 8
1369 2.08 0.2307 product of groups, L4 = 37, u = (1, 6,8, 14, 27)
34969 3.02 0.1065 product of groups, L4 = 187, u = (1, 23,37,91,135)
1054729 4.00 0.0557 product of groups, L4 = 1027, u = (1, 239, 350,439, 986)
72 103 0.5000 Size u=(1,1,7,7,7,1)
3969 1.99 0.2723 doubling the M = 3, L = 63 constellation G'21 4
4225 2.01 02084 product of groups, L4 = 65, v = (1,9, 21,51, 53,57)
133 1.01 04900 Syo7,u=(1,3,6,7,15,17,8)
16513 2.00 0.1802 product of groups, L4 = 131, v = (1, 8,9,42,48,68,101)

NN O LU b R R WWWW NN N NN
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107 ; Diagonal 3
o —_ S11,3
o
107k
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Fig. 8. Block-error rate performance f8f = 5 transmitter antennagy = 1 receiver antenna, and rafe= 1. The solid line is the nongrous: , ; having 33
elementg R ~ 1.01). The dashed line is the beBt= 1 group construction: in this case the best 32-element diagonal constellation.
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Fig. 9. Block error rate performance fof = 2, 3, 4 transmitter antennas and radte= 4. The constellations are described in Table IV.

APPENDIX A The next step is to classify aBolvable fixed-point-free
A CLASSIFICATION OF FIXED-POINT-FREE GROUPS groups. For this, we need the following theorem of Zassenhaus

Our aim in this section is to give a proof of “half of” The-[lz’ Theorem 6.
orem 1. We show that if7 is fixed-point-free, then itis isomor-  Theorem 9: Let G be a solvable fixed-point-free group. Then
phic to one of the groups classified in Section V-A. The convergghas a normal subgrou@, which is a Z-group such that/G,
statement is proven, along with Theorem 2, in Appendix B. is isomorphic to either the trivial group, or a cyclic group of
We start our classification of fixed-point-free groupsrder2, or the alternating groupt, on four elements, or the
by recalling several useful theorems. Since subgrouggmmetric groups, on four elements.

of fixed-point-free groups are fixed-point-free themselves, it F £ of K . f this th fer th
makes sense to classify the Sylow subgroups of fixed-point-free ora proot of a weaker version ot this theorem we refer the

groups. The following theorem is due to Burnside [11] (Segzade_r tt(') [27, ;I'he;or(te)rln ?8%] V\/_etn;)w use Thepr(tam 9tofderive
also [27, Theorem 18.1]). escriptions of solvable fixed-point-free groups in terms of gen-

erators and relations. This has already been essentially done in
Theorem 7: Let GG be a fixed-point-freg-group. Ifp is odd, Zassenhaus’ paper [12, Theorem 7, 8], and we use most of his
thend is cyclic. If p is even, therd7 is either cyclic or a gener- proof techniques.
alized quaternion group. Given (m, r), we freely refer ton as the order of modulo
. o 7o asged(r — 1, m), and tot asm/rq. The following

A group in which all Sylow subgroups are cyclic is called
group tn wh ylow subgroup yele ! dr_emark is quite useful. For a proof see [19, p. 362].

Z-group Note that the previous theorem implies that all fixe
point-free groups abddorder are Z-groups. By [12, Theorem 5] Remark 2:Let (m,r) be an admissible pair. Then
any Z-group is isomorphic to &, . for somem and some-.  gcd(rg, t) = 1.
Not all Z-groups are fixed-point-free, however. A classification
of all fixed-point-free Z-groups is given in the following [27,
Theorem 18.2]

Theorem 10: Any solvable fixed-point-free group is isomor-
pth to Grn, () Drn, r, £y Ern,rr or Frn,r,é-
Proof: We use Theorem 9. Let be a fixed-point-free
Theorem 8: Any Z-group is isomorphic td@x,,, ... Moreover, group andG; be the normal subgroup & with the proper-
it is fixed-point-free if and only if(m, ») is admissible. ties stated in that theorem.

Later, we compute all the fixed-point-free representations of 1) If G/G1 is the trivial group, therd = G1 = G, - is @
G Z-group and we are done.
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Suppose that7 /G is isomorphic to a cyclic group of
order2. We may assume th&¥ is not a Z-group itself,
since we are done otherwisedf has odd order, then all
the Sylow subgroups @F are cyclic, and+ is a Z-group.
We may, therefore, suppose tliat has even order. From
Theorem 8 is isomorphic to(7,, , for some admis-
sible (m, ). We want to show that is odd. Suppose,
on the contrary, that is even. Therr is odd (otherwise
7™ — 1 is odd, hence not congruent tomodulot), and
1 = ged(r — 1, t) is even, a contradiction. Therefore,
is odd, and since the order 6f which is equal tovm is
even, we have thatrg is even.

