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Abstract
The biological picture of cancer is rapidly advancing from models
built from phenomenological descriptions to network models de-
rived from systems biology, which can capture the evolving patho-
physiology of the disease at the molecular level. The translation of
this (still academic) picture into a clinically relevant framework can
be enabling for the war on cancer, but it is a scientific and technolog-
ical challenge. In this review, we discuss emerging in vitro diagnostic
technologies and therapeutic approaches that are being developed to
handle this challenge. Our discussion of in vitro diagnostics is guided
by the theme of making large numbers of measurements accurately,
sensitively, and at very low cost. We discuss diagnostic approaches
based on microfluidics and nanotechnology. We then review the
current state of the art of nanoparticle-based therapeutics that have
reached the clinic. The goal of the presentation is to identify nan-
otherapeutic strategies that are designed to increase efficacy while
simultaneously minimizing the toxic side effects commonly associ-
ated with cancer chemotherapies.
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INTRODUCTION

More than 1500 Americans will die from can-
cer each day this year. Projections of the num-
bers of expected cancer diagnoses, and the
numbers of expected deaths from cancer, are
publicly available.1 While the rate of cancers
being diagnosed has steadily increased, the
normalized numbers of cancer-related deaths
has remained virtually unchanged. Against
this static background is emerging a new pic-
ture of cancer, which is inspiring hopes that
the war on cancer may be winnable. In this
review, we introduce this picture and discuss
how it is driving the development of new
diagnostic and therapeutic technologies. In
particular, we focus on nanotechnologies and
microfluidics for in vitro diagnostics and nan-
otechnologies for drug delivery. These tech-
nologies constitute only a few pieces, albeit
critical ones, that are being brought together
to win the war on cancer.

Recent advances, both conceptual and
technological, are making it possible to imag-
ine a future in which cancer is a manageable
chronic ailment. Consider how cancer was
viewed just a few years ago. Most pathology
practices were based upon a few phenomeno-
logical measurements to assess disease
(Figure 1a). An increased understanding
of cancer has demonstrated that a given
type of cancer can be triggered by different
genetic mutations, each of which can lead to
a different outcome (e.g., aggressive versus
nonaggressive cancer). This understanding
led to the model of cancer pathways (2)
(Figure 1b). In this model, there are multiple
pathways of interacting proteins, each consti-
tuting a cascade of molecular events. A given
pathway, if genetically altered in specific
ways, is effectively short-circuited and thus
constantly activated, even in the absence
of signaling molecules. Emerging cancer

1Statistics related to cancer deaths, cases diagnosed, etc.,
for years 1997–2007 are available from the American
Cancer Society at http://www.cancer.org/docroot/stt/
stt 0.asp.

molecular therapeutics (3, 4) are designed
against specific pathways, often targeting
the genetically altered proteins. Molecular
measurements, such as the identification of
mRNAs (5) or pathway-associated proteins,
are increasingly used to identify the altered
pathway or the response of the cancer to
therapy (6). Such an analysis can potentially
indicate an appropriate therapy (7, 8), the
progression of the cancer (9), the potential for
recurrence after therapy (10), or the potential
for drug resistance (8). In vivo molecular
imaging is also increasingly employed as a
diagnostic of drug efficacy (11).

Pathway models are useful but limited.
A pathway-based diagnosis typically requires
prior knowledge that cancer is present, so it
constitutes a more accurate pathology report
but not an early detection strategy. Another
drawback is that pathway models do not ac-
count for the dynamic evolution of cancer, and
they underestimate the degree of intercon-
nectivity among the various genes and pro-
teins. Finally, pathway models assume that a
given cancer is homogeneous, which is almost
certainly incorrect.

