(H) The very good agreement of the mass value of the μ meson obtained with the assumption of the range energy relation gives strong indication that the assumed relation is good for mesons to this order of accuracy.

(I) From our present data we are not able to exclude the possibility of the spin values of $\frac{3}{2}$ for the μ meson.

We have been informed of the values $\rho=0.6, 0.5, and ~0$, obtained in the recent measurements (each with a different method) at Columbia, Massachusetts Institute of Technology, and Los Alamos. The discrepancies of the ρ values are quite serious, during the last five months we have made a close examination of the possible systematic errors that we might have overlooked. Our present analysis of our data cannot account for this serious difference in ρ value.

We would like to acknowledge the interest, and particularly the effort in obtaining the funds for the construction of the 40-inch spiral-orbit spectrometer, of Professor E. O. Lawrence and Dr. Walter Barkas.

* This work was performed under the auspices of the U. S. Atomic Energy Commission.

1 Sagane, Gardiner, and Hubbard, Phys. Rev. 82, 557 (1951).
4 Smith, Birnbaum, and Barkas, Phys. Rev. 91, 765 (1953).
5 L. M. Lederman and C. F. Sargent (private communication).
7 Harrison, Cowan, and Reines, Nucleonics 12, No. 3, 44 (1954).

Gamma Transitions in W$^{182+}$

F. Boehm, F. Marmier, and J. W. M. DuMond

California Institute of Technology, Pasadena, California

(Rceived June 14, 1954)

A RATHER complicated γ-ray spectrum follows the β^- decay of Ta180. Sixteen transitions have been previously measured here with the curved crystal spectrometer. Recent coincidence work by Mihelich showed the relation between some high-energy lines and the first excited state of W180. Using the precision axial focusing β spectrometer and the curved crystal spectrometer, a new investigation of the decay has been made. The Ta180 sources were produced by irradiation of metallic Ta in the Material Testing Reactor (MTR, Arco, Idaho). The β-spectrometer sources were prepared by evaporation of the radioactive Ta (100 μg/cm2) on mica. Most of the lines were studied with a momentum resolution of 2.5×10^{-4}. The L_3, L_{11}, and L_{13} conversion lines were resolved for all transitions below 264 kev. Their intensity ratios, together with the absolute conversion probabilities determined from β and γ-spectrometer data allows, in many cases, a unique determination of the γ-ray transition.

Table I. γ Transitions in W180

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Intensity</th>
<th>γ Ray</th>
<th>Total</th>
<th>α_1</th>
<th>α_2</th>
<th>α_3</th>
<th>α_4</th>
<th>Multi-polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.300±0.010</td>
<td>Weak</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>(E1)</td>
</tr>
<tr>
<td>43.710±0.010</td>
<td>Weak</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>(E1)</td>
</tr>
<tr>
<td>65.714±0.010</td>
<td>9</td>
<td>40</td>
<td>...</td>
<td>2.5</td>
<td>0.4</td>
<td>0.23</td>
<td>...</td>
<td>(M1+M2)</td>
</tr>
<tr>
<td>67.738±0.010</td>
<td>100</td>
<td>131</td>
<td>...</td>
<td>0.17</td>
<td>0.07</td>
<td>0.07</td>
<td>...</td>
<td>(E1)</td>
</tr>
<tr>
<td>84.607±0.010</td>
<td>6</td>
<td>53</td>
<td>...</td>
<td>1.35</td>
<td>0.6</td>
<td>0.5</td>
<td>...</td>
<td>(M1+M2)</td>
</tr>
<tr>
<td>100.692±0.012</td>
<td>46</td>
<td>247</td>
<td>1.5</td>
<td>0.13</td>
<td>1.4</td>
<td>1.35</td>
<td>...</td>
<td>(E2)</td>
</tr>
<tr>
<td>113.665±0.014</td>
<td>9</td>
<td>29</td>
<td>1.75</td>
<td>0.38</td>
<td>0.07</td>
<td>...</td>
<td>...</td>
<td>(M1)</td>
</tr>
<tr>
<td>115.036±0.014</td>
<td>2</td>
<td>(2)</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>152.498±0.023</td>
<td>43</td>
<td>46</td>
<td>0.07</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>(E1)</td>
</tr>
<tr>
<td>156.360±0.024</td>
<td>14 (5)</td>
<td>Small</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>(E1)</td>
</tr>
<tr>
<td>172.360±0.009</td>
<td>19</td>
<td>31</td>
<td>0.41</td>
<td>0.17</td>
<td>0.05</td>
<td>...</td>
<td>...</td>
<td>(M1+M2)</td>
</tr>
<tr>
<td>194.360±0.006</td>
<td>9</td>
<td>13</td>
<td>0.24</td>
<td>0.11</td>
<td>0.07</td>
<td>...</td>
<td>...</td>
<td>(E2)</td>
</tr>
<tr>
<td>220.051±0.044</td>
<td>45</td>
<td>45</td>
<td>0.06</td>
<td>0.04</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>(E1)</td>
</tr>
<tr>
<td>220.260±0.046</td>
<td>24</td>
<td>29</td>
<td>0.18</td>
<td>0.05</td>
<td>0.03</td>
<td>...</td>
<td>...</td>
<td>(E2)</td>
</tr>
<tr>
<td>234.080±0.000</td>
<td>27</td>
<td>23</td>
<td>0.11</td>
<td>0.04</td>
<td>0.02</td>
<td>...</td>
<td>...</td>
<td>(E2)</td>
</tr>
<tr>
<td>927</td>
<td>...</td>
<td>2</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>(E3)</td>
</tr>
<tr>
<td>960</td>
<td>...</td>
<td>2</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>(E3)</td>
</tr>
<tr>
<td>1003</td>
<td>...</td>
<td>10</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>(E3)</td>
</tr>
<tr>
<td>1122</td>
<td>...</td>
<td>120</td>
<td>0.005</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>(E3)</td>
</tr>
<tr>
<td>1215</td>
<td>...</td>
<td>18</td>
<td>8</td>
<td>0.004</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>(M2)</td>
</tr>
<tr>
<td>1300</td>
<td>...</td>
<td>30</td>
<td>0.006</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>(E3+M2)</td>
</tr>
<tr>
<td>1250</td>
<td>...</td>
<td>110</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>(E3+M2)</td>
</tr>
<tr>
<td>1280</td>
<td>...</td>
<td>(25)</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>(E3+M2)</td>
</tr>
<tr>
<td>1375</td>
<td>...</td>
<td>(1)</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>(E3)</td>
</tr>
<tr>
<td>1437</td>
<td>...</td>
<td>(1)</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>(E3+M2)</td>
</tr>
<tr>
<td>1454</td>
<td>...</td>
<td>(1)</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>(E3+M2)</td>
</tr>
</tbody>
</table>

Fig. 1. Proposed energy level scheme for W184. Data in parentheses () are uncertain.
multipolarity assignment.† Table I gives a summary of the results.

The β^- spectra cannot be measured accurately because of the large number of internal conversion lines at low energy. The end point of the most energetic group ($log f^s=8$) is at 510±5 kev. We have evidence for at least two more spectra of lower energies ($log f^s=6$–7).

Figure 1 contains the proposed decay scheme. The spin and parity assignment for the higher set of levels is not certain due to the inaccuracy of the multipolarity determination for the high-energy transitions. It is interesting to note that the energy values for the first and second levels are in very good agreement with the predictions of the Bohr-Mottelson theory.‡ We wish to thank Professor R. Christy and Professor R. Feynman for many helpful discussions. We are also indebted to Dr. J. J. Murray and Mr. P. Snelgrove for their help during the measurements.

† During the preparation of the manuscript, a paper on the same subject by C. M. Fowler et al., appeared in Phys. Rev. 94, 1082 (1954), showing close agreement with the present results.

‡ Assisted by contracts with the U. S. Atomic Energy Commission and the Office of Ordnance Research.

¶ Muller, Hoyt, Klein, and DuMond, Phys. Rev. 88, 775 (1952).

‡‡ We are indebted to the Phillips Petroleum Company, and particularly Dr. W. B. Lewis, for their cooperation.

Two-Body Forces and Nuclear Stability

DAVID H. FRIEDICH

Department of Physics and Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received June 14, 1954)

RECENT experiments indicate that “nuclear radii” may be as small as $R=1.14^{10-13}$ cm. We wish to reexamine whether linear superposition of the central two-body forces observed in p-p and n-p scattering can alone give negative potential energies of sufficient magnitude to account for the observed nuclear binding energy, and at the same time give stability at these small radii.

Rough estimates have previously been made on the uniform model by using a Wigner-Seitz calculation of the average space-symmetric and space-antisymmetric interaction integrals in a Fermi gas. The nucleus was taken to be a finite sphere of nucleons with simple Yukawa potential, $eV(e^{-2a}/r)$, between each pair, where e is the exchange operator, $V=45.6$ Mev, and $a=1.185\times10^{-13}$ cm. Such a calculation, ascribing the correlation effects solely to the exclusion principle and not at all to the forces between nucleons, may underestimate appreciably the magnitude of the potential energy, and the estimate of the kinetic energy may well be off in either direction.

The results of this calculation for two different radii are given in Table I. The exchange dependences in column 1 include a calculation for S-wave forces only. This was suggested by the remote possibility that higher partial wave interactions observed in two-body scattering experiments might cancel out inside large nuclei, if such interactions originate from a polarizability of the nucleons. This is, then, a particularly simple many-body force derivable from observed two-body forces.

In column 2 the larger value of r_0/a corresponds to $r_0=1.54\times10^{-13}$ cm, and the smaller to $r_0=1.04\times10^{-13}$ cm. Column 3 gives the potential energy per particle required to give the observed binding energy (arbitrarily taken at the same energy as the observed radius), based on computed kinetic and Coulomb energies: $V=E-K-C$. Column 4 gives the potential energy per particle computed from the superposition of two-body interactions, assuming the various exchange dependences of column 1 and radii of column 2. If the correct model is used, columns 3 and 4 should be equal.

Similarly, stability at r_0 should be expressed by the equality of the logarithmic derivative of potential energy with respect to the radius computed in columns 5, 6, and 7. The values in column 6 are larger than in column 5 because the computed potential is less than that required, so column 5 is probably a better measure of what the values of column 7 should be for stability.

It is seen that near the observed radius the S-wave interaction gives more potential than the symmetric interaction in column 4 (26 vs 16 Mev, where 37 Mev is required), but is not exactly at the stable radius as is the symmetric interaction (1.9 vs 1.5, where 1.5 is required). Both the Majorana and Serber forces are clearly no better at the small radius than they were at the larger radius, one giving too little attraction and the other giving no stability. But the improvement in both the S wave and the symmetric interactions indicates a possibility that two-body forces, or simply

Table I. Calculated potential energies for various interactions.

<table>
<thead>
<tr>
<th>Energy (Mev)</th>
<th>Potential Energy (Mev)</th>
<th>S Wave only</th>
<th>$V = E - K - C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.23</td>
<td>0.88</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>1.23</td>
<td>0.88</td>
<td>2.1</td>
<td>1.9</td>
</tr>
</tbody>
</table>