Validity of Chiral Perturbation Theory for $K^0 - \bar{K}^0$ Mixing

Johan Bijnens, Hidenori Sonoda, and Mark B. Wise

California Institute of Technology, Pasadena, California 91125
(Received 18 October 1984)

Chiral perturbation theory relates the $|\Delta S| = 2$ matrix element $\langle \bar{K}^0 | (\bar{s}d)_{\gamma A} | K^0 \rangle$ to the $|\Delta S| = 1$ matrix element $\langle \pi^+ \pi^- | (\bar{s}d)_{\gamma A} (\bar{u}u)_{\gamma A} + (\bar{s}d)_{\gamma A} (\bar{d}u)_{\gamma A} | K^+ \rangle$. The latter matrix element is measured in $K^+ \rightarrow \pi^+ \pi^- \pi^0$ decay and the former matrix element is relevant for the predictions that the standard model makes for CP nonconservation in $K^0 - \bar{K}^0$ mixing. In this paper the corrections of order $m_s^2 \ln m_b^2$ to lowest-order chiral perturbation theory (i.e., order m_b^2) for these matrix elements are computed. The correction is large for the $|\Delta S| = 2$ matrix element indicating a breakdown of chiral perturbation theory.

PACS numbers: 11.30.Rd, 11.30.Er, 13.25.+m, 14.40.Ag

In the standard six-quark model for strong, weak, and electromagnetic interactions the W bosons couple to the weak current

$$ J_\mu^{(+)} = \frac{G_F}{\sqrt{2}} (\bar{u}_c \gamma_\mu (1 - \gamma_5) \tau) U \begin{pmatrix} d \\ s \end{pmatrix}. $$

Here U is a 3×3 unitary matrix that arises because the charge-(+1/2)- and charge-(−1/2)-quark mass matrices are not diagonalized by the same unitary transformation. If we adjust the phases of the quark fields U can be put in the form

$$ U = \begin{pmatrix} c_1 & -s_1 c_3 & -s_1 s_3 \\ s_1 c_2 & c_1 c_2 - s_2 s_3 e^{i\delta} & c_1 s_2 s_3 + s_2 c_3 e^{i\delta} \\ s_1 s_2 & c_1 s_2 c_3 + s_2 s_3 e^{i\delta} & c_1 s_2 s_3 - c_2 s_3 e^{i\delta} \end{pmatrix}, $$

where $c_i = \cos \theta_i$, $s_i = \sin \theta_i$, $i \in \{1, 2, 3\}$. The angles θ_1, θ_2, and θ_3 are chosen to lie in the first quadrant. In general the phase δ cannot be removed from the matrix U by a redefinition of quark fields and it is a source of CP nonconservation. In the standard model the only other source of CP nonconservation is the QCD vacuum angle θ. However, the stringent upper limit on the electric dipole moment of the neutron implies that θ is too small to be responsible for the CP nonconservation observed in the neutral kaon system.

Experimental information on neutron β decay and semileptonic hyperon decays gives 3 (for small s_3)

$s_1 \approx 0.22$. (3)

Experimental information on semileptonic B-meson decays gives 4 (for small s_2 and s_3)

$$ s_2^2 + s_3^2 + 2 s_2 s_3 c_8 = 3 \times 10^{-3} (10^{-12} \text{ s}) / \tau_B. \quad (4a) $$

$$ s_3^2 \leq 1 \times 10^{-3} (10^{-12} \text{ s}) / \tau_B. \quad (4b) $$

Recent measurements of the B-meson lifetime 5 imply that τ_B is about 10^{-12} s, and so the weak mixing angles θ_2 and θ_3 are very small.

The CP nonconservation observed in kaon decays is consistent with it arising from second-order weak (i.e., order G_F^2) $K^0 - \bar{K}^0$ mixing. CP nonconservation in $K^0 - \bar{K}^0$ mixing is characterized by the parameter

$$ \epsilon = (1/\sqrt{2}) e^{i \eta/4} (1 \text{Im} M_{12}) / (m_{K_S} - m_{K_L}), $$

which measures the deviation of the K_S and K_L states from the CP eigenstates $M_{12} = (1/\sqrt{2})(K^0 - \bar{K}^0)$ and $M_{12} = (1/\sqrt{2})(K^0 + \bar{K}^0)$, respectively. In Eq. (5)

$$ M_{12} = \langle \bar{K}^0 | H_{\text{eff}} | \bar{K}^0 \rangle / \langle K^0 | \bar{K}^0 \rangle. $$

Experimentally $|\epsilon| \approx 2.3 \times 10^{-3}$.