Network models of disease and disease
progression (Figure 1c) are emerging out
of systems biology procedures (12), which
generally involve deep transcriptome analy-
ses (13), occasionally coupled with focused
proteomic investigations (14), all integrated
together using computational methods (15).
Network models can illustrate how the on-
set and progression of disease are reflected
in the form of differentially expressed genes
and their associated protein networks. Cur-
rent network models, though unwieldy, are
beginning to lend molecular-level insight into
the pathophysiology of disease progression.
This, in turn, has implications for cancer clin-
ical care, including the potential for achieving
a more informative diagnosis. This increased
information content arises from at least three
concepts. First, the proteomic and genomic
databases may be comparatively mined to gen-
erate a list of candidate biomarkers that are
detectable in body fluids. Blood, for example,
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Figure 1
These images represent the evolving picture of medicine that is driving the development of
nanotechnologies for the investigation, diagnosis, and treatment of cancer. (a) A mammogram exemplifies
traditional, phenomenological, single-parameter cancer diagnostic techniques. (b) The “cancer pathways”
model for understanding the differential response of certain cancers to molecular therapies. Each
pathway is a cascade of interacting proteins (circled in yellow). An analysis of multiple mRNAs and
proteins from cancerous tissues can lead to the appropriate prescription of drugs. (c) A dynamic network
model of disease. This model, compared to the cancer pathways model, more accurately reflects the
complex interrelationships between various proteins within a biological system. It is thus a truer reflection
of the molecular nature of the disease, but it also can be mined for biomarkers that can be diagnostic for
the progression of the disease. Such biomarkers can potentially be harnessed for detecting disease prior
to the emergence of clinical symptoms. (Dynamic network model images courtesy of Leroy Hood.)

is a powerful window into health and dis-
ease, but it is a noisy environment, contain-
ing >104 proteins that span a concentration
range of >109. The ability to identify organ-
specific, secreted proteins in blood is an exam-

ple of a powerful strategy for extracting sig-
nal from such an environment (16). Second, if
the regulatory networks associated with the
relevant proteins are identified, then mea-
surements of those proteins can be directly
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correlated with the developing pathophysi-
ology of the disease. Third, the best net-
work models will soon be dynamic models,
and thus the extracted molecular signatures of
disease are identified against a time-averaged
background. Ultimately, dynamic network
models may allow the detection of disease
prior to the development of clinical symp-
toms, thus paving the way for prophylactic
therapies.

This evolving picture of cancer holds
promise for changing both diagnostics and
therapeutics. For diagnostics, this scenario
permits the asking of many more clinically
relevant questions, but it places new de-
mands on both measurement and computa-
tional technologies. Information will eventu-
ally become the commodity of value, implying
that quantitative, sensitive, and multiparame-
ter diagnostic measurements must be accom-
plished inexpensively, and the results must be
rapidly integrated to produce a simple and
yet accurate diagnostic conclusion. “Multipa-
rameter” measurements consider genes, pro-
teins, and cells. “Inexpensive” measurements
are rapid and routine to execute, requiring
small amounts of tissue and minimal sam-
ple handling. It is here that nanotechnologies,
new chemical methods, and microfluidics are
emerging as powerful tools.

The ability to detect cancer early almost
always correlates with the ability to cure
the disease, typically with combinations of
surgery, radiation therapy, and chemotherapy.
Emerging molecular therapeutics have shown
promise against very specific classes of tumors
(17, 18), but typically the cancer is kept at bay
for only 1–2 years before returning in a drug-
resistant form (19, 20). The more traditional
chemotherapies are, as a rule, more effective
against broad patient populations, but they are
also accompanied by side effects ranging from
hair loss to cardiac arrest. New nanotechnolo-
gies for drug encapsulation and delivery are
being developed to increase the accuracy of
drug delivery to target, while also minimiz-
ing the exposure of noncancerous tissues and
reducing toxicity.

EMERGING IN VITRO
DIAGNOSTIC TECHNOLOGIES

In vitro cancer diagnostics will increasingly
mean the measurement of large panels of
biomolecules (mRNAs and proteins) from
ever-smaller samples. Samples may consist
of body fluids, tissues, cells sorted from re-
sected or biopsied tumors, circulating tumor
cells (21), etc. To focus our discussion on the
rapidly expanding fields of microfluidics (22)
and nanotechnologies for in vitro cancer di-
agnostics, we take a lesson from the semicon-
ductor industry. Integrated circuit manufac-
ture has advanced so that the cost of pro-
ducing a transistor is a fraction of a penny.
This has required high-throughput manufac-
turing protocols that integrate hundreds of
processing steps and many different materials.
The analogy to the transistor is the biological
measurement, which must cost a few pennies
or less for clinical diagnostics to keep pace
with the evolving picture of human disease.
Our discussion highlights both the progress
and the challenges associated with integrat-
ing chemistry, biology, device fabrication, etc.,
into a seamless and highly parallel manufac-
turing process for enabling inexpensive bio-
logical measurements.