Since; is a Z-group, its 2-Sylow subgroup is cyclic,
and generated by an elemenbdf order2?, say. Since7
is not a Z-group, its 2-Sylow subgroup is a generalized
quaternion group by Theorem 7. Therefofe contains
an elementy of order4 that is not inGG;. SinceG/G; is
of order2, 42 is an element i1, hence it equals™/2
which is in the center of7;. So, conjugation withy de-
fines an automorphism of ord@rof 7. It is easily seen
that the only cyclic subgroup aff; of orderm is the
group generated by the elementHence,s” = o9 for
some integey such thaig? = 1 mod m. The only sub-
groups of ordenr, of G; are generated by conjugates of
7. These arér), (), ..., (r°"'). Since their number
is ¢, which is odd, and since conjugation withis an au-
tomorphism of orde2 on 4, at least one of these groups
of ordernry is fixed under conjugation witl. Hence,
there is some element conjugate tor in Gy, such that
(7)Y = (+')7 for somey’. Without loss of generality, let

7' = 7. Note that

1 1

yrortoTt = qo"y T = 07

Further
1

YTOT TO Lot

=gy They Ty e

=77l = Jq”q,.
This shows that? ~! = 1 mod m, hencey = 1 mod
n. Observe that
(")

7

(7Y =7

and

(6" =o' = 71,
This shows thay = ¢’ mod ry. Chinese remaindering
shows that we can find such that = ¢ mod m and
£ = ¢ mod n. It follows that/ = 1 mod n and#? =
1 mod m, ando” = of, 77 = 7L,

To prove thatG is isomorphic toD,, . ¢, we are left
with showing tha? = —1 mod s, wheres is the highest
power of2 dividing mn. To this end, consider the 2-Sylow
subgroup of(Z; contained in the cyclic groupr), and
assume that it is generated by= 7%, say.z together
with an elementy’ of order4 of G generate a 2-Sylow
subgroup of7, which is a generalized quaternion group.
We may, without loss of generality, assume thas +'.
Thenz” = 7%, andz” = (79)Y = (7%)* = z*. Hence,

= —1 mod s.

Suppose now tha¥/G; is isomorphic toAs. In [12, p.
203] it is proved thatz contains a normal subgrougs

4)

of odd order which commutes with a 2-Sylow subgroup
Yo of G, such thatV = ¥, x G5 is a normal subgroup of
index3 of G, and such that there exists an elemert G\
N of odd order withe? € G. We may assume thab is a
generalized quaternion group since otherwisgould be
isomorphic to a Z-group and we would be done. We will
first show that:, is, in fact, a quaternion group of order
8. Conjugation withz defines an automorphism of order
3 onY, becauser® € G, andX, andG, commute. By
[28, Exercise 56, p. 94] we know that the automorphism
group of a generalized quaternion group of order larger
than8 is a2-group, whereas the automorphism group of
the quaternion group of orde has 24 elements. This
shows that:, is a quaternion group of ordér and there
arey, and~ such that

Yo =(u, ylpt =1, =4 " =p7t).
One automorphism of ord&rof X5 is given byu +— +,
~ +— y, as is easily checked. It can be shown thay
automorphism of ordes of 335 is conjugate (in the auto-
morphism group o) to either this automorphism, or to
its square. Thus, by replaciagwith =2 if necessary, and
by replacingu and~ with two other appropriate genera-
tors of X5, we may assume that’ = vy andy® = 1.

Sinces is a normal subgroup @, conjugation with
x leaves(, invariant, so{G», ) is a subgroup of7 of
odd order3|G.|. Hence,(G; andx generate a group iso-
morphic toG,, . for some admissiblén, )

(Ga, )y = (o, T|o™ =1,7"=0", 07 =0").

We want to show that ¢ G, ando™/t € Q,. If
7 €xGs, this would show that™ =~, v = u~, u"mﬁ =
1, 7" =, sinceG, and S, commute. Ifr € z2Go,
this would show thap,”™ = uy, and+y™ = 1, So inter-
changing: and~ would take us back to the previous case,
and hence to the description &f,, ,..

Suppose first that™/* ¢ (5. Then3 does not di-
vide m/t, so3 dividest, since3 dividesmn, the order
of G, . By Remark 2, we see tha@tdoes not divide
nro. This shows that € Gs. So,u° = u?, sinceX,
and@, commute. On the other hand?” = 1.“, which
shows that- = 1 mod 3. This contradicts the assump-
tion ged(r — 1, t) = 1, and proves that™/* is in Go.

Suppose now that € G,. This shows that ¢ Go,
since, otherwise,,, . = Ga. Therefore3 dividesm/t,
sinces™/t € G. Butm” = ot ¢ G>, which contradicts
the assumption. Therefore,Z G, and we are done.