In order to compare the experimental value of ϵ with the prediction of the standard model one needs to know the effective Hamiltonian for $K^0 - \bar{K}^0$ mixing and the matrix element of this Hamiltonian between K^0 and \bar{K}^0 states. The effective Hamiltonian density for $K^0 - \bar{K}^0$ mixing has been computed by successively treating the W boson, t quark, b quark, and c quark as heavy and integrating them out of the theory. The result, to leading nontrivial order in these large masses, is 6

$$ H_{\text{eff}} = \frac{G_F^2}{16 \pi^2} m_c^2 \lambda_1 \lambda_2 \lambda_3 \left[\bar{s}_a \gamma_\mu (1 - \gamma_5) d_a \right] \left[\bar{s}_b \gamma_\mu (1 - \gamma_5) d_b \right] $$

$$ \times \left[\eta_1 c_3^2 \left(c_1 c_2^2 - s_2 s_3 e^{-i\delta} \right)^2 + \eta_2 s_3^2 \left(c_1 s_2 c_3 + c_2 s_3 e^{-i\delta} \right)^2 \left(m_c / m_b \right)^2 $$

$$ + 2 \eta_3 s_2 s_3 c_2 (c_1 c_2 c_3 - s_2 s_3 e^{-i\delta}) (c_1 s_2 c_3 + c_2 s_3 e^{-i\delta}) \ln \left(m_c^2 / m_b^2 \right) \right] + \text{H.c.} \quad (7) $$

© 1984 The American Physical Society
Here \(\eta_1, \eta_2, \) and \(\eta_3 \) are QCD correction factors. They are roughly independent of the top-quark mass and have the values \(\eta_1 \approx 0.7, \eta_2 \approx 0.6, \) and \(\eta_3 \approx 0.4 \) (with use of \(m_c = 1.5 \text{ GeV}, m_b = 4.8 \text{ GeV}, M_W \approx 80 \text{ GeV}, \alpha_{\text{QCD}} \approx 0.1 \text{ GeV}, \) and \(\alpha_s(\mu^2) = 1 \)).

In Eq. (7) long-distance contributions to the effective Hamiltonian have been neglected since they do not contain a factor of the square of a heavy-quark mass. It is likely that long-distance contributions dominate \(\text{Re} M_{12} \). Long-distance contributions to \(\epsilon \) involve \(CP \) nonconservation in \(|\Delta S| = 1 \) amplitudes and are expected to be of order \(20\epsilon' \). In anticipation of an improvement in the experimental limit\(^7\) on \(\epsilon'/\epsilon \), long-distance contributions to \(\epsilon \) will be ignored. Then, from Eqs. (5)–(7) it follows that

\[
\epsilon = -\frac{s_f^2 B g_3^2 f_\pi m_k^2 m_s^2 s_2 s_3 s_8}{16 \sqrt{2} \pi^2 (m_{K_S} - m_{K_L})^2} \left[-\eta_1 + \eta_2 \ln \left(\frac{m_2^2}{m_c^2} \right) + \eta_2 \frac{m_2^2}{m_c^2} \right] \left(s_2^2 + s_2 s_3 c_8 \right) e^{i/4},
\]

(8)
to leading nontrivial order in small angles. Here \(f_\pi \) is the pion decay constant (\(\approx 130 \text{ MeV} \)) and the dimensionless parameter \(B \) is defined by

\[
\langle \bar{K}^0 | O' | K^0 \rangle = B f_\pi m_k^3,
\]

(9)
where

\[
O' = [\bar{s}_a \gamma_\mu (1 - \gamma_5) d_a] [\bar{u}_b \gamma^\mu (1 - \gamma_5) u_b].
\]

(10a)

Under the chiral-symmetry group \(SU(3)_L \otimes SU(3)_R \) the operator \(O' \) transforms as \((27_L, 1_R) \). Chiral perturbation theory relates the matrix element of \(O' \) to the \(K^+ \to \pi^+ \pi^0 \) decay amplitude.\(^8\) The operator

\[
O = [\bar{s}_a \gamma_\mu (1 - \gamma_5) d_a] [\bar{u}_b \gamma^\mu (1 - \gamma_5) u_b] + [\bar{s}_a \gamma_\mu (1 - \gamma_5) u_a] [\bar{u}_b \gamma^\mu (1 - \gamma_5) d_b]
\]

\[- [\bar{s}_a \gamma_\mu (1 - \gamma_5) d_a] [\bar{d}_b \gamma^\mu (1 - \gamma_5) d_b]
\]