Antibody reagents constitute a severe
roadblock standing in the way of making
biological measurements inexpensive. Anti-
bodies are expensive and unstable, and they
don’t always have a high affinity or a high
selectivity for their cognate proteins. A de-
scription of alternative protein capture agents
(e.g., peptides, aptamers, biligands) is not pre-
sented here, but we would be remiss to ignore
this issue.

Protein Assays

A common diagnostic technique for mea-
suring proteins is the enzyme-linked im-
munosorbent assay (ELISA) (23). ELISA vari-
ations are often referred to as sandwich assays
(24)—the biomolecule to be detected is sand-
wiched between a surface- bound primary (1◦)
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antibody and a fluorophore-labeled secondary
(2◦) antibody. The binding event of the 2◦ an-
tibody is optically detected. ELISA assays are
typically carried out in multiwell plates, with
one type of protein detected per well. The well
is incubated first with the 1◦ antibody and then
with the sample and the 2◦ antibody. This pro-
tocol takes a few hours, but this long timescale
is not intrinsic (see below). With a 1◦ antibody
that has 10−9 M affinity, an ELISA assay can
detect proteins present in the few-picoM con-
centration range.

The limitations of ELISA are multifold.
First, ELISA is a single-protein detection
method (although extendable to multiple
wells). Second, the concentration range over
which a given biomolecule may be quanti-
tated is ∼102, limited by the minimal de-
tectable signal over background and the ten-
dency of fluorophores to photobleach. Third,
the need for two antibodies per biomolecule
is nontrivial. Significant work has gone into
improving sandwich assays (25–27). Improve-
ments have included the introduction of am-
plification using electroless Ag deposition on
Au nanoparticle-labeled 2◦ antibodies (28),
or using nanoparticle-loaded DNA or Raman
bio-barcodes (29). These nanotechnology-
based amplification strategies can (when
high-affinity antibodies are available) push
the detection threshold into the 100-attoM
(10−16 M) range. Such high sensitivity will al-
most certainly have diagnostic value.

Microfluidics Chips

Glass (30), elastomeric (31), or multilayer
integrated elastomeric (32, 33) microfluidics
platforms provide the framework for most of
the emerging technologies, and they enable
cost reductions both in the consumption of
reagents and, under certain conditions, in the
time required to perform an assay. The bind-
ing kinetics of microfluidics-entrained sur-
face immunoassays has been modeled (34, 35).
Zimmerman et al. found two kinetic limits.
Under low flow velocity, the surface-bound
antigen is able to exploit a large fraction of the

analyte, but with slow, diffusion-limited cap-
ture kinetics. Higher flow velocities (of order
1 mm·s−1) and small active areas (150 nm2)
provide a limit at which the immunoassay
binding kinetics reflects the analyte/antigen
kon and koff binding constants:

dθt

d t
= konC(θmax − θt) − koff θt, 1.

with a characteristic binding time, τ , can be
expressed as

τ ≈ (konC + koff )−1. 2.

Under the (common) conditions in which
konC � koff , τ ≈ 1/koff . Here, θ t is the sur-
face density of bound analyte at time t, θmax

is the maximum surface density of molecules
possible, and C is the target protein concen-
tration. Over fairly broad protein concen-
tration ranges (10−15–10−10 M), the time to
detection can be fast (minutes) for an ana-
lyte/antigen binding affinity in the nanomo-
lar range. Thus, the slow rate associated with
developing an ELISA immunoassay can be
improved through microfluidics design. This
potential time savings represents a key reduc-
tion in the cost of measurements.

Chips for Blood and Tissue Handling

Serum proteomics involves separating the
cells from the plasma using centrifugation,
followed by detection of proteins using mass
spectrometry, Western blot, or sandwich as-
says. Centrifugation requires significant han-
dling and sample volumes, and so is expensive.
Various methods for the on-chip separation of
biological materials have been advanced, in-
cluding dielectrophoresis (36), microfiltration
(37), acoustic forces (38), and lateral displace-
ment (39), to name a few. Yang et al. (40) re-
cently reported on a microfluidics design for
the separation of plasma from whole blood.
They took advantage of the Zweifach-Fung
effect, in which a microfluidic channel is split
into low-resistance and high-resistance chan-
nels. In an optimized design, the blood cells
pass into the channel that has the higher flow
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rate, with ∼20% of the plasma flowing into
the low-flow-rate channel. They reported a
plasma selectivity with respect to blood hema-
tocrit level of almost 100% regardless of the
inlet hematocrit. This technology is remark-
ably efficient, has no moving parts, is com-
posed only of plastic and glass, and can handle
very small amounts of blood.

