Compensating impurity effect on epitaxial regrowth rate of amorphized Si

L. Suni, a) G. Göltz, b) M. G. Grimaldi, c) and M.-A. Nicolet
California Institute of Technology, Pasadena, California 91125
S. S. Lau
University of California, San Diego, La Jolla, California 92093

(Received 17 July 1981; accepted for publication 28 October 1981)

The epitaxial regrowth of ion-implanted amorphous layers on (100) Si with partly compensated doping profiles of 11B, 75As, and 31P was studied. Single implants of these impurities are found to increase the regrowth rate at 475 and 500 °C. The compensated layers with equal concentrations of 11B and 31P or 11B and 75As show a strong decrease of the regrowth whereas for the layers with overlapping 75As and 31P profiles no compensation has been found.

PACS numbers: 61.70.Tm, 68.55.+b, 81.10.Jt

The epitaxial regrowth of ion-implanted amorphous Si layers on Si crystalline substrate has been a subject of intense research in the past. It has been established that the regrowth of self-ion-implanted layers has strong orientation dependence and is a thermally activated process with an activation energy of 2.3 eV. 1,2 in the temperature range 500–600 °C.

The regrowth kinetics is also strongly influenced by the presence of impurities. For example, O, C, N, and Ar in concentrations of 0.5–1.0 at. % implanted into amorphous Si layers significantly reduce the regrowth rate. 3 On the other hand, 0.5–1.0 at. % of groups III and V elements (B, P, and As) enhances the regrowth rate for annealing temperature of about 500 °C by a factor up to 20–30. 4 To offer further insight we have studied the regrowth rate of amorphous layers in (100) oriented Si crystals with overlapping implantation profiles of both n- and p-type impurities.

Silicon (100) substrates with a p-type resistivity of 1–10 Ω cm were implanted with 75As, 31P, and 11B at the temperature of liquid nitrogen to concentrations of ≤ 0.5 at. %. Combinations of partly overlapping implantation profiles were achieved by multiple energy implants of one of the impurities and a single energy implant of another. The doses and energies for the various implantations are listed in Table I. To give an idea of the resulting profiles, we have plotted in Figs. 1–3 the superposition of simple gaussians with parameters tabulated in Ref. 5. More sophisticated calculations of the distributions could be performed following the procedures of Hofker 6 and Ryssel. 7

With 75As and 31P the multiple implantations produced a 6000–7000-Å-thick amorphous layer. In the case of multiple boron implantation an additional 28Si implantation was performed to amorphize the 11B-doped layer. The dose of the single energy implantation was calculated to give a peak concentration of 2.5 × 1011 cm−2. This concentration was high enough to compensate parts of the profile of the multiple energy implantations when two types of ions were implanted.

The samples were vacuum annealed in a sequence of short periods of time at temperatures of 475 and 500 °C. For comparison, reference samples with the initial multiple energy implantations of a single impurity were annealed simultaneously with samples having double impurity implantations. To evaluate the regrowth rates, the thicknesses of the amorphous layers were determined after each annealing step by using backscattering and channeling of 1.5-MeV 4He+ ions. This method is described in detail by Csepregi et al. in Ref. 4.

The effect of impurities on the growth rate is shown in Fig. 1 for a 75As-doped reference sample. At both 475 and 500 °C, the growth rate is strongly enhanced compared to the intrinsic growth of Si given by the dashed lines. The relatively fast regrowth during the first annealing step can be explained by the rapid reordering of a highly disordered crystalline region at the initial amorphous-crystalline interface which cannot be distinguished from the amorphous region by the channeling technique. Our numerical values for the average regrowth rates corresponding to the highly doped (~2 × 1020 cm−3) regions of 75As, 31P, and 11B implanted samples are shown in Table II which also gives the activation energies derived from the growth rates at 475 and 500 °C. The corresponding values for Ref. 4 are given in parentheses. With the exception of phosphorous, which in our case shows a faster regrowth and a lower activation energy, the results are in good agreement.

With 75As and 31P the multiple implantations produced a 6000–7000-Å-thick amorphous layer. In the case of multiple boron implantation an additional 28Si implantation was performed to amorphize the 11B-doped layer. The dose of the single energy implantation was calculated to give a peak concentration of 2.5 × 1011 cm−2. This concentration was high enough to compensate parts of the profile of the multiple energy implantations when two types of ions were implanted.

