STRESS STATE REQUIRED FOR PYRAMIDAL
DISLOCATION MOVEMENT IN ZINC*

by
R. C. Blish, II# and T. Vreeland, Jr.
W. M. Keck Laboratory of Engineering Materials
California Institute of Technology
Pasadena, California

ABSTRACT

A tension or compression stress in such a direction that
basal slip is minimized can produce second order pyramidal slip bands
in zinc single crystals. The stress required to initiate pyramidal
dislocation motion is not sensitive to temperature. However, dislocation
velocity at a given stress is sensitive to temperature and the very
small dislocation velocity at low temperatures has lead to an erroneous
estimate of a "starting stress" for pyramidal dislocations. Dislocation
velocity at a constant temperature was found to be a function of the
magnitude but not the sense of the resolved shear stress.

*This work was used by R. C. Blish, II for partial fulfill­
ment of Ph.D. requirements at the California Institute of Technology,
Pasadena, California.

#Present Address: Bell Telephone Laboratories, Inc.,
Murray Hill, New Jersey.
INTRODUCTION

There is a conflict in the literature with regard to certain properties of zinc deformed by pyramidal slip of the type \(\{\bar{1}2\bar{1}2\}\langle\bar{1}2\bar{1}3\rangle\). Bell and Cahn\(^{(1)}\) showed that these pyramidal slip systems were responsible for the plastic deformation when basal slip is minimized. Gilman\(^{(2)}\) performed the earliest experiments which were directed to a study of non-basal plastic deformation. However, Gilman did not determine the active slip systems and reported a large difference in the nature of the plastic deformation when tension and compression loads were applied in the a direction. No difference in the plastic properties depending upon the sense of the stress state was found in subsequent work by Stofel and Wood\(^{(3)}\) and Lavrent'yev and Salita\(^{(4)}\). Dislocation velocity measurements reported in this work furnish additional evidence that the characteristics of second order pyramidal slip are independent of the sense of the stress state, under conditions wherein basal slip is minimized.

Lavrent'yev, et al\(^{(5)}\) reported measurements of the "starting stress" for pyramidal slip in zinc as a function of temperature. Dislocation movement was measured in the present investigation at stresses well below their values of "starting stress", and a reason is suggested for the discrepancy between their measurement and ours.

EXPERIMENTAL

Specimens were prepared from crystals grown by the Bridgman technique. Acid machining was used exclusively to minimize
the increase in dislocation density. The specimens were prismatic, usually about 1.5 cm long with a 1.5 cm x 1 cm cross section. Two of the surfaces were parallel to \((10\bar{1}0)\) planes. The specimens were oriented for compression (or tension) along the \(\bar{a}\) or the \(\bar{c}\) direction of the single crystals. Stress pulses of controlled amplitude and duration produced by a rapid loading machine\(^6\) were applied to the crystals which were immersed in baths held at various temperatures. Low modulus materials (teflon or silicone rubber) were placed on each loading surface of the crystal to insure uniform application of the load. The \(\{10\bar{1}0\}\) surfaces were chemically etch-pitted\(^7\) before and after application of the stress pulses. Etch-pit densities, before application of the stress pulse ranged between \(10^3\) and \(10^5\) cm\(^{-2}\). Etch-pit counts on the \(\{10\bar{1}24\}\) surfaces\(^8\) indicated that the initial pyramidal dislocation density was always much less than the basal dislocation density.