The culturing and handling of tissue and
the sorting of cells are important procedures
for cancer research, drug screening, cancer
immunotherapy (41), and in vitro diagnos-
tics. On-chip techniques for cell culture (42)
and sorting are being developed by a number
of groups (43). Cell-sorting chips rely largely
on microfluidics variations of fluorescence-
activated cell sorting (FACS) (44, 45), dielec-
trophoresis (4), or the antibody array–based
technique of panning (47, 48). As of this writ-
ing, we have not identified chip-based auto-
mated tissue processors, such as would be nec-
essary to separate and sort specific cancer cells,
immune cells, etc., starting from a solid tumor.

A major challenge associated with these
blood/tissue-handling chips is to find methods
to integrate them with measurement assays.
Integration of disparate technologies is often
considered an applied engineering problem,
and is ignored in the academic labs where
many of the individual components are in-
vented. However, for the applications dis-
cussed herein, integration issues constitute
relatively uncharted science.

Label-Free Measurement
Techniques

Surface plasmon resonance (SPR) (49),
nanowire (50), nanotube (51, 52), and
nanocantilever (53, 54) biomolecular sensors
are all classified as label-free measurement
technologies, meaning that the binding of the
target biomolecule to its surface-bound cap-
ture agent is directly detected. Furthermore,
under flowing sample conditions, kon, koff ,
and/or analyte concentration (see Equations
1 and 2) can be directly measured (55, 56)
from the dynamic sensing response. SPR is a

commercial product that is rapidly being im-
proved (57),2 but the nanotechnologies have
distinct advantages. These include direct elec-
trical readout of the signal [which requires
piezoresistive nanocantilevers (59)], increased
sensitivity (60) and dynamic range, the abil-
ity to detect small molecule-binding events,
and a large degree of substrate independence
(61). Although nanowire and nanotube sen-
sors have demonstrated the ability to sense
single (62) or small panels (63) of cancer serum
biomarkers, they are limited for protein sens-
ing in biological media (e.g., an electrolyte)
by Debye screening (64). Nanocantilevers and
nanowire technologies are immature tech-
nologies and, despite promising demonstra-
tions, it is not clear if they will emerge as
useful cancer diagnostic tools. Nevertheless,
the impressive sensitivity, dynamic range, and
batch processability of these devices, coupled
with emerging and novel applications (59),
imply that they will become significant mea-
surement tools.

Tissue Analysis

Immunohistochemical staining and related
methods (65) represent in situ protein as-
says that are important for obtaining a molec-
ular diagnosis of cancer from resected tu-
mors. Emerging nanotechnology variants of
this method have included the use of semi-
conductor quantum dots as the antibody flu-
orescent labels (66) for the staining of breast
cancer tissues. The relevant advantages (67)
arise from the robust fluorescence properties
and the sharp and size-tunable emission spec-
tra of quantum dots, which permit increased
multiplexing.

Multiparameter Measurements

Cancer diagnostic platforms will ultimately
integrate multiplexed assays of cells, mRNAs,

2For example, Lumera sells an SPR product for evalu-
ating ∼103 protein-protein interactions simultaneously
(see http :/ /www.lumera.com/Bioscience/Products/
ProteomicProcessor.php).
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and proteins. However, different and incom-
patible surface chemistries are required for
different classes of biomolecules, and not
all are compatible with device fabrication.
Antibodies are immobilized onto aldehyde,
epoxy, maleimide, or hydrophobic solid sup-
ports (68–71). Variables such as pH, ionic
strength, hydration, etc., must be controlled
to prevent protein denaturation. The best sur-
face for reducing nonspecific binding of cells
while maintaining full antibody functionality
is acrylamide (72), which is incompatible with
DNA. DNA microarrays are electrostatically
absorbed (via spotting) onto amine surfaces.
One option for detecting DNA, proteins, and
cells on the same platform is to utilize dif-
ferentially functionalized surfaces (or beads,
such as are used by certain Illumina® sys-
tems for the codetection of DNA oligomers
and proteins). For microfluidics-based assays,
this adds significant manufacturing complex-
ity and cost. In addition, not all of the above-
described surface chemistries are stable to
the processing steps associated with microflu-
idics fabrication. A second alternative recently
demonstrated (48) is to utilize the technique
of DNA Encoded Antibody Libraries (DEAL)
for multiplexed gene and protein detection
and cell sorting. This provides one common
surface chemistry (spotted DNA arrays) that is
fully compatible with microfluidics manufac-
ture. Furthermore, an optimized DEAL assay
can be significantly faster and more sensitive
than conventional immunoassays; it can cover
a broader dynamic range; and it is far supe-
rior to panning as a multiplexed cell-sorting
technique.

