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Abstract. Vibronic radiationless transitions in large polyatomic molecules
can be thought of as a process whereby the molecule, initially prepared in a
discrete quasistationary state, makes a transition to an adjoining vibronic con-
tinuum belonging to a lower electronic state of the same multiplicity. In many
instances the transition is analogous to penetration through a barrier between
two "nested" potential sheets far away from an actual intersection of the sheets.
Simultaneous distortions of vibrational and electronic parts of the wavefunction
are required for such a tunneling process. The vibrational distortion manifests
itself in the familiar Franck-Condon effect. The electronic distortion can be
caused by nontotally symmetric vibrations of the molecule either because of the
displaced nuclear configuration, to which the electrons instantly respond (Herz-
berg-Teller effect), or because of the protracted response of the electrons to the
kinetic energy of nuclear motion (nonadiabatic effect or the breakdown of the
Born-Oppenheimer approximation). It is found here that Herzberg-Teller
coupling is more effective in causing radiationless transitions than the breakdown
of the Born-Oppenheimer approximation when the potential surfaces involved
are not close to an intersection.

Introduction. Current theories1-7 of vibronic radiationless transitions in
large molecules having many vibrational degrees of freedom are based upon the
same concepts as are well-established theories of spontaneous processes in atoms
(Auger effect,8 autoionization9), diatomic molecules (predissociation10), and
atomic nuclei (emission of internal conversion electrons and j3-decay"1). Emis-
sion and absorption of radiation can be discussed in the same way.12 13 For
all of these processes one envisions in zero order a discrete state of an atom,
molecule, or nucleus embedded in a continuum. Energy-conserving transitions
occur in the over-all system through time-independent coupling between the dis-
crete state and the continuum. 14
The discrete state for the vibronic radiationless transition process is a vibra-

tional level belonging to a certain excited electronic state of the molecule, while
the adjacent (quasi)-continuum corresponds to a lower electronic state with a
large amount of vibrational excitations 2 The vibrational excitation may be
purely intramolecular if the molecule is sufficiently large2' 5, 6 or it may be a
combination of internal and external vibrations in the case where a smaller
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molecule is surrounded by an "environment."' If the two electronic states
are singlet states, electron spin can be neglected and the transition from the
discrete state into the adjoining continuum is called internal conversion'5 by
molecular spectroscopists. If the multiplicity is different in the two electronic
states, the process is known as intersystem crossing." It is well known that for
all of these processes, to a good approximation,' 5 13 the decay of the initial
state is exponential, with a transition probability per unit time,

k = (2ir/h)p(E)#3F. (1)
The term 132 is a coupling term, F is a Franck-Condon factor, and P(E) is the
effective density of quasicontinuum states.
Emphasis in the past has been placed primarily on the many interesting

manifestations of the Franck-Condon factor in equation (1).", 2, 4 7 Recently,
however, much discussion has revolved around the detailed nature of the cou-
pling between the initial and final states.3' " I In this paper we shall show that
the vibronic coupling for the internal conversion process need not be associated
with the nuclear kinetic energy operator as is widely supposed. We suggest an
alternate explanation for this coupling when the potential surfaces are fairly far
removed from an actual intersection.
The Bom-Oppenheimer approximation: The usual approach'- to vibronic

coupling in the radiationless transition problem is to start off with a Hamiltonian,

HB.o. = SC - 3(Q) - Hrad, (2)

where SC is the full Hamiltonian, Hrad is the interaction of the molecule with
the quantized radiation field, and 3(Q) represents the sum over-all nuclear
kinetic energy operators. In equation (2) it is assumed that no external fields
are provided during the time of observation of the nonradiative process'6 and
thus that Hrad pertains only to spontaneous emission.

Vibronic eigenfunctions of HB.O. are constrained to have the form'

IB.O.k0 = 'Pk(q,Q)Xkr(Q), (3)
where q and Q represent collective coordinates for the electrons and nuclei,
respectively; k is a quantum number that labels the electronic state; and
Xkr(Q) is the rth vibrational eigenfunction belonging to this electronic state.
The functions so and x can then readily be shown'7 to be solutions of

HB.O. Pk(qQ) = E(Q)(Pk(qQ), (4)
{E(Q) + 3 (Q) + (S0kI3(Q)k|ok)}Xkr(Q) = WkrXkrT(Q), (5)

the first being the "electronic Schr6dinger equation," the second the "vibra-
tional Schr6dinger equation." In equation (5), Wkr is the total energy of the
krth vibronic state while E(Q) contains the electronic energy as a function of
nuclear displacements as well as nuclear-nuclear repulsion terms. E(Q) along
with the usually small first-order energy term (Vk|3(Q) IePk) therefore represents
the potential energy function under whose influence the nuclei move.

