Errata

Constraints on the low-energy $E1$ cross section of 12C$(\alpha, \gamma)^{16}$O from the β-delayed α spectrum of 16N

R. E. Azuma, L. Buchmann, F. C. Barker, C. A. Barnes, J. M. D’Auria, M. Dombsky,
U. Giesen, K. P. Jackson, J. D. King, R. G. Korteling, P. McNeely, J. Powell,
G. Roy, J. Vincent, T. R. Wang, S. S. M. Wong, and P. R. Wrean

[S0556-2813(97)01109-6]

PACS number(s): 95.30.Cq, 23.60.+e, 27.20.+n, 99.10.+g

The paper cited above omitted the explanation of our energy calibration of the 16N β-delayed α spectrum sent to us by Professor H. Wäffler [1]. Although this spectrum was not used in any way in our experiment or in its analysis, we showed a comparison of this spectrum (referred to below for brevity as the Mainz spectrum) with our 12C-α-coincidence α spectrum in Fig. 15 of our paper. We present here a clarification of the calibration procedure.

The Mainz spectrum consists of a quarter of the data on the basis of which the Mainz group first reported [2] the detection of the parity-violating group of α particles from the 2^- excited state of 16O, now known to be at $E_\alpha=8.8719\pm0.0005$ MeV [3]. The apparatus for this experiment was described in a paper published a year earlier, which also reported the observation of a narrow α group resulting from the first-forbidden 16N β decay to the 2^+ 16O state [4], now known to be at $E_\alpha=9.8445\pm0.0005$ MeV [3]. A third paper describes further work by the Mainz group, with improved apparatus, and ~4 times the number of α particles detected for the 1970 letter, establishing the parity-violating α width of the 2^- state more precisely [5].

The location of the α groups from the 2^- and 2^+ 16O states, with energies of 1282.3 ± 0.5 and 2011.5 ± 0.6 keV, respectively, and the identification by Dr. Wäffler of the position in the spectrum corresponding to the α group from the 2^- 16O state, made it possible for us to calibrate the true E_α energy scale for the Mainz spectrum. As noted in our paper, our coincidence α spectrum was calibrated independently by the β-delayed α particles from 18N and 20Na, in exactly the same experimental geometry as our measurement of the 16N α spectrum. It is clear from Fig. 15 of our paper that the two spectra agree on the high-energy side of the main peak well within the stated accuracy of either calibration, but the Mainz spectrum shows evidence of an enhancement on the low-energy side of the peak that is likely to be the result of the low-energy tail of the system response function. In the case of our experiment, it was possible to remove this tail of degraded pulses because of the two-dimensional, coincidence data acquisition and the good energy resolution of the experiment.

We note that a similar calibration of the Mainz spectrum by the 2^- 16O states was made by F. C. Barker more than 25 years ago [6], and this calibrated spectrum has been employed in several subsequent publications [7–10].

We thank R. H. France III and M. Gai for pointing out the omission of the procedure for calibrating the Mainz spectrum.