EMERGING NANOPARTICLE
THERAPEUTICS

Informative diagnoses of the future will ex-
ploit new advances in nanotechnology in or-
der to provide in vitro molecular measure-
ments of pathophysiology from body fluids
such as blood. These advanced diagnostic
methods will provide information that will al-
low the design of new intervention strategies,

provided appropriate therapeutics are avail-
able. Nanotechnology is playing a role in pro-
viding new types of therapeutics for cancer.
These nanotherapeutics have the potential to
provide effective therapies with minimal side
effects. Most cancer patients die from drug-
resistant, metastatic disease. Thus, the ulti-
mate goal for cancer therapies would be the
ability to treat this stage as well as any of those
leading up to it. It is hoped that as diagnostic
methods improve, treament can be initiated at
earlier and earlier stages of disease progres-
sion. However, in the most general sense, it
would be advantageous to develop therapies
that could be employed at all stages of cancer
because of the enormous resources that are re-
quired to bring a new therapeutic to market.

Targeted nanoparticles have the potential
to provide therapies not achievable with any
other drug modalities. By tuning the size
and surface properties of the nanoparticle,
manipulation of the pharmacokinetics (PK)
from a systemic administration is achievable.
Nanoparticles should be larger than ∼10 nm
to avoid single-pass renal clearance and not be
positively charged to any great extent (mini-
mizing nonspecific interactions with proteins
and cells) in order to allow these PK manipu-
lations. The particles can be tuned to provide
long or short circulation times, and with
careful control of size and surface properties,
they can be directed to specific cell types
within target organs (e.g., hepatocytes versus
Kupffer cells in the liver). Other types of ther-
apeutics, such as molecular conjugates (e.g.,
antibody-drug conjugates), can also meet
these minimum specifications, but targeted
nanoparticles are distinguished from all other
therapeutic entities by at least four features:

1. The nanoparticle can carry a very
large “payload.” For example, a 70-nm
nanoparticle can contain ∼2000 siRNA
drug molecules (73) whereas antibody
conjugates have <10 (74). The nanopar-
ticle payloads are located within the par-
ticle and do not participate in the con-
trol over PK and biodistribution. In
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Table 1 Nano-scaled systems for systemic therapy

Platform
Latest stage of
development Examples

liposomes FDA approved DaunoXome, Doxil®

albumin-based particles FDA approved Abraxane
nanocrystals FDA approved Rapamune (oral), Emend (oral)
polymeric micelles clinical trials Genexol-PM, SP1049C, NK911, NK012
polymer-based particles clinical trials XYOTAX, IT-101, CT-2106, AP5346
dendrimers preclinical polyamidoamine (PAMAM)
inorganic or other solid particles preclinical carbon nanotubes, silica particles, gold

particles

molecular conjugates, by contrast, the
type and number of therapeutic enti-
ties conjugated to the targeting ligand
(e.g., an antibody) significantly modify
the overall properties of the conjugate.

2. Nanoparticles are sufficiently large to
contain multiple targeting ligands that
can provide multivalent binding to cell
surface receptors (75). Nanoparticles
have two parameters for tuning the
binding to target cells: (a) the affinity
of the targeting moiety and (b) the den-
sities of the targeting moiety. The mul-
tivalency effects can lead to very high
“effective” affinities when arrangements
of low-affinity ligands are used (75–77).
Thus, the repertoire of molecules that
can be used as targeting agents is greatly
expanded, since many low-affinity lig-
ands can be installed on nanoparticles
to create higher affinity via multivalent
binding to cell surface receptors.

3. Nanoparticles are sufficiently large to
accommodate multiple types of drug
molecules. Numerous therapeutic in-
terventions can be simultaneously ap-
plied with a nanoparticle in a controlled
manner.

4. Nanoparticles bypass multidrug resis-
tance mechanisms that involve cell sur-
face protein pumps, e.g., glycoprotein P,
because they enter cells via endocytosis.