(10b)
is in the same representation of \(SU(3)_L \otimes SU(3)_R \) as \(O' \). The effective Hamiltonian density for \(|\Delta S| = 1, |\Delta I| = \frac{1}{2} \) weak nonleptonic kaon decays is

\[
H_{\text{eff}} = - (G_F/2\sqrt{2}) s_1 c_1 c_3 C O.
\]

(11)

Here \(C \) is a factor that takes into account strong-interaction corrections. With the strong-interaction parameters used previously\(^9\) \(C = 0.4 \). To leading order in derivatives and quark masses there is a unique operator involving the pseudo-Goldstone-boson fields that transforms as \((27_L, 1_R) \).

The pseudo-Goldstone-boson fields are incorporated in a \(3 \times 3 \) special unitary matrix

\[
\Sigma = \exp(2iM/f),
\]

(12)
where

\[
M = \begin{bmatrix}
\pi^0/\sqrt{2} + \eta/\sqrt{6} & \pi^+ & K^+ \\
-\pi^0/\sqrt{2} + \eta/\sqrt{6} & -\pi^0/\sqrt{2} + \eta/\sqrt{6} & K^0 \\
K^- & \bar{K}^0 & \left(\frac{1}{2} \right)^{1/2} \eta
\end{bmatrix}.
\]

(13)

Under chiral \(SU(3)_L \otimes SU(3)_R \) \(\Sigma \) transforms as

\[
\Sigma \to L \Sigma R^T.
\]

(14)
Thus the leading operator that transforms as \((27_L, 1_R) \) is

\[
\alpha T^i_{\Sigma}(\Sigma \partial_\mu \Sigma^T)^i j(\Sigma \partial^\mu \Sigma^T)_j.
\]

(15)

\[
L = \frac{f^2}{8} \text{Tr}(\partial_\mu \Sigma \partial^\mu \Sigma^T) + \frac{m_k^2}{4} f^2 (\Sigma_3^2 + \Sigma_3^T).
\]

(20)
If we apply the Noether procedure to the above Lagrangian, it follows from the transformation law in Eq. (14) that the left-handed current is given by

$$L^a_{\mu} = -(if^2/4)\text{Tr}(\Sigma^\dagger T^a \partial_\mu \Sigma),$$

(21)

where T^a is an SU(3) generator. Evaluation of the matrix element of L^a_{μ} between a pion and the vacuum gives $f_\pi = f_\pi^o$ to leading order in chiral perturbation theory. Thus

$$B = -8\alpha/f^3 m_K,$$

(22)

and the invariant matrix element for $K^+ \rightarrow \pi^+ \pi^0$ decay is

$$M(K^+ \rightarrow \pi^+ \pi^0) = -(3iG_f/8) B s_1 c_1 c_3 C m_K^2.$$

(23)

The measured $K^+ \rightarrow \pi^+ \pi^0$ width implies from Eq. (23) that

$$|B| = 0.4.$$

(24)

In this Letter the leading corrections to Eqs. (18) and (19) are evaluated. These corrections are of order $m_K^4 \ln m_K^2$ and arise from a one-loop evaluation of the matrix elements of the operator in Eq. (15). The “large” logarithm causes these terms to dominate over those of order m_K^4. The m_K^4 corrections are not computable since they can arise from operators with four derivatives.

For the $K^0\bar{K}^0$ matrix element of O' the graphs which contribute are shown in Fig. 1. Figure 1(c) is a counterterm that arises from one-loop field renormalization. In Figs. 1(a) and 1(b) the solid square is a vertex from Eq. (15) while the solid circle is a strong-interaction vertex from Eq. (20). With inclusion of pieces of order $m_K^4 \ln m_K^2$ from Fig. 1,

$$\langle \bar{K}^0|O'|K^0 \rangle = -\frac{8\alpha m_K^2}{f^2} \left[1 + \frac{m_K^2}{(4\pi f)^2} \left[\frac{26}{3} - \frac{14}{3} + \frac{5}{3} \ln \left(\frac{m_K^2}{\mu^2} \right) \right] \right].$$

(25)

In Eq. (25) the three terms in the square brackets are the contributions of Figs. 1(a)–1(c), respectively. For Fig. 1(a) there are nonzero contributions from eta and charged-kaon loops. These are in the ratio 11:2.

