Classical Mechanics of Rotational–Translational and Other Energy Transfer. I. A Hamilton–Jacobi (Action-Angle) Treatment

AUDREY O. COHEN† and R. A. MARCUS

Noyes Chemical Laboratory, University of Illinois, Urbana, Illinois 61801

(Received 22 July 1968)

The classical-mechanical equations of motion describing collisional energy transfer are converted to a form involving constants of the elastic collision, using a Hamilton–Jacobi formalism. These constants frequently vary only slowly during an inelastic collision. An approximate version of the transformed equations, related to a variation of constants procedure, is next introduced. The collision of an atom with a rigid linear diatomic molecule is considered in some detail. Several desirable features of the approximation are that the change in rotational angular momentum is obtained directly, all initial orientations of particles and angular momenta occur outside the integrals, an approximate error estimate can be made, results can be calculated relatively quickly, and further insight is obtained into the energy-transfer process. Because of the close relationship of Hamilton–Jacobi and Schrödinger formalisms, a comparison of exact and approximate classical results is also expected to provide estimates of range of validity of some commonly used approximations in the quantum case.

INTRODUCTION

Recently, classical-mechanical rotational energy transfer has been used to develop several approximate expressions for rotational relaxation times and to calculate cross sections related to spectral band contours and relaxation times: The rotational relaxation problem was treated in two dimensions using approximate1,2 and exact (numerical)3 integration of the equations of motion. Further, classical cross sections in three dimensions have been introduced into an extension4 of an impact theory5 for relaxation times for microwave, infrared, Raman, and nuclear spin spectra. They have also been introduced in autocorrelation function expressions for fluorescence depolarization, pressure, and frequency dependence of nonresonant microwave absorption, and sound absorption.6

These relaxation times and cross sections for rotational energy transfer are obtained by averaging quantities such as the square of the change in rotational energy4 or the transition probability4,6 over the appropriate phase space. Normally, the averaging process necessitates either major approximations1,2,3 or many integrations of the exact, classical equations of motion.5,4,6 Two very interesting approximations have been proposed to reduce the number of coupled differ-

tial equations involved for a classical inelastic collision,8 and an approximate solution has been derived for large impact parameters.9

The present paper makes use of techniques which have been employed to advantage in celestial mechanics.10 In particular, we first solve1 the Hamilton–Jacobi equation for the elastic collision. The latter yields a contact transformation which converts the equations of motion for the perturbed problem (i.e., the inelastic problem) to a more convenient form. The convenience arises because the constants of the motion for an elastic collision become, frequently, only slowly varying functions of time for an inelastic collision. As in celestial mechanics the resulting equations can be used for numerical or more approximate solution. A Hamilton–Jacobi formalism has also been used by one of us to treat reactive collisions.11

An approximate solution of the resulting exact equations is next given. It has a number of desirable features: (1) Δf, the change in rotational angular momentum, is obtained directly, (2) all initial angular orientations of the particles and their angular momenta occur outside the integrals, (3) an approximate error estimate can be made, (4) results can be calculated relatively quickly, and (5) further insight is obtained into the process of rotational energy transfer. This approximate solution works best for collisions involving closely spaced rotational energy levels12 and moderately anistotropic potential-energy functions.

For ease of presentation, we first describe the applica-
tion of the method to the rotational–translational energy transfer problem in three dimensions for an atom colliding with a rigid linear molecule and then indicate the appropriate modifications for treating more complex problems involving rotational–vibrational–translational energy transfers in polyatomic systems. Because of the close relation of Hamilton–Jacobi and Schrödinger formalisms, a comparison of approximate with exact classical results is expected to provide some estimate of the range of validity of some commonly used approximations in the quantum case, a matter considered further in a later paper.