The samples were vacuum annealed in a sequence of short periods of time at temperatures of 475 and 500 °C. For comparison, reference samples with the initial multiple energy implantations of a single impurity were annealed simultaneously with samples having double impurity implantations. To evaluate the regrowth rates, the thicknesses of the amorphous layers were determined after each annealing step by using backscattering and channeling of 1.5-MeV 4He+ ions. This method is described in detail by Csepregi et al. in Ref. 4.

The effect of impurities on the growth rate is shown in Fig. 1 for a 75As-doped reference sample. At both 475 and 500 °C, the growth rate is strongly enhanced compared to the intrinsic growth of Si given by the dashed lines. The relatively fast regrowth during the first annealing step can be explained by the rapid reordering of a highly disordered crystalline region at the initial amorphous-crystalline interface which cannot be distinguished from the amorphous region by the channeling technique. Our numerical values for the average regrowth rates corresponding to the highly doped (~2 × 1020 cm−3) regions of 75As, 31P, and 11B implanted samples are shown in Table II which also gives the activation energies derived from the growth rates at 475 and 500 °C. The corresponding values for Ref. 4 are given in parentheses. With the exception of phosphorous, which in our case shows a faster regrowth and a lower activation energy, the results are in good agreement.

The effect of an additional single energy implantation of 31P or 11B on the regrowth at 475 °C of the initially arsenic-implanted amorphous layer is shown in Fig. 2. The addition of the 31P profile [Fig. 2(b)] produces an increase of the growth rate at a depth where the initial regrowth rate is slightly reduced with the decreasing As concentration, resulting in a fairly constant regrowth rate over the whole amorphous layer thickness. The effect of the 11B implantation is drastically different [Fig. 2(a)]. The regrowth rate drops to the level of 1 Å/min, where the amorphous, crystalline interface penetrates the region where the concentration levels of the two implanted impurities are equal. The combinations of a 75As or 31P impurity profile with boron-doped amorphous layers show similar behavior (Fig. 3). In both cases, the regrowth is strongly retarded by the n-type implant.

6Permanent address: Semiconductor Laboratory, Technical Research Centre of Finland, Otaniemi 5A, SF-02150 Espoo 15, Finland.
7Permanent address: Istituto di Struttura della Materia dell’Università 57 Corso Italia, 95129 Catania, Italy.

© 1982 American Institute of Physics
TABLE I. Implantation energies employed for 11B, 28Si, 31P, and 75As.

<table>
<thead>
<tr>
<th>Dopant</th>
<th>Multiple energy implants</th>
<th>Single energy implants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose (10^{15} cm$^{-2}$)</td>
<td>Energy (keV)</td>
</tr>
<tr>
<td>11B</td>
<td>3.3</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>4.25</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>4.85</td>
<td>240</td>
</tr>
<tr>
<td>28Si</td>
<td>1.6</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>300</td>
</tr>
<tr>
<td>31P</td>
<td>4.3</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>7.35</td>
<td>360</td>
</tr>
<tr>
<td>75As</td>
<td>2.7</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>5.45</td>
<td>600</td>
</tr>
</tbody>
</table>

Allowing for the uncertainties in our knowledge of the actual profiles, and generalizing, we conclude from these experimental results that shallow impurities of the same dopant type mutually enhance their effect on the regrowth, while impurities of the opposite dopant type compensate their effect on the regrowth. The data further shows that nearly exact compensation is achieved when the impurity concentrations are closely similar, even though the individual effect on regrowth enhancement of the two impurities differs substantially (see Table III).

For crystallization far below the melting temperature the regrowth will obey an Arrhenius-type equation, which is controlled by an activation energy for an atom to leave the amorphous phase, cross the interface, and attach itself to the crystalline lattice. For an interface between two different phases of a single element, no large scale transport is required and the recrystallization occurs primarily through a bond rearrangement at the interface. Studies of Si at higher temperatures (in the range of ~1000 °C) have shown that the self-diffusivity is strongly affected by electrically active impurities at high concentration levels. Enhanced diffusion is found in both heavily doped p- and n-type silicon as compared to undoped crystals. Mismatch of atomic size between the impurity and lattice atoms introduces strain surrounding each impurity atom. Accumulation of these local strains develops into a macroscopic strain in the lattice contributing to the thermodynamical force of transport.

