\[N_{p\sigma}(\lambda g^{\alpha\beta}) = \sum_{m=0}^{\infty} \lambda^m N(m)_{p\sigma} \cdot \]

We carry out the integration in Eq. (12) and obtain
\[N_{\mu\nu} - A g_{\mu\nu} \sum_m (1 + m)^i g^{\sigma\rho} N(m)_{\rho\sigma} = 0. \quad (13) \]

For every order of \(\lambda^m \) we may rewrite \(N(m)_{\mu\nu} \), in terms of its trace free part \(\tilde{N}(m)_{\mu\nu} \) and its trace to transform Eq. (13) into
\[\tilde{N}(m)_{\mu\nu} + \left(1/n \right) g_{\mu\nu} N(m) - A g_{\mu\nu} (m + 1)^i N(m) = 0. \]

where \(N(m) = g^{\rho\sigma} N(m)_{\rho\sigma} \). This is equivalent to
\[\tilde{N}_{\mu\nu} - A g_{\mu\nu} [n - 2(m + 1)] (2n(m + 1)^i N(m) = 0. \]

Thus, we obtain from Eq. (9) the trace-free equations of motion whenever \(n - 2(m + 1) = 0 \). The stress-energy tensor for the electromagnetic field in four dimensions is the simplest example of a trace-free term of this type (with \(m = 1 \)).

ERRATA

Erratum: The electromagnetic field on a simplicial net
[J. Math. Phys. 16, 2432 (1975)]

Rafael Sorkin

Departments of Applied Mathematics and Astronomy, University College, Cardiff, Wales
(Received 1 March 1978)

P. 2432: A "1" and an "n" have been transposed in Eq. (5), which should read
\[\langle e^i, e^j \rangle = \delta^i_k = 0_{k} \quad \frac{1}{n + 1} \quad \text{if } j = k, \]
\[\frac{-1}{n + 1} \quad \text{if } j \neq k. \]

P. 2433 (line 14): In place of "... its affine components \(T_i^{+} \ldots m \) read "... its affine components \(\tilde{T}_i^{+} \ldots m \)."

The same change should be made in Eq. (9) and Eq. (10) [but the "T" on the lhs of (9) should be left as it is].

P. 2435 (line 19): In place of "... since \(e_{k_0} e_{k_0} = 0 \), and ..." read "... since \(e_{k_0} \wedge e_{k_0} = 0 \), and ...".