COLLISION OF AN ATOM WITH A RIGID ROTOR

The Hamiltonian for the collision of an atom and a rigid linear molecule is described by the familiar Hamiltonian

\[H = (2\mu)^{-1} \left[p_{\theta}^2 + \frac{1}{R^2} \left(\rho_0^2 + \frac{\rho_0^2}{\sin^2 \theta} \right) \right] + \frac{1}{2\mu R^2} \left(\rho_0^2 + \frac{\rho_0^2}{\sin^2 \theta} \right) + V(R, \gamma). \] (1)

Here, \(R, \Theta, \) and \(\Phi \) are the spherical polar coordinates of the vector \(\mathbf{R} \) from the center of mass of the atom to the center of mass of the molecule. \(\gamma \) is the angle describing the orientation of the molecule relative to \(\mathbf{R} \). \(p_{\theta}, \rho_0, \) and \(\rho_0 \) are conjugate to \(R, \Theta, \) and \(\Phi \), respectively, and \(\rho_0 \) and \(\rho_0 \) are the spherical polar coordinates of the axis of the rotor, while \(\rho_0 \) and \(\rho_0 \) are the momenta conjugate to \(\theta \) and \(\phi \). \(\mu_0 \) is the reduced mass of the linear molecule, and \(\mu \) is the reduced mass for the atom–molecule collision.

The Hamiltonian (9) can be written as

\[H = H_0 + V_p, \] (2)

where \(H_0 \) is \(H \) with \(V(R, \gamma) \) replaced by its spherically averaged value \(V_0 \),

\[V_0(R) = \frac{1}{2} \int_0^\gamma V(R, \gamma) \sin \gamma d\gamma, \] (3)

and \(V_p \) is the asymmetric contribution to \(V(R, \gamma) \),

\[V_p(R, \gamma) = V(R, \gamma) - V_0(R). \] (4)

The Hamilton–Jacobi equation for the elastic collision is obtained by replacing each \(p_i \) in \(H_0 \) by \(\partial W(\alpha_i, q^i) / \partial q^i \), where \(W(\alpha_i, q^i) \) is the unknown generating function and the \(\alpha_i \) are constants of the motion for an elastic collision, and then setting \(H_0 \) equal to \(E \), the total energy. Solution of this equation by separation of variables introduces separation constants \(l, m_i, j, \) and \(m \) and yields\(^{11,16} \) Eq. (5) for \(W \)

\[W(q^i; \alpha_i) = W_I(\Theta, \Phi, \theta, \phi; l, m_i, j, m) + W_R, \] (5)

where

\[W_I = m_i \Phi + m_i \phi + \int \left(p^2 - m_i \csc^2 \Theta \right)^{1/2} d\theta \]

\[+ \int \left(j^2 - m_j \csc^2 \Theta \right)^{1/2} d\phi \] (6)

and

\[W_R = \left[2 \mu \left(E - \frac{p^2}{2\mu R^2} + \frac{j^2}{2\mu r^2} - V_0 \right) \right]^{1/2} dR. \] (7)

A second useful generating function is obtained by replacing \(W_R \) by the one\(^{18} \) for an identity transformation, yielding

\[W = W_I + \tilde{p}_R R, \] (8)

where \(\tilde{p}_R \) is the new momentum conjugate to \(R \).

In either case \(W \) is \(W(P_i, q^i) \), where the \(P_i \) are the new momenta. One has\(^{19} \)

\[P_i = \partial W(P_i, q^i)/\partial q^i, \] (9)

\[Q^i = \partial W(P_i, q^i)/\partial P_i, \] (10)

where the \(Q^i \) are the new coordinates conjugate to \(P_i \). When the \((q^i, p_i) \) in \(H \) are expressed in terms of the \((Q^i, P_i) \) using these equations, the new equations of motion become\(^{20} \)

\[\dot{Q}^i = \partial H(P_i, Q^i)/\partial P_i, \] (11)

\[\dot{P}_i = -\partial H(P_i, Q^i)/\partial Q^i. \] (12)

From (9) one finds

\[p_0 = (p - m_0^2 \csc^2 \Theta)^{1/2}, \quad p_0 = m_t \] (13a)

\[p_0 = (j^2 - m_j^2 \csc^2 \Theta)^{1/2}, \quad p_0 = m_j. \] (13b)

From (1) and (13), \(l, m_i, j, m \) are found to be the orbital angular momentum, its \(z \) component, the

\(^{11} \) Minor notational changes from Ref. 11 include interchange of \(R, \Theta, \Phi \) and \(r, \theta, \phi \) and change of all \(\rho_0 \) to \(\mu_0 \). The present Eq. (5) is the same as Eq. (A-7) of the thesis and the present Eq. (29) is the same as that employed elsewhere in the thesis, as use of (31) shows.