These properties provide the opportunity to
create therapeutic strategies not possible with
non-nanoparticle drugs. A controlled combi-

nation of these features can minimize side ef-
fects while enhancing drug efficacy, and offers
the potential to treat drug-resistant disease if
the resistance is from cell surface pumps. Clin-
ical results are emerging that suggest nanopar-
ticle therapeutics will lead to new methods of
treatment for cancer.

Therapeutics that are now classified as
nanoparticles have existed for some time.
Table 1 lists nano-scaled systems for systemic
therapy and their latest stage of development.
Liposomes carrying chemotherapeutic small-
molecule drugs have been approved since the
mid-1990s. Liposomes (∼100 nm and larger)
can give extended circulation times if they
are stabilized (see Doxil® in Table 2) but
do not provide intracellular delivery of drug
molecules (78). Thus, they are not effective
against disease that is resistant to cell surface
pumps. Additionally, they provide no con-
trol for the time of drug release. Their use
is mainly in solubilizing drugs and extend-
ing circulation times to favor higher tumor
uptake of drugs. Albumin-based nanoparti-
cles were approved by the US Food and
Drug Administration in 2005 (79), but are
not nanoparticle therapeutics, in that they dis-
solve upon administration into the circula-
tory system (note PK parameters for Abrax-
ane versus Taxol® in Table 2). Nanocrystals
of drug molecules are also approved for oral
administration; however, these nanoparticles
never reach the bloodstream. These first ap-
proved nanoparticle formulations prove that
nanoparticle-based therapeutics can safely be
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Table 2 Comparison of pharmacokinetics (human) of small-molecule drugs to nanoparticle therapeutics

Name Formulationa Diameter (nm) t1/2 (h) CL (ml/min·kg) Reference

DOX 0.9% NaCl — 0.8 14.4 80
SP1049C pluronic micelle/DOX 22–27 2.4 12.6 80
NK911 PEG-Asp micelle/DOX 40 2.8 6.7 80
Doxil® PEG-liposome/DOX 80–90 84.0 0.02 80
Taxol® Cremophor® EL — 21.8 (20.5) 3.9 (9.2) 79, 80
Genexol PEG-PLA micelle/paclitaxel 20–50 11.0 4.8 80
Abraxane albumin/paclitaxel 120b 21.6 6.5 79
XYOTAX PG/paclitaxel ? 70–120 0.07–0.12 82
LE-SN38 liposome/SN-38 ? 7–58 3.5–13.6 83
CT-2106 PG/CPT ? 65–99 0.44 84
IT-101 CD polymer/CPT 30–40 38 0.03 85

aAbbreviations: DOX, doxorubucin; PEG-PLA, block copolymer of polyethylene glycol-poly(L-lactic acid); PG, polyglutamic acid; CPT,
camptothecin; CD polymer, cyclodextrin-containing polymer.
bDissolves upon exposure to blood.

administered to patients and can enhance the
safety and efficacy of other drug molecules.
However, newer nanoparticle systems have
great advantages over these early nanoparti-
cle products.

Table 2 compares some nanoparticle-
based therapeutics to the drug molecules
that they are carrying. The types of par-
ticles include liposomes, polymer micelles,
and polymer-based nanoparticles. For each
case, e.g., DOX versus SP1049C, NK911 and
Doxil®, the nanoparticle alters the PK prop-
erties of the drug molecule. The listed circu-
lation half-lives are difficult to compare be-
cause different models are used for their de-
termination. Clearance rate (the volume of
blood/plasma cleared of the drug per time;
lower clearance rates indicate higher circu-
lation times) is a common and available PK
parameter, and it is a better indicator of
circulation differences among these thera-
peutics. Dramatically reduced clearance rates
have been obtained with nanoparticles, e.g.,
Doxil®, XYOTAX, CT-2106, and IT-101.
These nanoparticles can provide longer circu-
lation times that allow them to adequately in-
terrogate the body for the presence of tumors
if in fact they extravasate into tumors. Small
particles like polymeric micelles (<100 nm)
have been shown to accumulate more readily