It seems to have been almost universally assumed'' that the Born-Oppen-
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heimer states Sck(qQ)Xk4(Q) are the quasistationary states that should be consid-
ered the ones initially "prepared" in the internal conversion process. In other
words, the discrete vibromic state anid the neighboring (uasicontinuum have in
the past all been assumed to be eigenstates of II.o.. When this assumption
is made, it is obvious that such cigenstates are noIistatioiary since one has
omitted from HB.O. the effect of nuclear velocities on the functions ypk(qQ), only
the effect of instantaneous nuclear positions having been considered. Thus,
off-diagonal elements of the total Hamiltonian matrix exist in the Born-Oppen-
heimer representation between states of different k and r. These off-diagonal
elements certainly would lead to internal conversion if it were true that the
actual initial state is indeed a pure Born-Oppenheimer state. In fact, in the
Born-Oppenheimer representation this would be the only source responsible
for the radiationless process, since, besides Hrad, the nuclear kinetic energy
operators are the only terms omitted from SC in forming HB.o.. The question
exists, however, "Do the Born-Oppenheimer states really have physical signifi-
cance for the problem at hand or is their significance merely historical?"

Choice of perturbation Hamiltonian: As far as we can see there is no a priori
reason for choosing Born-Oppenheimer states as a starting point in the calcula-
tion of radiationless rates. The choice of zero-order Hamiltonian is by no
means arbitrary, however. Neither is the choice fixed until one fixes interest
upon a specific problem. The description of the zero-order states is totally
"dictated by the conditions under which experimental observations are to be
made on the system."" Even though the time scale for our problem here
is much longer than that usually associated with the formation of Born-Oppen-
heimer states, we shall show that these states really are in the process of form-
ing during the radiationless transition and therefore are inappropriate zero-
order states for the problem.
What then are the zero-order states appropriate for discussion of internal

conversion, and more generally, is there some systematic manner by which one
can go about choosing the appropriate zero-order states for a given problem?
The answer to the second part of this question involves a critical dissection of
the total Hamiltonian. Different parts of the Hamiltonian correspond to
different nonradiative processes depending upon their magnitude and upon the
coordinate-mixing they give rise to. But extreme caution must be exercised so
that the mistake is not made of including the relevant perturbing part of the Hamil-
tonian in the zero-order problem to begin with! If this is inadvertently done the
correct transition probability can be obtained only by treating these zero-order
eigenfunctions by a stationary-state approach.'9 Totally wrong results would
be obtained by unconsciously setting up the problem as a coupling among such
inappropriately chosen zero-order states caused by the irrelevant perturbation
Hamiltonian. This we believe is just the situation that arises if one attempts to
use Born-Oppenheimer states as zero-order states in the present problem.
The proper dissection of the Hamiltonian: To describe the radiationless decay

of a molecule from a discrete state to a quasi-continuum of states, we separate
the total Hamiltonian into two parts: a zero-order part that includes terms cor-
respoinding to processes that happen much faster than the time scale of the
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radiationless decay and a perturbation or scattering term that takes the system
from one zero-order eigenstate to another during the experimental time.

If the interaction terms due to the environment do not appear,1' 2, 5, 6 then
the total Hamiltonian SC in a molecule-fixed coordinate system is

3C = 3(q) + 3(Q) + V(q) + V(qQ) + V(Q) + HradX (6)
where 3(q) is the electronic kinetic energy operator, 3(Q) the nuclear kinetic
energy operator, V(q) the electron-electron Coulomb energy, V(Q) the nuclear-
nuclear Coulomb energy, and V(q,Q) is the nuclear-electronic Coulomb energy
summed over all the electrons and/or nuclei in the molecule.
Even though virtually all terms will eventually be retained, it is convenient to

think of the nuclear-electronic Coulomb energy V (q,Q) as a Taylor's series ex-
panded about some nuclear equilibrium configuration Q0 (Q, = 0, for all Q,):

v(q2Q) = V(qQQ) + E
( + *.2 (7)