\(^{18} \) The square root can either be positive or negative, and the customary procedure of letting it mean either is employed at this point.

\(^{20} \) Reference 18, p. 241, Eq. (8-11). Our \(W \) does not depend explicitly on time, so the \(\partial P_i / \partial t \) there vanishes.

\(^{21} \) Reference 18, p. 239, Eq. (8-5).
rotational angular momentum of the molecule and its axis component, respectively.

The new momenta \(P_i \) are \(l, m_i, j, m_j \) and, when (8) is used, \(p_R \). The coordinates \(Q^i \) conjugate to the latter are denoted below by \(\Psi, \beta_{m_i}, \psi, \beta_{m_j}, \) and \(R \), respectively. From (9) and (10) one then finds

\[
\dot{R} = \frac{\partial W}{\partial \tilde{p}_R} = R, \quad (14)
\]

\[
\Psi = \frac{\partial W}{\partial l} = -\sin^{-1}[\csc i \cos \Theta], \quad (15)
\]

\[
\beta_{m_i} = \frac{\partial W}{\partial m_i} = \Phi - \sin^{-1}[\cot i \cos \Theta], \quad (16)
\]

\[
\psi = \frac{\partial W}{\partial j} = -\sin^{-1}[\csc i \cos \Theta], \quad (17)
\]

\[
\beta_{m_j} = \frac{\partial W}{\partial m_j} = \Phi - \sin^{-1}[\cot i \cos \Theta], \quad (18)
\]

where \(i \) is the angle between \(l \) and the \(z \) axis, and \(j \) is the angle between \(j \) and the \(z \) axis.

\[
\sin i = [1 - (m_i/l)^2]^{1/2}, \quad \sin j = [1 - (m_j/l)^2]^{1/2}. \quad (19)
\]

Henceforth, the bar is omitted from the \(\bar{p}_R \) and \(\bar{R} \). Apart from a factor of 2\(\pi \), the new variables \(j, m_j, l, m_j \) are actions, and the conjugate coordinates \(\Psi, \beta_{m_i}, \psi, \beta_{m_j} \) are angles. Similar remarks apply to \(j, k, \) and \(m \) in (37) and to \(P_e \) in (39).

One finds from (15) that \(\Psi \) is the angular position of \(R \) in the plane perpendicular to \(l \), measured from the line of nodes (Fig. 1). Similarly, from (17), \(\psi \) is the angular position of \(r \) in the plane perpendicular to \(j \), measured from the line of nodes. One also finds from (16) that \(\beta_{m_i} + \pi/2 \) is the azimuthal polar coordinate of \(l \) (Fig. 1), and from (18) \(\beta_{m_j} + \pi/2 \) is the azimuthal polar coordinate of \(j \).

In terms of the \(Q^i \) and \(P_i \), \(H \) becomes

\[
H = (p_R^2/2\mu) + V(R, \gamma) + (P/2\mu R^2) + (j^2/2\mu r^2), \quad (20)
\]

where

\[
\cos \gamma = \cos \Theta \cos \theta + \sin \Theta \sin \theta \cos (\phi - \Phi) \quad (21)
\]

and the angles \(\Theta, \theta, \Phi, \) and \(\phi \) are expressed in terms of the \(Q^i \) and \(P_i \), using relations readily derived from (15) to (19):

\[
\cos \Theta = -[1 - (m_i/l)^2]^{1/2} \sin \Psi, \quad \sin \Theta \cos \Phi = -(m_i/l) \sin \Psi \sin \beta_{m_i} + \cos \Psi \cos \beta_{m_i},
\]