Suppose that /G, is isomorphic to the symmetric group
S4. Obviously,G contains a normal subgroug, of index

2 such that7, /G is isomorphic tod4. Hence (3 is ei-
ther of typeG,,,, - or of typeE,,, . If Gz is of typeG,, .,
then we are back in case 2), silG¢G- is cyclic of order
2. So, we may suppose théb is of type £, .. We de-
note the generators of this group 8y, 1, v. In[12, p.
204], it is proved that there is an elementf order4 in

G \ G such that conjugation with leavesH = (o, 7)
fixed. Since fixed-point-free groups have at most one el-
ement of ordeR, we see that?> = ;2. Hence? com-
mutes with all the elements df, and conjugation with
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v is an automorphism of ordé&on H. In the same way with the relations
i i — v _ A v -
asin 2)é it can now be shown that = o andT. =7, =yl w = (M’V)'(’W)Q’V(’W)Q
wheref? = 1 mod m and/ = 1 mod n. Conjugation v v ‘ v )
v =y, o =0, T=T

with v is an automorphism of ordé@rof X5, the 2-Sylow )
subgroup of7 (this is becaus®s is a characteristic sub- where/®=1mod m, {=1 mod »n, andf{=—1mod s.

group). As in part 3), we may without loss of generality ~ Proof: By [27, Theorem 18.6(+ contains a normal sub-
(w.l.o.g.) thaty = v L and+” = u 1. To see that groupNV of index1 or 2 where N = SLy(F5) x G, With

= —1 mod 3, we compute the quantity (m, 7’) admissible an@cd(mn, 120) = 1.If @ = N, thenwe

o v " Iy are in case 1) and are done. OtherwiseSlelenote a 2-Sylow
po= =R = (")) subgroup ofZ. Since any 2-Sylow subgroup of is a 2-Sylow
=((HYY =Gt =y subgroup of SL(F3), S is a quaternion group of order by

Note thaty™ = ~, 57 = py, andpu”™ = p, SOu™ = uy Lemma3 part 2). By the same lemma, we may téke (u, A),
ifand only? = —1 mod 3.Since/ =1 mod n,we also Wherey is the generator of Si(F;) as given in (A1), and is,
conclude thaB does not dividen. On the other handj  as before, the element= ()7 ()2 y(vp)?.

dividesnro sinceG contains the grougis of type E,,, .. ~ Hence, the 2-Sylow subgroups Gfare generalized quater-
As a result3 dividesr. 0 nion groups of ordet6. Let S’ be a 2-Sylow subgroup af

o ) .. such thats’ " N = S. ThenS’ has two generators, /5 such
The next step of the classification theorem consists of idefjr4; 8 — 1 44 — 32, 0% = a1, = 3, and) = o23. The

tifying the nonsolvable fixed-point-free groups. As it turns out, o ment, — aff € §' satisfies” = A\, \¥ = i, andv? = 2.

the prototype of nonsolvable fixed-point-free groups is given bf"o computey” we proceed as follows. Let = +*. Then we
the group Sk(F5) of 2 x 2-matrices of determinaritover the ' '

field GF(5). This group has the following generators and rela-
tions [12, p. 210] xg = (73)1’ = (NQ)V = NQ = 73_
SLa(Fs) = (u, v 1® =" = (u)*, u* =1). (A1)

_ _ Further, using the definition of, we see that
We gather some basic useful facts about this group.

=N = (\x) (z)\)2z(z))?.

Lemma 3: We search over all 120 elements of3E;) to find an element
1) The right cosets of SI(F5) modulo the cyclic subgroup z satisfying the above equality together with = ~3. This
H of order10 generated by:y are given by reveals that there are only two possibilities forx = v orz =

) : : i ) .
1, 16 % Y Yy, (V)2 1R () 2y, T Bjth these choices Ieatho |somorph|c groups; namely, if
()22, (V)2 ()2 (v (i)’ z = v~ ', thenreplace by (pv)°w. This preserves the relations
T TR AT “Z’ ’WQ 7 7“2 ~* amongy and~, and additionally impliesy” = . (All these
2) The group generated yandA = (1v)"(v)*v(vp)" IS steps require calculations in the group.8E;) which we did
a 2-Sylow subgroup of SI(F;) and it is isomorphic to a ysing GAP [29].)
quaternion group. This explains the action of on the characteristic subgroup
Proof: SLy(F5) of N. SinceG,, , is also a characteristic subgroup of
1) This assertion can be proved using any of the usual coggt;, together with,,, . generate a group of typd,., . ¢, and

counting algorithms like the Todd—Coxeter algorithm. Wg,e obtain the relation=1 mod m and/=1mod n. [
have used the computer algebra package GAP [29] to

compute the cosets. APPENDIX B
2) The 2-Sylow subgroups of SFF5) are of ordes. Fur- IRREDUCIBLE REPRESENTATIONS OF THE
ther, it is easily checked that” = (uv)>yu~y?. This FIXED-POINT-FREE GROUPS

shows thay,® = % Further,\* = 42, as can be g appendix, we prove Theorem 2 which will also provide
checked directly. Hencéy, \) is a generalized quaterion proof of the second half of Theorem 1.
group and the assertion is proved. The fixed-point-free representations of the grodps, - are
The following theorem classifies all nonsolvable fixed-pointcomputed in Section IV-C. We briefly summarize the method.
free groups. It has been essentially proved in [12, Theorem i@]e cyclic groupV generated by is a normal subgroup o =
and [27, Theorem 18.6]. Our contribution is the derivation ofm, - If A is an irreducible fixed-point-free representation of