For the $K^+ \rightarrow \pi^+ \pi^0$ matrix element of O the graphs which contribute are shown in Fig. 2. Again, the solid square is a vertex from Eq. (15) while the solid circle is a vertex from Eq. (20). Figure 2(e) is a counterterm that arises from one-loop field renormalization of the pseudo Goldstone bosons. With inclusion of pieces of order $m_K^4 \ln m_K^2$ from Fig. 2,

$$\langle \pi^0 \pi^+ |O| K^+ \rangle = -\frac{12(\alpha m_K^2)}{\sqrt{2} f^3} \left[1 + \frac{m_K^2}{(4\pi f)^2} \left[\frac{17}{3} + 1 - \frac{7}{9} + \frac{22}{9} + \frac{3}{2} \ln \left(\frac{m_K^2}{\mu^2} \right) \right] \right].$$

(26)

Here μ is the subtraction point. The subtraction-point dependence in Eqs. (26) and (25) cancels against the subtraction-point dependence of the contributions of operators with four derivatives. In Eq. (26) the five terms in the square brackets are the contributions from Figs. 2(a)–(e), respectively. Figure 2(a) gets contributions from eta, charged-kaon, and neutral-kaon loops. These are in the ratio 4:7:6. Isospin invariance of the strong interaction implies that Fig. 2(b) is nonzero only for the $\pi^+ \pi^0$ loop. Figure 2(c) can have a $K^+ \pi^0$, $K^0 \pi^+$, or $K^+ \eta$ loop. These possibilities contribute in the ratio $(-31):(-18):21$. Figure 2(d) can have a $K^+ \pi^+$, $K^0 \pi^0$, or $K^0 \eta$ loop. These possibilities contribute in the ratio 11:12:21.

There is a one-loop correction to the matrix element of the axial current which gives

$$f = f_\pi \{ 1 + (4\pi f_\pi)^{-2} m_K^2 \ln (m_K^2/\mu^2) \}.$$

(27)
With use of this, Eqs. (25) and (26) become

\[
\langle \overline{K}^0 | O | K^0 \rangle = -\frac{8\alpha m_{\pi}^2}{f^2}\left[1 - \frac{41}{3} \frac{m_{\pi}^2}{(4\pi f^2)\mu^2} \ln \left(\frac{m_{\pi}^2}{\mu^2} \right) \right],
\]

(28)

\[
\langle \pi^+ \pi^0 | O | K^+ \rangle = -\frac{12i\alpha m_{\pi}^2}{\sqrt{2}f^2}\left[1 - \frac{9}{2} \frac{m_{\pi}^2}{(4\pi f^2)\mu^2} \ln \left(\frac{m_{\pi}^2}{\mu^2} \right) \right].
\]

(29)

The correction to the $K^0 - \overline{K}^0$ matrix element of O' is large, for a subtraction point μ of about 1 GeV, which indicates a breakdown of chiral perturbation theory for this matrix element. The correction to the $K^+ \rightarrow \pi^+ \pi^0$ matrix element of O is not as large.

The corrected value of B is obtained from

\[
M(K^+ \rightarrow \pi^+ \pi^0) = -\frac{3iG_F}{8}\frac{B_{s1}c_1c_3}{f}\left[1 + \frac{55}{6} \frac{m_{\pi}^2}{(4\pi f^2)\mu^2} \ln \left(\frac{m_{\pi}^2}{\mu^2} \right) \right].
\]

(30)

The large difference between Eqs. (30) and (23) indicates that chiral perturbation theory for B has broken down. This has implications for analyses of the parameters of the standard model which use Eq. (8).

We thank M. Peskin for useful discussions. This work was supported in part by the U.S. Department of Energy under Contract No. DE-AC03-81-ER40050, and through the U.S. Department of Energy Outstanding Junior Investigator Program under Contract No. DE-FG03-84ER40172. One of us (M.B.W.) acknowledges receipt of an Alfred P. Sloan Fellowship, and one of us (J.B.) acknowledges receipt of a research assistantship from the National Fonds voor Wetenschappelijk Onderzoek, Belgium.

5J. Jaros, in Proceedings of the SLAC Summer Institute on Particle Physics, Stanford 1984 (to be published).
7J. Cronin, in Proceedings of the SLAC Summer Institute on Particle Physics, Stanford, 1984 (to be published).
10There is also a term needed to keep the measure invariant. However, this term does not give rise to contributions of order $m_{\pi}^2 \ln m_{\pi}^2$. See, A. C. Redfield, Phys. Lett. 109B, 311 (1982).