\[
\sin \Theta \sin \Phi = (m_i/l) \sin \Psi \cos \beta_{m_i} + \cos \Psi \sin \beta_{m_i}, \quad (22)
\]

\[
\cos \theta = -[1 - (m_j/l)^2]^{1/2} \sin \psi, \quad \sin \theta \cos \phi = -(m_j/l) \sin \psi \sin \beta_{m_j} + \cos \phi \cos \beta_{m_j},
\]

\[
\sin \theta \sin \phi = (m_j/l) \sin \psi \cos \beta_{m_j} + \cos \phi \sin \beta_{m_j}. \quad (23)
\]

Equations (11) and (12) provide the new exact equations of motion:

\[
\dot{R} = p_R \quad (24)
\]

\[
\dot{p}_R = (P/\mu R^2) - \frac{\partial V}{\partial R} \quad (26)
\]

\[
l = -\frac{\partial V}{\partial \Psi} \quad (25)
\]

\[
\dot{m}_i = -\frac{\partial V}{\partial \beta_{m_i}} \quad (27)
\]

\[
\dot{j} = -\frac{\partial V}{\partial \psi} \quad (28)
\]

\[
\dot{m}_j = -\frac{\partial V}{\partial \beta_{m_j}} \quad (29)
\]

\[
\dot{\beta}_{m_i} = -\frac{\partial V}{\partial \beta_{m_i}} \quad (30)
\]

\[
\dot{\beta}_{m_j} = -\frac{\partial V}{\partial \beta_{m_j}} \quad (31)
\]

\[
\dot{\psi} = (j/\mu r^2) + \frac{\partial V}{\partial \psi}. \quad (32)
\]

These equations contain the variables \(R, p_R, l, \cdots, \beta_{m_i}, \psi \). For some purposes, error estimates for example, it is more convenient for the new coordinates to contain \(\Theta, \Phi, R \) and the new momenta to contain \(j, m_j, \) and \(\beta_{m_j} \), or for them to contain \(\theta, \phi, R \) and \(l, m_i, \beta_{m_i} \), respectively. Such new sets of variables are immediately introduced by replacing the canonical transformation (8) by (27) or (28), respectively,

\[
W = m_i \phi + \int \left(j^2 - m_i^2 \csc^2 \theta \right)^{1/2} d\theta + \dot{P}_\theta + \dot{P}_\Phi + \dot{P}_R R \quad (27)
\]

\[
W = m_j \psi + \int \left(j^2 - m_j^2 \csc^2 \phi \right)^{1/2} d\phi + \dot{P}_\phi + \dot{P}_\psi + \dot{P}_R (R). \quad (28)
\]

The new variables and equations of motion are given in the Appendix. The latter are (24), (26), and (A1) in the first case and (24), (25), and (A2) in the second.

An approximate solution of the equations of motion is obtained by replacing the \(Q^i \) and \(P_i \) by their elastic collision values \(Q^i, P_i \) in the right-hand sides of these equations. Thereby, for \(P_e = l, m_i, j, m_j \) and \(Q^i = \beta_{m_i} \) and \(\beta_{m_j} \) we have, regardless of whether \(W \) is chosen to
be (8), (27), or (28),
\[
\Delta P \cong - \int_{-\infty}^{\infty} \frac{\partial V_p}{\partial Q^i} \frac{\partial Q^j}{\partial t} dt
\]
\[
\Delta Q^i = \int_{-\infty}^{\infty} \frac{\partial V_p}{\partial Q^i} \frac{\partial Q^j}{\partial P^j} dt. \tag{29}
\]

An estimate of the error in (29) is obtained by expanding the partial derivatives in (29) in powers of \(Q^i - \bar{Q}^i \) and \(P_i - \bar{P}_i \) and retaining the first power. Thus, for example,
\[
(\Delta P_i)^{\text{exact}} \cong \Delta P_i + \int_{-\infty}^{\infty} \sum_{j=1}^{N} \left(\frac{\partial^2 V_p}{\partial Q^i \partial Q^j} (Q^j - \bar{Q}^j) \right) dt
\]
\[
+ \left(\frac{\partial^2 V_p}{\partial P_i \partial P_j} (P_j - \bar{P}_j) \right) dt, \tag{30}
\]
where the derivatives are evaluated at \(Q^i = \bar{Q}^i, P_i = \bar{P}_i \).