the group description in terms of generators and relations. G, thenA | N is a direct sum of primitive characters &f. On
i i the other hand, if is a primitive character, then its inertia group
Theorer_n 11:LetG be a nonsolvable f|x_ed-p0|nt-free 9rouPis N, which means that the induction gfto IV is irreducible.
Thené is isomorphic to one of the following groups. Hence, all irreducible fixed-point-free representationgicdre
1) The group obtained as inductions of primitive charactersdf Two such
Jm.r = SLa(F3) X Gr inductions only differ by a Galois conjugation (since any two
with admissible(m, ) such thated(mn, 120) = 1. primitive _characters oV dlff_er only _by a Galois conjugation), _
hence, either they are all fixed-point-free, or none of them is
2) The group fixed-point-free. Invoking [12, Theorem 9] or Lemma C.1, we
Ko v e = {Jm,r, V) see that indeed all these representations are fixed-point-free.



2362 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 6, SEPTEMBER 2001

Our strategy for computing the fixed-point-free representa-
tions of the classified groups is similar to the above. For solv-
able groups, we study restrictions of fixed-point-free represen-
tations to normal subgroups, compute their inertia groups, and
then extend and/or induce those representations. For nonsolv-
able groups, the strategy is ma@e hocand is explained below.

The first part of this appendix considers solvable groups.

Proof of Theorem 2—Solvable Groupk this part we prove
items 1)-4) of Theorem 2.

1) LetA be a fixed-point-free representation@f= G, .
The restriction ofA to N = (o) is a direct sum of primi-
tive characters aiV. On the other hand, it is easily shown
that the inertia group of any primitive character/éfco-
incides withV. Hence, by Frobenius reciprocity [30, Sec.
XVIII, Theorem 6.1], all irreducible fixed-point-free rep-
resentations of7 are obtained as inductions of primitive
characters ofV. These inductions are given in the state-
ment of the theorem and are derived in Section IV-C.
We only need to show that all of them are indeed fixed-
point-free. Note that Theorem 10 implies that the condi-
tion of (m, r) being admissible is necessary fGrto be
fixed-point-free. Hence, we are left with proving the suf-
ficiency of this condition. To do this, we need to show
that foranyz =0, ..., m —landk =0, ..., n — 1,

(x, k) # (0, 0) the matrixl,, — A% B¥ is invertible, where
A and B are defined in the statement of Theorem 2. The
assertion is obviously clear fdr = 0. Hence, we may
suppose that > 0. Now we invoke the determinant for-
mula (C1) to obtain

q—1 n/q—1 o 3)
det(In_Aa;Bk) — H 1_£tk/q H Smwm% (Bl)

i=0 j=0
whereq = ged(n — k, n) = ged(n, k). Itis required to
show that this determinant is nonzero. This is the case if

P, 1

ga:w' s +tk/q ;é 1

or, equivalently, if

Eorm=1
t—+7 zr' £ 0 mod m
qg 71r1-1
foralli =0,....,9g—1,k=1,...,n—1,andz =
0, ..., m — 1. But by Lemma 5 (which is proven later)

this is true sincém, r) is admissible.

2) LetN=(o,7)=G,, .. We first prove that the induction
of a fixed-point-free representation8fto G = D,,, . ¢ iS
irreducible. By [17, Theorem 5.20, Corollary 3] it is suf-
ficient to show that there is no invertible matrix such
thatTF(o")T~1 = F(o) andTF(r)T~1 = F(r). This
is left to the reader. This shows that the inertia group of
F'is N, hence the induction df' to GG is irreducible. On
the other hand, the restriction of any fixed-point-free rep-
resentation of7 to IV is a direct sum of fixed-point-free
representations a¥. Invoking the Frobenius reciprocity
[30, Sec. XVIII, Theorem 6.1], we see that all irreducible
fixed-point-free representations 6f are obtained from
inductions of irreducible fixed-point-free representations
of N. The representations given in the statement of the
theorem are precisely these inductions. We only need to

prove now that the representations computed are in fact
fixed-point-free. For this, we need to show that for any
z=0,...m—-—1,y=0,....,n—-1,2z = 0,1,
(z,y, z) # (0,0, 0), the matrixl, — A*BYR” is in-
vertible, whereAd, B, R are as in the statement of the
theorem. If= = 0, then this follows from the previous
part by noting thatm, ) is admissible. Hence, we may
suppose that = 1. In this case, we immediately obtain

det(I, — A" BYR) = det(I, + A5 BY AZBY).
SinceBg”O/2 = —1I,, it suffices to show that
det(I, — BI"/? AL BY AT BY) # 0.