Stresses may also directly affect the regrowth through a relaxation process at the growing interface. Table III gives the covalent radii and the size mismatch of impurities in Si at 1200 °C. It is obvious that a stress relief mechanism could

![Graphical representation](image1)

FIG. 1. Amorphous layer thickness vs annealing time for 75As implanted (100) Si at 475 and 500 °C. The dashed lines show the regrowth rates for 28Si implanted, undoped Si. The calculated 75As profile is superimposed on the data.

![Graphical representation](image2)

FIG. 2. Amorphous layer thickness vs annealing time at 475 °C for (a) 75As and 11B implanted, and (b) 75As and 31P implanted (100) Si with calculated impurity profiles superimposed on the data. The dashed line shows the regrowth characteristics of a reference sample implanted with 75As only. The regrowth rate of undoped Si is given as a straight line.
account for enhanced regrowth especially in the case of boron. However, a simple stress relaxation model fails to explain the observed low regrowth rates for compensated, heavily doped layers.

It is known that diffusion in silicon takes place through the motion of lattice defects. A direct relationship has been found between the carrier density and the concentration of charged defects.13,14 The amount of electrically active impurities, therefore, plays an important role in the diffusion process. If the regrowth rate of the amorphous silicon is controlled by atomic diffusion at the amorphous-crystalline interface, it should be strongly dependent on the local doping level.

The authors wish to thank T. W. Sigmon and A. Lie toila, Stanford University, who obtained computer-based implantation profiles for comparison with those given in this letter. Thanks are also due to D. Turnbull, Harvard University, and R. Walser and R. Bené, University of Texas at Austin, for valuable comments. This work was executed under the benevolent U. R. Fund of the Böhmische Physical Society (B. M. Ullrich). The implantation part of this study was financially supported by the U. S. Department of Energy through an agreement with the National Aeronautics and Space Administration and monitored by the Jet Propulsion Laboratory, California Institute of Technology (D. Bickler).

\begin{table}
\centering
\caption{Rates and activation energies for the regrowth of ion-implanted amorphized Si (100).
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
 & 75As & 31P & \multicolumn{3}{c|}{Implanted atom} & 28Si \\
\hline
\text{Rate} & \text{475°C} & \text{500°C} & \text{\text{A} min}^\text{-1} & & & & & \\
\hline
\text{12.2} & \text{39.4} & & & \text{(17)*} & \text{12.5*} & \text{68} & \text{(80)*} & \text{3*} \\
\hline
\text{Activation} & \text{2.3} & \text{(2.3)*} & \text{2.0} & \text{(60)*} & \text{177} & \text{200*} & \text{7} & \text{(10)*} \\
\text{energy} & & & & & & & & \\
\text{(eV)} & & & & & & & & \\
\hline
\text{Values in parenthesis are as given by Cserep\textit{ et al.} (Ref. 4).} \\
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{Size effect for impurities in Si at a temperature of 1200°C, \(\epsilon = (r_s - r_i)/r_s r_i \) and \(r_s \) and \(r_i \) are the radii of impurity and Si, respectively, after Bullough and Newman (Ref. 12).}
\begin{tabular}{|c|c|c|}
\hline
\text{Element} & \text{\(r_s (\text{Å}) \)} & \text{\(\epsilon \)} \\
\hline
B & 0.88 & -0.25 \\
P & 1.10 & -0.06 \\
As & 1.18 & 0.009 \\
Si & 1.17 & --- \\
\hline
\end{tabular}
\end{table}

5B. Smith, \textit{Ion Implantation Range Data For Silicon and Germanium Device Technologies} (Research Studies, Oregon, 1977).
11S. S. Lau, J. Vac. Sci. Technol. 15, 1656 (1978).

FIG. 3. Amorphous layer thickness vs annealing time at 475°C for (a) 11B and 75As implanted, and (b) 11B and 31P implanted (100) Si with calculated impurity profiles superimposed on the data. The dashed line shows the regrowth characteristics of a reference sample implanted with 11B only. The regrowth rate of undoped Si is given as a straight line.