When \(V_p(R, \gamma) \) is a sum of terms of the form \(a_n V_n(R) P_n(\cos \gamma) \), \(P_n \) being a Legendre polynomial, and then expressed in terms of the \(Q^i \) and \(P_i \) one obtains sums of terms such as \(V_n(R) (g_1 \sin \Psi \sin \Psi + g_2 \sin \Psi \cos \Psi + g_3 \cos \Psi \sin \Psi + g_4 \cos \Psi \cos \Psi) \), where \(m \leq n \). Here, the \(g_i \) are functions of the initial values of the constants of the motion. Thus, from (29), \(\Delta l, \Delta m_i, \Delta \beta_m, \Delta j, \Delta \beta_j \), and \(\Delta \phi \) are approximately equal to integrals of the \(V_p(r) \) times oscillating factors. The initial orientations of the particles only appear outside these integrals.

The properties of the elastic collision are needed for use of (29) and (30). They are obtained from (24) to (27) by setting \(V_p = 0 \) on the right-hand sides of these equations. Integration then yields
\[
\int \left[\frac{3\mu}{2} \left(\frac{P}{2\mu R^2} - \frac{j^2}{2\mu m^2} - V_0(R) \right) \right]^{-1/2} dR = \tau - \beta_B,
\]
\[
\bar{\Psi} = \int \left[\frac{1}{\mu R^2} (t) \right] dt - \beta_i,
\]
\[
\bar{\Psi} = \omega t - \beta_j, \tag{31}
\]
where \(\omega \) denotes \(j/\mu m^2 \); \(\beta_B, \beta_i, \) and \(\beta_j \) are phases describing the positions of \(\bar{r} \) and \(\bar{R} \) at \(t = 0 \).

Equations (24)–(27) also illustrate clearly that \(l, m_i, \beta_m, j, m_j, \) and \(\beta_n \) for an elastic collision are constants, and so equal their initial values.

The first integral in (31) can be expressed in terms of elliptic integrals when \(V_0(R) \) is of a suitable form, e.g., when it varies as \(r^4, r^4 \), etc. \(^{22}\) Otherwise, the integral is evaluated numerically.

In applications in Part II, we have found it convenient to obtain (29) from any of the three sets of equations of motion mentioned earlier but to obtain the error estimates in (30) using (24), (26), (A1) or (24), (25), (A2). Also, in Eq. (1) and all other equations but (21) the coordinate axes which define \(\Omega \), \(\Phi \) (and \(\alpha_i, \beta_m \)) need not have the same orientation as those which define \(\theta, \phi \) (and \(\alpha_i, \beta_m \)); the kinetic-energy contributions of \(\mu \) and \(\mu_m \) in (1) are individually rotationally invariant. In applications in Part II of (24)–(26) or of any of the other equations it has been convenient to choose two sets of axes simultaneously, one in which the \(\bar{R} \) motion is simply described and the other in which the \(\bar{r} \) one is. Equation (21) for \(\cos \gamma \) is replaced by the appropriate equation.