In view of the previous part, this is equivalent to showing
that

7nro/2 e by px # 1.
Equivalently, we need to show that
O_ZacTZyO_acTy # 7_n1’0/2'

Let « = %Y. Then, the latter condition is equivalent
to ava # 2, or (ya)? # 1. Suppose thatya)? = 1.
Since all elements ofD,, ,, commute with 7770/2,
this condition shows thafya) and 777°/2 generate
an Abelian group of orded which is not cyclic. But
this is a contradiction, since the 2-Sylow subgroups of
Dy, are generalized quaternion groups and they do
not contain a noncylic subgroup of ordéer

We compute the irreducible fixed-point-free representa-
tions of G = E,, , ¢ by considering the tower of normal
subgroups

N ={(p,v) CH={o, p, v) CG.

First, observe thav = D, ; _;. Hence, using the pre-
vious step, we see thdl has exactly one irreducible
fixed-point-free representatiafi given by

ri=(p ) ro=(1 5).

F can be extended to an irreducible representatioH of
(which we denote by as well). Indeed, it can be shown
that any matrix” for which CF°C—! = F is a multiple
of

We may thus sef'(s) = ¢T for some constant which

can be determined using the identf(c"™) = I,. Be-
cause3 dividesm, we have(cT)™ = ¢m2m/2¢m/3],,
where¢ = ¢27/8, This shows that = ¢272/™¢3 /1/2,
wherez andm /3 are coprime (otherwise there is a power
of ¢T" other thann which is the identity matrix). It is easy

to check that the inertia group &f is equal toH, so that

the induction off" to G is irreducible. This induction has
been given in the statement of the theorem. Conversely,
any fixed-point-free representation 6f restricted toH
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is a direct sum of irreducible fixed-point-free representa-
tions of H, and by Frobenius reciprocity we see that all ir-
reducible fixed-point-free representations are inductions
of irreducible fixed-point-free representations/éf

To show that the representations computed are in fact

fixed-point-free, we proceed as follows. We first show

that the restriction of the representatiom¥o= (o, p, )

is fixed-point-free. We recall that= 1 if 9 dividesm and

is 3 otherwise. First, we show the assertion in the case
(m, r) = (3, 1). Here we have to check the eigenvalues
of the 24 matrices generated by

e /11 i 0
w0z 1) w0 2)
0 1
Y

We leave this simple calculation to the reader.
Next, note that, for any, we have the following:

ag = (5 1)

3k+1 wa1 &0 (1 1
AO,: 2043"'1%(1. —'L)

= 2
st _ a2 (80 (11

wherea = ¢**/™, We will now have to show that
Ag PG does not have eigenvalueif it is not the
identity matrix. Letz = 3k. ThenA§ _F{F = o**U,
wherel/ = I I'*. Note that the eigenvalues 6f are
roots of unity of even order i/ is not the identity matrix,
since the grougly, F4) has ordeg. On the other hand,
«3* is a root of unity of odd order (since is a root of
unity of odd order). Hence®*U has eigenvalug if and
only if «®* = 1 andU is the identity matrix, i.e., if and
only if A“fyzFé’Fi“ is the identity matrix. Next suppose
thatz = 3k + 1. Then A§ _F{F* = o®**1 M, where
M is a matrix inks ;. SinceLs ; has ordeg4, all ma-
trices in this group have eigenvalues which are 24th roots
of unity. So, ife®**t1 M has eigenvalue one, thext*+!
is a 24th root of unity, i.e.24z(3k + 1) = 0 mod m.
If 9 dividesm, thenz = 1, and this implies thasx +
1 = 0 mod m/3, which is a contradiction. Ip does
not dividem, thenz = 3, and the condition i8% +
1 = 0 mod (m/3), which impliesa®**! = 1. In that
case M has to be the identity matrix, since we know that
F5 1 is fixed-point-free, andv®**+1 M has eigenvalug
by assumption. Altogether, this shows th&§ _Fy F*
has eigenvalud only if it is the identity matrix. The
casex = 3k + 2 is handled analogously. This com-
pletes the proof of the fact that the restriction of the rep-
resentation given in the statement of the theorenv tis
fixed-point-free.

Next, we studylz,,—AZPY QU BY forz =0, ..., m—1,
y=0,...,3,v=0,1,andu =0, ..., n — 1. We may
suppose that > 0, since we have already shown that the

restriction of the representation 16 is fixed-point-free.
A slight generalization of Lemma C.1 shows that

det(Iz, — APYQUBY)

g—1
= H det | I —

n/q—1

Faitiy
H (AO: z F(jq+i) mod 3

=0 =0
w tu/
.F(jq+i+l) mod 3) AO, zq
where ¢ = ged(n, u). Let M = A®. Note that

MFUM=* ¢ (P, Q) for U € (P, Q) and anyk,
since (P, @)) is a normal subgroup of the constellation.
Collecting terms, we see that

n/q—1
Ity oy u tu/q
I— H (AO, z F(q-l—z) mod 3F(jq+i+l) mod 3) AO, z
j=0

e s

for somelU € (P, Q). Since we have shown that the
restriction of the representation 6 is fixed-point-free,
we know that the matrix above is invertible if itis nonzero.
But since the order ol . is odd and that of/ is a power
of 2, the matrix is nonzero if and only if

tu/qg + (™ = 1)/(r? = Dar’ £ 0 mod m

forany: =0,...,¢g— 1, u=1,...,n—1,andz =
0, ..., m — 1. Lemma 5 proves that the latter condition
is satisfied if(m, r) is admissible, and we are done.