Later we will wish to remove one or more linear terms of the form (bV/aQ,)oQ,
from the total Hamiltonian, where Qp, a "promoting mode,"20 represents a
particular nuclear displacement responsible for the coupling. For these pro-
moting modes it is illuminating to visualize initially that in both the ground
and excited states the equilibrium positions are identical, the restoring forces
only being different. An oscillator such as this is referred to as being "dis-
torted" but not "displaced" and plays a leading role in the theory of vibronic
coupling in polyatomic molecules.4 It is stressed, however, that the qualitative
arguments presented in this paper do not depend on the complete absence of
"displacement." A moderate displacement is tolerable so long as it does not
lead to potential surface crossing and will simply cause the theory to be a little
more cumbersome without altering the basic conclusions.
Note that up to now there has been no need to fall back on the harmonic

oscillator approximation for the vibrations. However, it will certainly be
theoretically convenient if we can assume that Q, is represented by a certain
normal mode of the molecule in the harmonic approximation. Until actual
calculations are performed, no such assumption is necessary about the other so-
called "accepting modes," which enter only into the Franck-Condon factors.
As mentioned earlier, the molecule has time to form well-established vibra-

tional states before the emission process occurs.21 The minimum Hamiltonian
that we can write and still permit the formation of bound vibrational states is:

Ho = 3C - 3(Q) - [u(qQ) - V(qQ0)] - Hrad. (8)
This Hamiltonian gives rise to vibronic wavefunctions of the form17

ok = (Pk (q;Qo) Xkr(Q) I (9)
where the functions so and x are solutions of

Ho~P(q2Qo) = E (QO) 'P (qfQo) 2 (10)
[E°(Q) + 3(Q) ]xkr(Q) = WkrXkr(Q)- (11)



VOL. 66, 1970 CHEMISTRY: BURLAND AND ROBINSON 261

Here the "nuclear potential energy function" EO(Q) in equation (11), which
contains the neglected Q-dependent part of the Hamiltonian [V (q,Q) - v(qQ0) ]
as a first-order energy correction term, is given by

EO(Q) = ((pjt(qjQo)j3C - Hrad - 3(Q)| pjt(qQo)). (12)
It is with respect to this function that the equilibrium nuclear position neces-
sary for the expansion in equation (7) is defined. The wavefunctions in this
approximation are known as clamped nuclei or crude Born-Oppenheimer wave-
functions."7 In the following discussion we will ignore Hrad, since in the present
problem it usually merely opens up independent alternative channels through
which the excited state may decay.
The relative magnitude of two possible coupling terms: First consider the

matrix element j3 that is obtained by using [v(qQ) - U(q,Q0) I as a perturba-
tion. We will assume that only one displacement Q, is directly involved in
coupling the two electronic states pt and sct, and for convenience we will assume
that Q, represents a normal mode in the harmonic approximation. Q, is thus
the promoting mode and need possess only one quantum of excitation energy.
The other types of nuclear displacements, the "accepting modes," because of
symmetry or other reasons, are assumed to be incapable of coupling initial and
final states. They are highly excited and contribute to the radiationless process
only through the Franck-Condon factor F in equation (1). Since the "accepting
modes" are not directly involved in the coupling, we will include them in our
zero-order Hamiltonian. This results in a much less crude approximation than
does the Hamiltonian Ho of equation (8). This Hamiltonian becomes

HH.T. = JC - 3(Q) - (6U/bQp)oQp2 (13)
where as we mentioned earlier, only one linear term in the expansion of U(qQ)
has been extracted from the full Hamiltonian. Terms quadratic and higher
in the expansion are assumed to give a negligible contribution to the radiationless
transition rate.22 As before they are included in the firstorder energy correction
to give rise to bound vibrational levels associated with the coordinate Qp.
The Hamiltonian given by equation (13) has been labeled with the subscript

H.T. because of the obvious similarities between this mechanism for radiation-
less transitions and Herzberg-Teller vibronic coupling for symmetry-forbidden
radiative processes.23 The eigenfunctions of equation (13) are

*rH.T. = IH.T.(qjQ 5 Qp)XAcr(Q) (14)

and are solutions of Schrodinger equations similar to equations (10) and (11).
The matrix element 1H.T. describing the coupling due to the promoting mode
Q, isQpiS~ ~ ~ ~~~,r )Q)Qj*.~8H.T. = (TH.T. (bU/CQv)oQpI"H TA')

= ((9kH|T. (U/bQP)oI HtHT)(XktrI QPI XS) (15)