in tumors than the larger liposomes (80). Ad-
ditionally, movement of a particle throughout
a tumor is also size-dependent. It is speculated
that nanoparticles between 10 and 100 nm in
diameter will be optimal for tumor penetra-
tion. Therefore, careful control of size will be
important to the PK, biodistribution, tumor
accumulation, and tumor penetration. Some
of the nanoparticles that are now in clinical
testing also have mechanisms to control the
release of the drug. These mechanisms rely
on cleavage of a chemical bond between the
particle and the drug by (a) hydrolysis, (b) en-
zymes that are located within and outside of
cells (e.g., esterases), or (c) enzymes that are lo-
cated only within cells (e.g., cathepsin B). This
feature is designed into the structures of poly-
mer micelle-based (NK911 and NK012) and
polymer-based (XYOTAX, CT-2106, and IT-
101) nanoparticles. Finally, some of the newer
nanoparticles (e.g., IT-101) enter tumor cells
and are thus effective against tumors that are
resistant to the drug via surface pump mech-
anisms. Results from clinical trials with the
newer nanoparticle-based experimental ther-
apeutics are confirming that common side ef-
fects of the drug molecules used can be al-
tered or reduced. Vastly improved side-effect
profiles are emerging from these nanoparticle
treatments.
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Table 3 Ligand-targeted therapeutic agents

Name Targeting agent Therapeutic agent Status Reference
Mylotarg (antibody-drug) humanized antibody

anti-CD33
calicheamicin FDA approved 86

Ontak (fusion protein) IL-2 diphtheria toxin
fragment

FDA approved 87

Zevalin
(radioimmunotherapy)

mouse antibody anti-CD20 90Y FDA approved 88

Bexxar (radioimmunotherapy) mouse antibody anti-CD20 131I FDA approved 88
PK-2 (polymer-drug) galactose DOX Phase I

(stopped)
89

MBP-426 (liposome-drug) transferrin oxaliplatin Phase I 90
SGT-53 liposome-plasmid
DNA

antibody fragment to transferrin
receptor

plasmid DNA with p53
gene

Phase I 91

CALAA-01 (polymer-siRNA) transferrin siRNA Phase I (planned
for 2007)

81

The nanoparticles listed in Table 2 reach
tumors by passive targeting, meaning they ac-
cumulate in tumors because the leaky vascu-
lature of tumors allows the nanoparticles to
extravasate while normal vasculature does not
(this property partially accounts for the differ-
ence in biodistribution between nanoparticles
and drug molecules). Active targeting via the
inclusion of a targeting ligand on the nanopar-
ticles is envisioned to provide the most effec-
tive therapy. Table 3 lists the very few ligand-
targeted therapeutics that are either approved
or in the clinic. PK-2 can be considered the
first ligand-targeted nanoparticle to reach the
clinic. The galactose ligand was used to tar-
get the asialoglycoprotein receptor (ASGPR)
that is expressed on hepatocytes in hopes that
it was still highly expressed on primary liver
cancer cells. However, because the ASGPR
is expressed on healthy hepatocytes, the tar-
geted nanoparticles accumulated in normal
liver as well as in the tumor. As of mid-2007,
MBP-426 and SGT-53 are the only targeted
nanoparticle in the clinic. Clinical trials of
CALAA-01 are planned to begin in late 2007.
All three of these nanoparticles (liposomal de-
livery of a small-molecule chemotherapeutic,
liposomal delivery of plasmid DNA, and poly-
mer delivery of siRNA) use the human pro-
tein transferrin to target the transferrin re-
ceptors on cancer cells. Transferrin receptor

is known to be upregulated in many types of
cancer. A targeted nanoparticle can be very
multifunctional [e.g., CALAA-01 is a targeted
nanoparticle that has high drug (siRNA) pay-
load per targeting ligand, proven multivalent
binding to cancer cell surfaces, and an active
drug (siRNA) release mechanism that is trig-
gered upon intracellular localization (73, 81)],
and it is expected that these new nanoparticles
should perform in superior ways to the older,
less functional nanoparticles.

Increasingly sophisticated nanoparticles
are reaching the clinic, with trial results al-
ready inspiring enthusiasm for this type of
therapeutic modality. This is only the begin-
ning. The nanoparticle provides the ability to
design and tune properties in ways not pos-
sible with other types of therapeutics. Thus,
as more clinical data become available, the
nanoparticle approach will become better and
better as the optimal properties will be eluci-
dated from previous experiences in humans.
The better side-effect profiles enabled by the
newer nanoparticles are already improving
the quality of life for patients, and there is
hope for even more improvement in the fu-
ture. It is not unreasonable to predict the de-
sign of nanoparticle therapeutics sufficiently
nontoxic for prophylactic use. Such nanother-
apeutics would provide a powerful companion
to very early in vitro diagnostic detection.
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