GENERAL COLLISIONS

The Hamilton–Jacobi formalism in the preceding section is readily extended to rotational–vibrational–translational energy transfer involving more complex systems. The Hamiltonian \(H \) is
\[
H = (2\mu)^{-1} \left[\hat{p}_A^2 + (1/R^2) \left[\hat{p}_B^2 + (\hat{p}_A^2 + (\sin^2 \theta)) \right] \right]
\]
\[
+ H_A + H_B + V(R, \gamma, q_A, q_A, q_B), \tag{32}
\]
where \(H_A \) and \(H_B \) denote the rotational–vibrational Hamiltonian for the colliding particles \(A \) and \(B \), respectively; the \(q_A \)'s are the angles describing the relative orientation of \(A \) and \(B \); the \(q_A \)'s and \(q_B \)'s are the vibrational coordinates of \(A \) and \(B \), respectively, and the remaining symbols retain their previous significance. \(H_A \) is a function only of \(q_A \) and \(p_A \), the rotational–vibrational coordinates and conjugate momenta of \(A \). Analogous remarks apply to \(H_B \).

Solution of the Hamilton–Jacobi for the elastic collision, in which \(V \) is replaced by a suitably averaged value \(V_0(R) \), yields the generating function \(W(\alpha_i, q_i) \)
\[
W(\alpha_i, q_i)
\]
\[
= W_A + W_B + W_R, \tag{33}
\]
where \(W_A \) and \(W_B \) are the generating functions arising from \(H_A \) and \(H_B \), respectively. \(W_R \) is the generalization of (7)
\[
W_R = \int \left[2\mu \left[- (E - (P/2\mu R^2) - E_A - E_B - V_0) \right] \right]^{1/2} dR, \tag{34}
\]
where \(E_A \) and \(E_B \) are the rotational–vibrational energies of \(A \) and \(B \), expressed in terms of action variables. \(^{22}\) Reference 18, pp. 73–76.
For example, if \(A \) is an atom and \(B \) is a linear rigid rotor, \(E_A \) and \(W_A \) are absent, \(E_B \) is the \(j^2/2\mu \) term in \((7) \), and \(W_B \) is the sum of the second and fourth terms in \((6) \).

A second useful generating function is the counterpart of \((8) \)

\[
W = m \Phi + \int \left(P - m \Phi \cos^2 \theta \right) \frac{1}{\rho} d\theta + W_A + W_B + \frac{p}{m} R.
\]

\[(35) \]

In either case, Eqs. (9) to (13a) again prevail. With \(W \) given by \((35) \), the other equations of the preceding section which remain applicable are those involving only \(R \), \(\theta \), \(\Phi \), i.e., Eqs. (14) - (16) and (24) - (25). The analog of \((29) \) can also be written, with \(\gamma \) replaced by \(\gamma_i \), \(\gamma_i^* \), \(\gamma_i \beta \) and with the \(\gamma_i \) denoting \(\gamma_i \), \(\gamma_i \), and the action variables appropriate to \(H_A \) and \(H_B \). (In the preceding section the latter were \(j \) and \(m_i \).)

For example, when \(B \) is a rigid symmetric-top molecule we have\(^\text{35}\)

\[
H_B = \left(1/2 \right) I_\theta \left[p_\theta^2 + (p_\theta - j \cos \theta)^2 \right] + \left(p_\theta^2/2I_\theta \right),
\]

\[(36) \]

where \(\theta \), \(\Phi \), and \(\chi \) are the Euler angles describing the orientation of \(B \), and \(I_\theta = I_\phi \) and \(I_\theta \) are its principal moments of inertia.

We then have\(^\text{34}\)

\[
W_B = m \Phi + \frac{k}{2} \int \left[j^2 - k^2 - (m - k \cos \theta)^2 \right] \frac{1}{\rho} d\theta,
\]

\[(37) \]

where the constants \(m, k \), and \(j \) arise during the separation of variables. From (9), (35), and (37) one finds

\[
p_\theta = \int \left[j^2 - k^2 - (m - k \cos \theta)^2 \right] \frac{1}{\rho} d\theta
\]

\[
p_\phi = m, \quad p_\chi = k.
\]

From (36) and (37) the separation constants \(j, k \), and \(m \) are found to equal molecule \(B \)'s total rotational angular momentum, \(j \), the component of \(j \) along the figure axis of \(B \), and its component along the space-fixed \(z \) axis. The integral in (37) can be expressed in terms of a standard one on introducing a new variable \(u = mk - j^2 \cos \theta \). The variables conjugate to \(j, k \), and \(m \) are found from (10) and (37); (11) and (12) yield the new equations of motion.