RESULTS AND DISCUSSION

The slip bands formed under a constant stress were observed to grow at a constant rate, so average dislocation velocity was obtained by dividing the distance from the source of the slip band to its end by the duration of the stress pulse. The slip vector which received the largest resolved shear stress was parallel to the etched surfaces, so we presume that the observed velocity corresponds to the edge dislocation velocity. Edge dislocation velocity as a function of stress was
measured at room temperature for three different stress states. The stress state for the majority of the tests was a axis compression. Two tests were made under the condition of a axis tension and three tests utilized c axis compression. Figure 1 is a plot of edge dislocation velocity vs. resolved shear stress on the active pyramidal slip systems. No difference in the dislocation velocity vs. stress for a compression or tension stress state is detected within experimental error. This is in agreement with the observations of Stofel and Wood and Lavrent'yev and Salita. Stofel and Wood obtained the same stress-strain curves for zinc subjected to c axis tension and compression at room temperature. Lavrent'yev and Salita observed the same amount of pyramidal dislocation motion on both the tension and compression sides of a beam subjected to pure bending. These observations indicate that the experimentally observed variation in starting stress from one crystal to another might be attributed to differences in crystal perfection. An additional example of the strong structure-sensitivity of the plastic properties of zinc is illustrated by the difference between the dislocation velocity measurements reported by Adams, et al.\(^9\) and those presented here. Adams et al. observed the same dislocation velocity at twice the stress (or a velocity 1000 times less for the same stress) in crystals with a higher initial etch-pit density of 10^5 to 10^6 cm\(^{-2}\). The difference in crystal perfection was a consequence of different methods of producing test specimens of the desired shape from the large, randomly oriented single crystal (spark erosion machining vs. acid machining). A difference in the twinning
behavior of crystals prepared by the two different methods has been discussed elsewhere\(^{(10)}\).

Figure 2 illustrates the effect of temperature upon dislocation velocity at 15 Md/cm\(^2\). The most striking feature of this data is that dislocation velocity does not increase monotonically with temperature. This phenomenon together with additional data on edge and screw dislocation velocity will be discussed in a subsequent paper.

Figure 2 also shows that dislocation motion occurs at stresses well below the "starting stress" reported by Lavrent'yev, et al, which was 10 Md/cm\(^2\) at 300°K rising increasingly rapidly to 130 Md/cm\(^2\) at 77°K. Dislocation motion was observed in the present work at 77°K at a stress of only 1/10 of Lavrent'yev's "starting stress" reported for that temperature, whereas the observations are in agreement at 300°K. In fact, the "starting stress" observed in this investigation is about 10-20 Md/cm\(^2\) and is insensitive to temperature.

In order to understand this discrepancy one must consider how Lavrent'yev et al. measured the "starting stress". Dislocations in slip bands were observed to have moved from the outer fibers toward the neutral axis of a beam subjected to pure bending. The "starting stress" was taken as the elastic stress in the beam at the point where the dislocations in slip bands most closely approached the neutral axis. It was implicitly assumed that the dislocations had attained their equilibrium positions, where the stress could no longer move them. A serious error was made at the low temperatures where the dislocations
require very long times to reach their equilibrium positions. Unfortunately, Lavrent'yev et al. did not report the magnitude of the bending moment, the duration of loading, or how close the dislocations approached the neutral axis, so this hypothesis cannot be fully checked. It must be pointed out that the observations here do not constitute a new measurement of the "starting stress" (because this measurement depends upon the patience of the observer), but rather emphasizes a pitfall in the measurement of this property.

CONCLUSIONS

It is concluded that the sense of stress state has no effect upon the properties of plastic deformation on the second order pyramidal system in zinc. In this investigation dislocation velocity was found to be unaffected by a change from a compression to a tension stress state. The stress-strain curves obtained by Stofel and Wood \(^{(3)}\) and the "starting stress" measurements of Lavrent'yev et al. \(^{(5)}\) reveal no essential difference between the deformation behavior in tension and compression. These observations contradict those reported by Gilman \(^{(2)}\).

Dislocation velocity was measured in this investigation at stresses small in comparison with the "starting stress" reported by Lavrent'yev et al. The very small dislocation displacements detected by those investigators were not the equilibrium displacements and therefore, their measurements did not give a true value of the "starting stress".

ACKNOWLEDGEMENTS

The authors wish to express their appreciation to G. R. May
for his tireless efforts in crystal preparation and to the U.S. Atomic Energy Commission who sponsored this investigation.
BIBLIOGRAPHY

Fig. 1 Edge dislocation velocity as a function of resolved shear stress on the active pyramidal slip systems at 300°K.
Fig. 2 Dislocation velocity at a resolved shear stress of 15 Md/cm²
as a function of absolute temperature.