Note that Herzberg-Teller vibronic coupling occurs entirely within the frame-
work of the Born-Oppenheimer approximation. If we treat the mixing between
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the eigenstates in equation (14) to all orders in Q,,, the wavefunction we finally
obtain is the exact Born-Oppenheimer wavefunction of (3).
Suppose that in equation (15) instead of treating the term (6U/aQ,)oQ, as the

perturbation term, we were to use the term 3(Q,) also neglected in (8). Recall
that we have assumed only one nuclear displacement Q, to be responsible for
the vibronic coupling. In this case the matrix element (*H.T.kr3(Qv)I*H.T.rs)
is zero since the Herzberg-Teller electronic wavefunctions do not depend on Q,.
However, the matrix element that arises when the neglected nuclear kinetic
energy term (from Eq. (2)) is used as a perturbation with the Born-Oppenheimer
wavefunctions (Eq. (3)) is

I3B.O. = (*B.o.kT3(Qp)IB.o 8), (16)
which is nonzero since the Born-Oppenheimer electronic wavefunctions do de-
pend on Q,.
To get a rough idea of the relative magnitude of these two matrix elements,

we can derive a simple approximate expression for their ratio 16B.0./13H.T.- We
write to first order the Born-Oppenheimer electronic wavefunction in terms of
the Herzberg-Teller functions'

f(PAq,Q) = (Pk' T + E (PkH|T. (-/UQ )olj 01H.T.)Qp PH.T. (17)AEk
Note that the only perturbing term we need to consider in writing equation (17)
is the linear term in Qp since except for this one term HB.o. and HH.T are identi-
cal. If it is now further assumed that the vibrational wavefunctions Xk? can
be written as a product of harmonic oscillator functions

Xkr(Q) = lx-.kr (18)

One then obtains an expression for 1B.o. similar to the one previously derived
by Bixon and Jortner5

(3B.O. = _h2 ((PkH.T1 ((V/bQp)ol PtH.T.) (XPkrTI/aQPIXPv4) II (XykrXek), (19)AEtk -Yp

and the Herzberg-Teller matrix element simply becomes

1H.T. = (PkH.T-|(8t/1Q,)Olsptl.T.)(XkrlQplXp's) II (XxkrX t). (20)

Their ratio is
3B.O. -h2(Xpkrj/1QPjXpts) (21)

BH .T . AEtk(Xkr QPIX/S)
Equation (21) can be simplified still further if we assume that the radiationless
process occurs from a vibrationally unexcited level of the initial electronic state
and we recall that the normal mode Qp is a distorted but undisplaced mode.
In this case, evaluating the integrals in the harmonic approximation,24

,BB.O. fphwp (22)

,BH.T. AEelec.
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where f, is the ratio of the vibrational frequency of the pth normal mode Q,
in the initial and final electronic states, f = Vinitial/Vfinal; f is approximately
unity in most cases.25 Co, is the vibrational energy quantum for the final state
and AEeiec. is the purely electronic energy difference between the interacting states;
i.e., AEeiec. is the vertical energy difference between potential surfaces in the
lower and vibrationally unexcited upper electronic states.

Typically, vibrational quanta are on the order of 1000 cm-' and AEeiec. is
generally in the vicinity of 10,000 cm-'. Equation (22) thus implies that fB .0./
1H.T. is on the order of 0.1 and that Herzberg-Teller coupling is 100 times more
effective at inducing a radiationless process between Herzberg-Teller states than
is the breakdown of the Born-Oppenheimer approximation between Born-
Oppenheimer states. Such slow transitions among Born-Oppenheimer states
cannot be detected because long before these transitions occur the discrete
Herzberg-Teller state has decayed into the Herzberg-Teller continuum and the
"experiment" is completed. In other words the radiationless process corre-
sponds to the formation of a Born-Oppenheimer state, not to a transition - be
tween Born-Oppenheimer states.
Equation (22) serves to emphasize another important point. The vibronic

radiationless process has long' been envisioned as a tunneling process between
two nonintersecting potential energy surfaces. If an electronic degeneracy,
i.e., a potential surface intersection, should occur, then our treatment would be
inadequate since AEelec. would be zero. The case of molecular radiationless
transitions involving potential crossing was discussed many years ago by Teller26
with respect to predissociation in diatomic molecules. For such processes
Herzberg-Teller vibronic coupling is completely inappropriate.

Conclusions. The point emphasized here is that there is no a priori reason
for assuming that these radiationless processes must be due to a breakdown of the
Born-Oppenheimer approximation. Other channels exist and should be given
equal attention when radiationless processes are discussed. We believe
that the approximations made in deriving equation (21) are reasonable for
most molecules and, therefore, that in most cases, Herzberg-Teller coupling is
stronger than coupling due to the Born-Oppenheimer breakdown. Recent
attempts to calculate the vibronic coupling in the radiationless transition prob-
lem using the breakdown of the Born-Oppenheimer approximation have indeed
given results approximately two orders of magnitude too small. 27
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