4) G = F,, , ¢ has the normal subgrou = (o, 7, 11, ¥)

of type E,,, . of index2. Let A be one of the irreducible
fixed-point-free representations df as computed in
the previous part of the proof. It is easily checked that
A” is not equivalent toA if n > 1, by considering

A(rY) = A(rY. In this case, the induction of
to G is irreducible, and it has been computed in the
assertion of the theorem. H = 1, then A may or

may not be extendable t&. To see when it is and
when it is not, we first look atA”(u) and A¥(y).
From this, we easily check that any matfxfor which
TAYT~! = A has to be a multiple of2. By checking
the condition TA*(o)I~* = A(os), we arrive at
RoAf§ .= Ay, . Ro. This shows that(/—1)=0 mod m,
and sincez and m/3 are coprime, we see thdt =
1 mod m/3, which also shows that:/3 # 0 mod 3,
since/ = —1 mod 3. Hencez = 0 mod 3. Altogether,
this shows that in casé = 1 mod m/3 andn = 1,
representationa mappingo to A, with z divisible by 3
are extendable t67; and if 3 does not dividez, then the
induction of this representation is irreducible.

If A can be extended, thel(») = ¢R for some con-
stantc which is determined by the requiremertéy*) =
DLy, A(W?) # I,. SinceR? = —I,, this leaves the
choicesc = 1 ande = —1 of which we choose = 1.

The proof that the computed representations are indeed
fixed-point-free is similar to part 3). O
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Next we concentrate on computing the irreducible fixed-
point-free representations of the nonsolvable groups of the
previous section. We need the following isolated result.

of these eigenvalues cannot be one.) So, the irreducible
fixed-point-free representations of S ;) x Gy, - are
given byo +— Ir ® Ag, 7 — I @ By, v — Py ® I,

v — Qo @ I, with the matricesd, By, Fo, Qo given
above.

SL(F5) x G,y » is @ normal subgroup of(,, . ¢ of

Lemma 4:The only fixed-point-free representations of

SLx(F3) are the two 2-D representations given by 6)

1 2 _ .3 _ 4 . . . . .
v P = <77 TonTn ) index2. Itis easily seen that the inertia groups of the rep-
VE\n—nt 7*—n? resentations computed in the previous part coincide with
9 2 SL:(F35) x G, »; hence their induction is irreducible,
1 (n—=—n" n -1 . A : .
v Q= = N 5 and all irreducible fixed-point-free representations are
VEN1=n® n*—n obtained this way. The representation given in the state-

ment of the theorem is an induction of a fixed-point-free
representation oV = SLy(F;) x G, , along the
cosetsV, vN. It is easy to show that the representations
given are in fact fixed-point-free. The proof can be
accomplished along the lines of the other proofs of this
type outlined in the paper, and is left to the reader.[]

wheren € {¥™/> —etmi/5),

Proof: It can be easily verified that the given maps
are indeed fixed-point-free representations of the group
G = SLy(F3). One needs to check th&? = Q* = (PQ)®
andP* = 1. Further, it is easily checked that the two represen-
tations given are inequivalent.

Showing that these representations are the only fixed-pointyye close this section by stating and proving a lemma that has
free representations 6fis slightly involved. Basically, we need oo, used extensively above.
to compute all the irreducible representations(gfand test
whether they are fixed-point-free. We sketch an alternative toLemma 5: Let (m, ) be an admissible pair of integers,
this method by using the character table@frather than all be the order of modulom, 7o = ged(m, r — 1), ¢ = m/ro,

the representations. Tlkiharacterof a representation at a givent € {1, ..., n — 1}, andz € {0, ..., m — 1}. Furthermore,
group element is the trace of the representation evaluatedeiw = gcd(k, n) andi € {0, ..., ¢ — 1}. Then we have

that element. Characters are obviously constant on conjugacy Eoorm—1

classes of7. The character table 6 is anh x h-matrix whereh PR # 0 mod m.

is the n_umberpf conjugacy cla_ssesibfwhose rows are indexed Proof: We first transform the statement of the theorem
by the irreducible representations@fand whose columns are; . a simpler form. Since € {0, ..., m— 1}, we can replace

indexed by the conjugacy classes. Positiany) of this matrix
contains the value of the character of e irreducible repre-
sentation of7 at an arbitrary element of thj¢h conjugacy class.