When the assumption of a rigid molecule in the preceding section is removed, the generating function \((6) \) contains an additional term, \(W_r \). For example, when the vibrational motion of the diatomic molecule is harmonic and when the new variables for the oscillator \(Q^a \) and \(P^a \) are chosen to be angle-action variables, \(W_r \) is found from the solution of the Hamilton–Jacobi equation to be\(^\text{35}\)

\[
W_r(\theta, \phi) = \left(P_r/2\pi \right) \left(u + 1/2 \sin (2u) \right),
\]

\[(39) \]

where \(u = \sin^{-1}(\mu \omega \pi/\nu)^{1/2} q \),

\[(40) \]

and where \(\omega/2\pi \) is the vibrational frequency. The vibrational energy equals \(P_r \omega/2\pi \), and the new equations are again given by (11) and (12). Similarly, \(W_A \) and \(W_B \) in (35) contain a term \((39) \) for each normal mode in \(A \) and \(B \).

Once again, in the case of general collisions, it is sometimes convenient to replace \((33) \) by the analog of \((27) \) or \((28) \).

CONCLUDING REMARKS

The Hamilton–Jacobi formalism provides a generating function which can be used to transform the equations of motion into a convenient form. An approximate version, given by \((29) \), utilizes as the unperturbed problem the elastic collision and, hence, the behavior of the internal motions at infinite separation. A similar zeroth-order approximation is commonly employed in quantum-mechanical treatments.\(^\text{36}\)

Comparison of the approximate and exact classical results is given in Part II for rotational–translational energy transfer between an atom and a rigid linear molecule. The comparison reveals that when the "distortion" of the internal motion is small, in the sense of a high enough ratio of rotational to orbital moment of inertia or high enough rotational frequency, the cited approximation is a reasonable one at least for cases examined thus far. Small distortion as defined above does not necessarily imply small fractional change in rotational energy. Analogous remarks may be expected to apply to quantum-mechanical treatments.

A similar situation exists for the vibrational–translational energy transfer between an atom \(A \) and a

\[\text{35} \text{ E.g., H. C. Corben and P. Stehle, Classical Mechanics (John Wiley & Sons, Inc., 1960), p. 190. For some purposes, vibrational variables related to, but different from, angle-action ones may be still more convenient. Compare discussion of an equation (90) in R. A. Marcus, J. Chem. Phys. 49, 2610 (1968).} \]

\[\text{36} \text{ The latter often contain additional approximations, such as one which results in expressing the transition probability in terms of an integral involving only initial and final unperturbed wavefunctions rather than allowing for intermediate ones as well. Contrast, for example, Eq. (7.26), p. 48, or (1.17), p. 114, of G. Ludwig, Die Grundlagen der Quantenmechanik (Springer-Verlag, Berlin, 1954) [or the expression for } P^{\text{mn}} \text{ in E. Kerner, Can. J. Phys. 36, 371 (1958), p. 372] with the more usual (first-order) expressions for the forced linear-oscillator problem. Compare C. E. Treanor, J. Chem. Phys. 43, 532 (1965).} \]
molecule BC on a line, when small "distortion" is interpreted as a high enough mass-ratio involving m_B.\footnote{This mass ratio is $m_B(m_A+m_B+m_C)/m_A m_C$ introduced by J. D. Kelley and M. Wolfsberg, J. Chem. Phys. 44, 324 (1966). Compare M. Atttemeyer, Ph.D. thesis, University of Illinois, December 1968.}

APPENDIX: VARIABLES AND EQUATIONS OF MOTION ARISING FROM EQ. (27) OR (28)