Let x denote the character of a representatioand suppose
thatA is d-dimensional. Then, for any elemenin G the eigen-
values ofA(«) can be recovered from(o), x(c2), ..., x(c%)
(up to permutation). To see this, note thgfc*) equals
wh +-- +whk wherews, ..., wy are the eigenvalues df(o).
Hence, if we know the character table 6f, and, for each
elements, the conjugacy class af, o2, ..., ¢, then we can .
compute for each irreducible representation the eigenvaluesp
that representation on the group elements and test whethergvlyI
encounter the eigenvalue

The character table a# can be found in [31, p. 155]. Ap-
plying the procedure outlined above, we see that the only fixed-
point-free representations 6f are the ones given above. O

xr® with 2, so that we may assume w.l.0.g. that 0. Further,
it is well known and easy to prove that an equation by =
0 mod m has a solution foy if and only if ged(b, m) divides
a. Hence, denoting by the valueged(m, (+™ — 1)/(r? — 1)),
we see that the statement of the theorem is equivalefl/tp
0 mod d. We now prove that any primedividing n/q also di-
videsd. This proves the desired result, since the printannot
divide ¢ (sinceged(n, ¢) = 1), it also cannot dividé: /¢ (since
g = ged(n, k)), and sod cannot dividetk/q (otherwise, any
e factor ofd would have to divide eithet or %/q). Let
e a prime dividingn/q. Since(m, r) is admissible, any
fhe divisor ofn dividesged(m, r — 1), which implies that
7 = 1 mod p. Now

o

=14pi g gD =" =g mod p
7”1—1 q

which proves the desired assertion.
Proof of Theorem 2—Nonsolvable Groupdere, we con- P
centrate on proving items 5) and 6) of Theorem 2. The assertions
on the explicit form of the constellations follows from Lemma 3
part 1).

5) The irreducible representations of $E;) x G,,, ,. are of

the formA ® I, whereA andF run over a set of pairwise
inequivalent irreducible representationsand Gy, .,

APPENDIX C
THE DETERMINANT OF DOUBLY BANDED MATRICES

Lemma®6: Letay, ..., ap, b1, ..., bay be arbitrary, and let
1<K <M. Define theM x M doubly banded matrix as shown

in the matrix at the bottom of the next page. Then

respectively. Clearly, for\ ® I to be fixed-point-free,

bothA and F' have to be fixed-point-free. This necessary Jet D(M, K) = H

condition is also sufficient igcd(|S|, |G, »|) = 1. (TO

see this, note that the eigenvaluesiof B are products of
the eigenvalues ot andB. If A andB have eigenvalues
that are roots of unity of coprime orders, the products

M _
q

1
H Ajg+i —

=0

M_q
I bio+i (C1)
i=0

=1

whereq = ged(M, K — 1). In particular, whery = 1, we have

detD(M, K)Ia1~~~a]\4—b1“~b]\4. (CZ)
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Proof: We first prove the result foy = 1, using induction so that
onM. ForM = 2, we have

det < “ bl ) = Q102 — blbg
—ba G2 which is the desired result.
as desired. Assume now that for all matrix dimensions less thar\/\/hengcd(M7 K — 1) = ¢, D(M, K) can be partitioned
M, wheneverg = 1, (C2) holds. We shall show that (C2)into ¢ x ¢ diagonal blocks, as shown in the equation at the top
holds for matrices of dimensial/. Let K’ be chosen such that of the following page, where
ged(M, K—1) = 1and assume, without loss of generality, that

detD(M, K):al"'a]\l—bl"'b]w

. . . Az:d( i— g ey i—
K —1< M- K+1 (we can always arrange this by considering iag (aG-1o+1 Ai-t)a-a)
the transpose ab(M, K)). PartitionD(M, K) as B; =diag(bi—1)g+15 - > Diim1)gtq) -
D(M, K) = Di1 Dy Repeating the arguments foe= 1, to the above block diagonal
’ Dy Do matrix (sinceged(%l, £--+) = 1 and diagonal matrices com-
where mute), we have
Dll :diag(al, ey CLK,l), detD(M, K) = det (Al M AM — Bl M Bﬂ)
D12 = (Ox—1yx(m—2k+2) diag(=b1, ..., —bx_1)) which yields the desired result (C1). O
and
diag (=bi, ..., —bar_2) APPENDIX D
Dy = INFORMATION-THEORETIC ASPECTS OFDIFFERENTIAL
OM—2K+2)x (K —1) MODULATION

GK We briefly justify the design of good constellations of

unitary space—time signals by computing the information
Doy = | —bop 4 . rates theoretically achie_vable \_/vith differential modulation. We
show that, for larg€\/, differential modulation as presented in
: Section II-C can theoretically achieve rates of approximately
—by ay Nlog(1+ p/2), only slightly less than the space—time autoca-
We have the equation shown at the bottom of the page. Note tpatity of the channeV log(1+ p) [8] (achievable ad/ — o).
Disan(M — K +1) x (M — K + 1) doubly banded matrix Thus, differential modulation can attain a significant fraction

and thatged(M — K + 1, K — 1) = 1. Thus, of the channel capacity without further channel coding. To
det D — by--by save space, our reasoning is intuitive and physical and avoids
AR M e extensive rigor.
a1 0 0 —b1 0 . 0 0 0 0
0 as - 0 0 —by .- 0 0 0 - 0
0 0 As—1 0 0 —bs_1 O 0 0
0 0 e 0 a 0 - 0  —b, 0 - 0
0 0 0 0 Asp1 - 0 0 —boy1 - 0
D(M, K) = . . . . . . . . ,

0 0 0 0 0 A —1 0 0 —b[(_1

—bg 0 0 0 0 0 ar 0 0
0 —bK+1 0 0 0 0 0 aAK+1 0
0 0 —b]w 0 0 0 0 0 aps

det D(M, K) = det D1y det (D2 — Doy Dii* D15)

diag (ar, ..., a2x— dia‘(—M’.“’_bK—leK—Z)
_ det(Dll)det < g( K 2K 2) g a1 P .
diag(_bQR’—1, ey —b]w) diag(agl(_l, . a]w)

-

~
D
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A1 _Bl
Ax-1 —Bk-1
DM, K) = —BK—1+1 AK—1+1
—Bu Am

A. Mutual Information for Differential Unitary Space—Time tributed and independent & which isN x N upper triangular.

Modulation We may write
We refer to the model (1) and employ differential modulation X 5:Q 1 Wy
5), where the channel is constant o2é4 time samples. Thus, < ) =vpM < ) —— R < )
(5) P X, 5,Q) VM W,
X ) S W1 ,
< :\/ﬁ< )H+< ) (D1) <Sl> 1 <W1)
= M — R+ D4
X, Sy Wy VP s, ) Vir W, (D4)

where H, Wy, andW, are M x N matrices of independent , , .
CA(0, 1)-distributed random variables. We assume that off€7€51 = 51@Q andS; = S5;Q areM x N independent and
constellation of differential signals is well approximated bisotropically unitary random matrices. Furthermore
a constellation of randomly chosen isotropically distributed1
unitary matrices. An isotropically distributed random matrix s
has a probability distribution that does not change when the
matrix is pre- or post-multiplied by a deterministic unitary = mh <X1, X5
matrix (see, e.g., [6], [8]). Therefore, the matriceésand S,
areM x M and unitary and are independent and isotropically 1 .
distributed. =" <)‘1
In [8], it is proven that there is a space—tiraatocapacity
given byC\, = N log(1+ p) associated with transmitting infor-* ) Rt h ;
mation in a single\/ x 2 block of symbols, a3/ — ~c. We, identical distributions off; and.X». _
therefore, consider the mutual information within a differential W& focus on tlh's expression wheif grows butV remains
modulation block and compare it to the autocapacity. The mied. for then 7= 1 converges (with probability one) to an
tual information between the transmitted signé$s, S»} and v > 1V identity matrix. We, therefore, have

h(Xl, X2)

1 1 1
— —R)+—T|—R; X1, X
VM ) 2M <\/M . 2)

1 1 1
—R — I =R, Xj, X
/—M >+2M < /—M ’ 1, 2)

where the second step uses the conditional independence and

the received signaléX;, X,} is 1 1
— T <— R|X,, X2> — 0.
I(Xla X27 Sla 52) 2M v M
1

= [WM(X1, X2) — (X1, X3|51, S2)] (D2) Onthe other hand, in this regiméMS{ behaves as alf x N
2M matrix of independen€ A/ (0, 1) random variables. ThusY;

whereh(-) denotes entropy. (We normalize the mutual infomas the same entropy as a zero-mean complex GauksiatV

mation by the factod /2M for convenience, sinc2M is the random matrix with variancé + p, implying that

number of time samples.) Note théf;, X>}, conditioned

on {S;, S»}, are zero-mean Gaussian-distributed random ma- i 1 h <X1 L R) = Nlog e+ Nlog(1+ p).
trices. Computing the covariance matrix fk;, X»} shows M=o vM
that Combining this result with (D3) yields
h(X17 X2|Slv 52) }im I(Xl, Xo; 51, SQ)
Sl —00
= 2NMlogne+ N logdet |:IQ]\/[ +p<52> (ST S3 )} - N {log(l—i-p)—g log(1+2p)| . (D5)
S . .
— aNMlog e + N log det [IM Y o(SE S5) < L )} . B_ecausg two consgcutnﬂel\/[ X M signals are overlapped
So in differential space—time modulation, the maximum achievable
— 2N Mlogme+ N logdet [Ins + 2pIn] rate is twice (D5), or
= 2N M logwe + N M log(1 + 2p). (D3) im  Taig =N [2log(1 + p) — log(1 +2p)]

SinceH is M x N complex Gaussian, if we perform tlagR ~ Nioe (1 0?
decompositiorH = QR, thenQ is M x N isotropically dis- =Nlog{l+ 1+2p)°
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At high SNR, this mutual information isVlog(1 + p/2),
which is approximately 3 dB less in SNR thanlog(1 + p),
the space—time autocapacity of this channel. (It suffices to sayq
that the autocapacity is the rate theoretically achievable in one
channel use ad/—oo [8].) Thus, for constellations that are [12]
composed of approximately independent and isotropically dism]
tributed random matrices, differential modulation can achieve
a significant fraction of the channel capacity. [14]
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