The new momenta in (27) are \mathbf{p}_R, \mathbf{p}_Θ, \mathbf{p}_ϕ, j, and m_j. Use of Eqs. (10) and (27) shows that the new coordinates are R, Θ, Φ, the ψ given by (17) and the β_m given by (18). (We henceforth drop all bars over \dot{R}, $\dot{\Theta}$, and $\dot{\Phi}$, therefore.) Equation (9) then yields (13b), while (17) and (18) yield (23). Equations (11), (12), and (28) yield (24), (26), and (A1) as new equations of motion

\[
p_\theta = -\partial V_\psi/\partial \Theta, \quad p_\phi = -\partial V_\psi/\partial \Phi
\]

\[
\dot{\Theta} = p_\theta/2\mu R^3, \quad \dot{\Phi} = p_\phi/2\mu R^3 \sin^2 \Theta. \quad (A1)
\]

The new momenta in (28) are \mathbf{p}_R, \mathbf{p}_ψ, \mathbf{p}_λ, l, and m_l. Use of (10) and (28) yields R, θ, ϕ, the Ψ given by (15), and the β_m given by (16) as the new coordinates. (Thus, again all bars are omitted.) Equation (9) yields (13a), while (15) and (16) yield (22). Equations (11), (12), and (28) yield (24), (25), and (A2) as the new equations of motion

\[
p_\theta = -\partial V_\psi/\partial \Theta, \quad p_\phi = -\partial V_\psi/\partial \phi
\]

\[
\dot{\theta} = p_\theta/2\mu \lambda^2, \quad \dot{\phi} = p_\phi/2\mu \lambda^2 \sin^2 \theta. \quad (A2)
\]

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 49, NUMBER 10 15 NOVEMBER 1968

Measurement and Analysis of Mössbauer Data for Compounds Containing 129Te

Mark L. Unland

Central Research Department, Monsanto Company, St. Louis, Missouri

(Received 26 January 1968)

Mössbauer isomer shifts and quadrupole splittings are reported for a number of tellurium compounds. The isomer-shift data are analyzed by setting up localized orbitals and converting to their equivalent delocalized orbitals in order to calculate the electron density at the 129Te nucleus. Similarities between data for tellurium and tin compounds are noted. The theoretical calculations confirm the expectation that hydridic orbitals are more appropriate for calculations of electron density at a nucleus than the Slater-type orbitals generally used in molecular-orbital calculations.

I. INTRODUCTION

Although some data\footnote{P. Z. Hein, V. G. Shapiro, and V. S. Spinel, Zh. Eksp. Teor. Fiz. 42, 703 (1962) [Soviet Phys.—JETP 15, 489 (1962)].} have been reported for the Mössbauer effect using 129Te as the nuclear probe, more data needed to be obtained before the results could be subjected to a theoretical analysis. This paper reports data for isomer shifts and quadrupole splittings on 12 previously unreported compounds, and presents a theoretical treatment of the known Mössbauer isomer shifts of tellurium. This treatment is an extension of the quantum-mechanical approach which was employed previously in our laboratory for 31P NMR chemical shifts,\footnote{J. H. Letcher and J. R. Van Wazer, J. Chem. Phys. 44, 815 (1966). Also see by same authors "P3 Nuclear Magnetic Resonance," Topics in Phosphorus Chemistry, M. Grayson and E. J. Griffin, Eds. (John Wiley & Sons, Inc., New York, 1967), Vol. 5, Chap. 2.} which has recently been extended and compared with molecular SCF calculations,\footnote{J. H. Letcher and T. H. Dunning, J. Chem. Phys. 48, 4538 (1968).} and which was used in an analysis of 115Sn Mössbauer data.

II. EXPERIMENTAL DETAILS

A. Instrumentation

The instrument used in this study was built around the model AM-1 constant-acceleration Mössbauer spectrometer produced by the Nuclear Science and Engineering Corporation. The complimentary equipment included a model 34-12B multichannel analyzer made by Radiation Instruments Development Laboratory. Useful readout of the accumulated data was accomplished by using a Hewlett-Packard 562A digital recorder and/or an RIDL 99-24A Punch/Type

Downloaded 08 Mar 2006 to 131.215.225.174. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp