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Asa first step in the microscopic study of dynamic processes on surfaces and at interfaces, we have
considered the thermal desorption of adsorbed species on solid surfaces. We review recent
developments based on a classical stochastic diffusion formulation. Using this theory, we
obtained a simple rate expression, R = (£2,/2m) f(T Jexp( — D,/kT), where {2, is the surface-
adsorbate vibrational frequency and D, the dissociation energy. For atoms f(T') = 1, whereas for
molecules f(7°) depends on the parameters for the frustrated rotations at the surface. The effect of
coverage on the rate of desorption and the process of desorption into a fluid are also examined.
Finally, we discuss the relationship between our theory and the expressions obtained from

activated complex (transition-state) theory.

PACS numbers: 68.45.Da, 82.65.My

|. INTRODUCTION

The understanding of dynamical processes occurring on the
surfaces and at interfaces of solids is crucial for the develop-
ment of theoretical and experimental techniques in a wide
range of technological applications, such as crystal growth,
heterogeneous catalysis, and electrochemistry. As a first step
in the study of such dynamical phenomena, we have consid-
ered one of the simplest and most basic processes: the ther-
mal desorption of adsorbed species from solid surfaces. Due
to the development of accurate experimental techniques
[e.g., molecular beam relaxation spectrometry (MBRS),"®
temperature programmed desorption (TPD),'™ low energy
electron diffraction (LEED),"? Auger electron spectrosco-
py (AES),"Y thermal desorption mass spectrometry
(TDS),"* etc.], a vast literature related to adsorption—de-
sorption experiments is available for a large variety of sys-
tems. The need for a basic understanding of the nature of
such processes and the availability of experimental data have
stimulated the proposal of many theoretical methods and
models.”™®

The most commonly used framework for the discussion of
desorption is a statistical thermodynamical approach based
on transition state theory (TST).? Although this method cor-
rectly accounts for the observed magnitude of atomic de-
sorption rates, quantitative predictions have been difficult
since it requires knowledge of the transition state for the
desorbing species. These problems have been particularly
serious for desorption of molecules.

Although TST had not provided a prediction of specific
desorption rates, it did provide a justification for the Arrhen-
nius form

R=Aexpl~ E,/kT) (I.1)
usually used in characterizing experimental desorption rates
in the limit of low coverages (no interaction between the ad-
particles).
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A number of authors® have combined transition state the-
ory with stochastic trajectory calculations for the evaluation
of desorption rates. The theories that employ stochastic tra-
jectory calculations are computationally involved and hence
difficult to apply directly. There are also microscopic theor-
ies* in which an explicit coupling between the adparticle and
the surface phonon modes is introduced to calculate the en-
ergy flow between the surface and the adparticle. However,
these microscopic approaches lead to discrepancies between
experimental and calculated desorption rates for physi-
sorbed atoms. Moreover, there appears to be difficulties in
applying these approaches to molecular desorption.

The experimental and theoretical studies undertaken over
the last two decades have led to a better understanding of the
desorption mechanisms. They have, however, simultaneous-
ly raised some additional basic questions. One puzzling re-
sult pertains to the measurements'®* of both 4 and E, for
the desorption of CO from different metal surfaces. Al-
though the observed values for the preexponential factor (in
the limit of low coverage) vary over three orders of magni-
tude, all of the experimental results indicate that the values
of 4 are at least two orders of magnitude larger than the
corresponding values observed for atomic systems (4~10"*
s~ '). In addition, several experiments®®" > lead to different
functional relationships between 4 and E, and the surface
coverage.

These and other examples have illustrated the need for
theoretical methods that yield explicit expressions for the
rate of desorption in terms of the microscopic properties
(e.g., vibrational frequencies, bond energy, etc.) and dynam-
ics of the adsorbate-surface system.

In the present paper, we review a theoretical description
for desorption’ which leads to a simple rate expression given
in terms of the microscopic properties of the system. The rate
of desorption is found to have the form
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- 0 De
= -;Of(T)T(T)exp( -7 ) (L.2)

where T'is the temperature, & is Boltzmann’s constant, D, is
the bond enthalpy, and {2, is the surface adsorbate vibration-
al frequency. For atoms, the factor f/(T") = 1, but for mole-
cules f(T) depends on the parameters for the frustrated rota-
tions at the surface. For molecules this factor can be 10° to
10? leading to the much larger desorption rates observed
experimentally. The function 7" (T )~1 for desorption into
vacuum, but it depends on the microscopic parameters of the
system when the particle is desorbing into a liquid (vide in-
Jra). This method is based on a classical stochastic diffusion
theory (CSDT) which follows a procedure proposed by
Kramers® but modified so as to be appropriate for desorp-
tion. We also examine the effect of coverage” on the rate of
desorption, as well as the problem of desorption into a fluid
phase.’ Finally, we consider the relationship between the
present treatment and transition state theory.'®

Il. DERIVATION OF THE EXPRESSION FOR THE
RATE OF DESORPTION

A. Stochastic equation of motion?

We start by considering the relative motion of the adparti-
cle with respect to the surface atoms. In so doing, we follow
the ideas introduced by Adelman and Doll.”""'> We consider
explicitly the motion of a few surface atoms that are strongly
interacting with the adsorbed particle, while the rest of the
crystal is assumed to act as a heat bath. Without loss of gen-
erality, we shall consider the motion of only one surface
atom.

We first assume that the adparticle is an atom; a general-
ization of the results for the case of molecules will be consid-
ered below. A further simplification is introduced by assum-
ing a one-dimensional system in which both the adatom and
the surface atom are restricted to move in a direction normal
to the surface. Thus, the motion of the adatom will be de-
scribed by

ms = QK(—Z-"—Q (ILI)

oz
where z and { are the positions of the adatom and the surface
atom, respectively, m is the mass of theadatomand V'{z — §)
is the interaction potential between the adatom and the sur-
face.

The motion of the surface atom will be described by a
generalized Langevin equation,’’

mF = aV(Z —¢)

-msfoe(t—t')g(r')dz'#(z),

where m_ represents the mass of the surface atom; w, is the
characteristic frequency of the solid, & (¢ — ¢ ') and f{¢ ) corre-
spond to a memory kernel and random force, which include
the influence of the heat bath on the motion of the surface
atom. The functions & (t) and f(¢) are related by the second
fluctuation-dissipation theorem.'?

Integrating the memory kernel in Eq. (11.2) by parts and
taking the Markovian limit'"'* one obtains a Langevin equa-
tion of motion for the surface atom,

— m,w{

(IL2)
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mi— aV((z% £)

where £2, is the effective frequency, 3, is the friction con-
stant, and f(¢ ) is a random force with a Gaussian distribu-
tion.®!! The interaction potential ¥ (z — ¢ ) between the ada-
tom and the surface is often described in terms of Morse or
Lennard-Jones-type potentials, leading to nonlinear equa-
tions of motion.

The problem is then linearized by means of a parabolic
splines fit (4 + Bz + 1/2 Cz* in each interval) to the poten-
tial ¥ {z — & ). Thus, the formal solution of Eq. (I1.3) by means
of Laplace transforms'' is now possible, leading to

—m 2% —mpBE+fit), (IL3)

it~ (1€
- Cc* JIA(t'ﬁ(t—t’)dt'+CR {t), {11.4)
m; Jo
where dV(z)/0z = B + Cz and
Alr) = —éf lexp| - 6. -5 ]
~exp| — 8, + )5 [}ar, (IL3)

with Q2 =82 —4012 —4C/m; R (t) includes the initial
conditions and the random force f (¢ ). [See Ref. 7(b) for a deri-
vation of Eq. (I1.4)].

We now take the Markovian limit of the convolution inte-
gral in Eq. (I1.4). This approximation is valid in the present
case because the time ¢ appearing in the integral refers to
characteristic desorption times. On the other hand, from Eq.
(I1.5), we see that the decay time for A () is 8, '. To estimate
8., we use the Debye approximation, which gives'

B, =(7/6lwy, (11.6)
where @, is the Debye frequency of the surface. The time
B! is then of the order of magnitude of the period of a
molecular vibration so that »8 . '. We can then put
z{t — t')= z(t )and let #— oo in the upper limit of the convolu-
tion integral, so that Eq. (I11.4) becomes

) 4 C CB,
mit)= — — {1 —
Oz m.2? m.2*

Zt) + CR(t),

(IL7)
where 22 =022+ C/m,.

The first term in the right-hand side of Eq. (IL.7) is the
product of the force at point z, — ¥V /Jz, multiplied by a
correction factor (1 — C/m£2?). The force — 3V /3z is
what would be obtained from theoretical calculations in
which the surface atoms are kept fixed. The term
(1 — C/m 02 *)represents a correction to the surface—adpar-
ticle force (arising through the coupling of the adparticle
with the crystal) due to the motion of surface atoms. Thus,
the directly calculated surface~adsorbate frequency would
be w, = (C/m)'"?, however, the modification due to the
motion of the crystal atoms leads to

ﬂz
sl %))
m.(2 N2+ wf

(a reduced frequency). This may explain why the calculated
surface-adsorbate frequencies (i.e., @) are often larger than
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the experimentally observed values (i.e., w).' In the limit
T—0 the correction term becomes unity.”®

Equation (I1.7) is a Langevin-type equation describing the
motion of the adatom coupled to the solid surface, which

acts as a heat bath. We can rewrite it in the form

CR 1
Bz + ——— CRU)
m
B. Rate of desorption for atoms’

3= —-B-0%2- (I1.8)

In a desorption process we are interested in time scales
which are much larger than those characteristic of molecu-
lar motion B ! [see Eq. (II.8)]. Thus, in obtaining an expres-
sion for the desorption rate, we follow the derivation origin-
ally suggested by Kramers.® We start by considering the
generalized Liouville equation

W
W Wk pu 59—~+B W+qg—
a oz Ju

W
o’
(IL.9)
where W (z,u,t ) is the probability distribution to find the par-
ticle at position z with velocity u at time ¢, and ¢ = kT /m.
Here, B is the friction constant in Eq. (I1.8) and K represents
the acceleration caused by the interaction potential ¥ cou-
pling the adatom to the surface. This acceleration K is given,
according to Eq. (I1.8}, by

1 9V (2)

K= —B+02%= (I1.10)

m 0z

Following the development of Chandrasekhar®® one can
show’® that the (steady state) expression for the flux of de-
sorbing particles at a distance Z,, from the surface is given by

- kT D,
J(Z,) = W(Z,uudu=C, - Y(T)expl — — ),

kT
(IL.11)
where
D, = f/(Zu) + ";"'mu‘z)’
and
172
Y(T)=®(a,) + expl — n)( FﬂkT) [1=®la)l.
2ma
(I1.12)
with
. 172
a; = [ E%Fﬁ)] / [u()_‘ (aZ() + b]]’
1/2
azz(é%) [ —6iaZ, +b) +ul,
0=1—B/a n- BEZot+b]"
29

The symbol @ (a) stands for the error function, Cy is a norma-
lization constant, and

[B+(ﬂ2 4”21/2]

2B
—~ﬂ+(ﬁz )1/2 :

The rate for a desorption process is given® by the ratio of
the flux at Z, to the number of particles N, at the surface. For

b= —
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experimentally interesting temperature ranges (where
kT<D,) one can approximate the interaction potential ¥ (z)
by a harmonic potential to obtain

2mkT )
mil, ’
where £2, is the value of £2 [c.f. Eq. (I1.8)] at the minimum.
The final expression for the rate of desorption” is

D
R= T(T)exp( it >
27 kT

No = Co(

(IL.13)

C. Rate of desorption for molecules?

Next, we consider the case of a molecule desorbing from a
solid surface. For such a system, in addition to the transla-
tional degree of freedom, there also exist frustrated motions,
such as frustrated rotations and translations. For example,
considering the diatomic molecule CO, the most important
frustrated motion corresponds to the bending mode of the
oxygen atormn about the surface—carbon bond. For the free
molecule there is no direct coupling between the pure trans-
lational and the pure rotational motions, but for the ad-
sorbed system the two motions are coupled through the sur-
face. Thus, the total interaction potential between the
molecule and the solid surface can be written in the form

Vlolal - V(Z) + rot(Y)’ (1114)

where ¥ (z) and V., (y) represent the potentials due to pure
translation and frustrated rotation (i.e., the bending mode),
respectively. In such a case, the molecules, which are in equi-
librium with the surface, will have a Maxwell-Boltzmann
distribution of frustrated rotational energy. The total distri-
bution function, obtained as a solution to the generalized
Liouville equation, will have the form
202 2,
Wizuy,y) = W(z,u)exp( _ My vl ”2), (IL15)
2kT

where W (z,u) is the steady state solution of Eq. (I1.9) and the
harmonic approximation is used for the frustrated rotational
motion"* (here u/ 02 ? is the force constant of the frustrated
rotation).

Due to the coupling of the translational and rotational
motions to the surface, we assume that the energy stored in
the frustrated rotation can be converted to translational ki-
netic energy of the desorbing molecule. As a result, the de-
sorption energy D, is given by

D, =V(Z)+ - midy + —pl*p + <22,

Following a procedure similar to that of the previous sub-
section,”™ we obtain [in the harmonic approximation for
V (2); for the general expression see Ref. 7(b)]

2?0’ D,
R= ﬂ(——————” 7o )T(T)exp( —@;),
27 TkT kT

where ¥, is the maximum bending angle for the molecule.
The choice of the value of ¥, is somewhat arbitrary; however,
it must be such that

exp( — —21—u12.() fyé)(l.

(IL.16)
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In the case of desorption into vacuum, the function Y (7')is
practically unity (for the systems we have studied) so that the
resulting expressions for the rate of desorption are’®

D
Ratom = QQCXP( - . ): (11.178)
27 kT
2ul’n? D
Ry = &(L_ﬁ) exp( _ ) (IL17b)
27 kT kT

Ill. COVERAGE DEPENDENCE’®

Adsorbate-adsorbate interactions influence the desorp-
tion rate via a modification of the interaction potential ¥ (z)
{(and hence D, ). For simplicity, in this section we assume that
the direct adsorbate—surface interaction is not changed by
the adsorbate—adsorbate interaction, so that the net poten-
tial seen by the desorbing particle is the superposition of its
interaction with the surface and with the other adparticles.
Although this assumption may not be valid in all cases (e.g.,
when three-body or charge transfer effects are important) it
is likely to be fairly accurate for noble gas adsorbates. How-
ever, this assumption is not essential because the present
method can be implemented to include more general poten-
tials.

In order to incorporate coverage effects into D, and V (z)
we must determine the optimum (minimum free energy) ar-
rangement of the adparticles on the surface. To do this, we
first assume that the particles adsorb on well defined (period-
ic) sites on the infinite surface. Next, we choose a relatively
small region of the surface, referred to as the desorption re-
gion, which is used to generate all possible arrangements of
the adparticles for each coverage 6. In order to determine the
configuration(s) exhibiting the minimum free energy, one
must calculate the total energy associated with each arrange-
ment. Since the adparticle-surface interactions are the same
for all arrangements (for a given @) their sum over all the
adparticles in the system can be omitted from the calculation
of the total energy, hence the total energy consists of a pair-
wise sum of adsorbate—adsorbate interaction energies. We
divide this pairwise sum into two terms,

Emlal = Z (l/in~in + I/in~oul )’

desorption region

where E,,, is the total adsorbate-adsorbate interaction en-
ergy of the desorption region, V,_ . represents the adsorbate
interactions within the desorption region, and V;, _,,, corre-
sponds to the interaction energy of an adparticle inside the
desorption region and all the other adparticles outside this
zone. To evaluate the second term in Eq. (III.1) we use a
mean field approximation in which each site outside the de-
sorption region is assumed to contain & adparticles (where 8
is the coverage). The value of E,,,,, for the different configu-
rations, is then calculated by combining an appropriate ad-
sorbate—adsorbate interaction potential with the arrange-
ment of the adparticles in the desorption region.

Once the total energies for all the possible arrangements
{at a given &) have been evaluated, the configurations are
subdivided into groups according to their £, values. The
free energy associated with each group of configurations is
then obtained, as a function of temperature, using

F=E_,.,—-TS

(ITL1)

(I11.2a)

total
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and
S = k log(I"), (IT1.2b)

where I is the number of configurations with energy E,.;.
The arrangement of adparticles (inside the desorption re-
gion) used to evaluate the desorption rate is chosen from the
group of configurations corresponding to the lowest free en-
ergy.’

After identifying the minimum free energy configura-
tion(s) {for a given coverage and temperature range) we cal-
culate the net potential felt by the desorbing particle as

adparticles

Vi) =VE@+ Y Vyla), (IIL3)

where ¥ is the effective adsorbate-surface interaction poten-
tial for @ = 0 and ¥; is the pairwise interaction between the
desorbing particle and the jth adparticle on the surface. Fin-
ally, to obtain the temperature dependence of the rate of
desorption for a given coverage, the potential energy in Eq.
(I1.8) is replaced by V,.,(z) and the D, by the corresponding
well depth of the net potential.””

From the coverage dependence of the desorption rate R {8
we can extract the coverage dependence of the preexponen-
tial factor 4 (6 ) and the effective dissociation energy D, (8.
From these relationships we can calculate the temperature
programmed desorption (TPD) spectra by solving the Red-
head equation'®

o

D.16) ] (I11.4)

= —04(0 )exp[ T T

iV. DESORPTION OF ATOMS INTO LIQUIDS®

The derivation of an expression for the rate of desorption
into a liquid phase follows the same basic steps presented in
Sec. II. In this case, however, one must also consider the
interaction between the desorbing particle and the liquid
molecules that surround it.

We start by considering a system composed of a desorbing
particle (atom or ion} with mass M, interacting with a solid
surface and a number of solvent particles, with mass M, as
illustrated schematically in Fig. 1. We divide the substrate
atoms into two groups: (i) a small number of atoms which are
strongly interacting with the adsorbed particle, this group is
called the primary zone, and (ii) the rest of the solid which is
assumed to act as a heat bath. As in Sec. I1, without loss of
generality, we assume that the primary zone contains only

electrode

OQ O desorbing particle
@@éﬁ
4«}@ O

wi@‘b\solvem particles

primary zone

FiG. 1. Schematic description of the absorbate at a solid/liquid interface
{after Ref. 9}.
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one atom whose mass is denoted by M. We also simplify the
problem by limiting both the desorbing particle and the pri-
mary zone atom to a one-dimensional motion normal to the
solid surface. Thus, the motion of the adparticle will be de-
scribed by a Newtonian equation of motion
MR — — IV(R,(.Z) ’
JdR
where { represents the displacement of the surface primary
zone atom from its lattice point. The vector Z includes the
displacement from equilibrium along the line connecting the
centers of the adparticle and the solvent particles surround-
ing it. The total interaction potential V (R,{,Z) felt by the
adparticle is assumed to be given by a sum of pairwise inter-
actions

(IV.1)

VREZ)=VR-)+ S VIR ~Z),

i=1

(IV.2)

where N (R ) is the number of solvent particles around the
adsorbate when it is at a distance R from the surface. Be-
cause the desorbing particle is always surrounded by a
*cage” of liquid molecules, we use harmonic potentials to
represent the interaction between the adparticle and the lig-
uid,

VR—Z)= %k,m —Z)p

The interaction between the surface and the desorbing
particle is represented by a properly dissociating potential
(e.g., Morse or Lennard-Jones). Again we fit this potential by
parabolic splines.

The motion of the primary zone atom and that of the sol-
vent molecules are described using the equivalent harmonic
chain representation (EHCR) introduced by Adelman.'®
This representation is used to construct model heat baths
which, upon the application of the Markovian approxima-
tion, lead to Langevin-type equations.® As before, the intro-
duction of the Markovian approximation is justified by the
large differences between the time scales for desorption and
vibrations.

Thus, the equation of motion for the primary zone atom
reduces to

IV (R$2Z)
9

Similarly, the motion of the jth solvent particle is described
by

ML= —MQRYE—-MPi— +/£.(¢).(IV.3)

IV RLZ)
azZ. +

i

MZ = -M2Z —MBZ ~ Alt).

(IV.4)

The effective frequencies and friction constants of Egs.
(IV.3) and {IV.4) can be expressed in terms of the parameters
of the EHCR, as shown in Ref. 9.

Next, we substitute the potentials of Eq. (IV.2) into Egs.
{IV.3) and (IV.4) and solve them formally (using Laplace
transforms). Assuming that the adsorbate-liquid interaction
has the same form for all the ¥ (R } solvent particles, we can
rewrite the effective equation of motion for the desorbing
particle as
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MR = — {[N(R ), ~1,(0)]
+ [C(R)—T,(0)]}R — B(R)

_ f [Fit—t') + it —t)]R (")t

— [Lt)+ [(t)]R(0) + F(z), (IV.5)
where
F(t)—N(R)ﬁfwA(t’)dt' (Iv.6
)= ) ! , -6a)
_ GCR) (™ Ny
r )= WMS J: A t')dr’, {(IV.6b)

and where A,(t ) and A (¢ ) have exactly the same form as the
integrand of Eq. (IL5), with Q?=p8?—4R3N2=0?

+K,/M;,Q*=8? ~4022% and 22 =072 + C/M,. Here
Coand C (R )represent the force constants associated with the
adparticle-surface and adparticle-liquid interactions; B (R )
is the corresponding linear coefficient of the parabolic spline
fits to V(R — &), and F(¢) is a random force.

The term in braces in Eq. (IV.5) corresponds to the total
potential felt by the desorbing particle. It includes the cor-
rections due to the thermal motion of both the surface atoms
and the solvent particles surrounding the desorbing particle;
thus, this is the potential that one would obtain experimen-
tally. We denote this total potential by V.., (R,{,Z). Due to
the large difference in time scales, one may introduce the
Markovian limit to Eq. {IV.5) and obtain the corresponding
Langevin equation

. av._ (R, Z ~ ~ . -

ME— _ .__“ﬁi_l — [B(R)+B.R)IR +Ft),
(IV.7)
where
- N(R)k B,
B/R)= M;
M0

_ C,CRB,

R)= .
BiR) = =

Equation (IV.7) represents an effective equation of motion
for the desorbing particle, which is coupled to a heat bath
constituted by the solid surface and the liquid. Equation
(IV.7) can thus be rewritten as

MR= —BR)-CRR—Bo(RIR+Fit), (IV.3)
where B (R ) and C (R ) are the first and second derivatives of
the total potential ¥, evaluated at the point R, and

Bix(R)=Bi(R)+ B.(R).

It describes the motion of the desorbing particle in terims of a
Brownian oscillator in which the interaction with the heat
bath is given in terms of the microscopic quantities of the
system. The amplitude of the random force F (¢ ) is defined by
its relations to 3,,, through the second fluctuation-dissipa-
tion theorem.

Since Eq. (IV.8) has exactly the same form as Eq. (I1.8),
one can calculate the rate of desorption into the liquid using
the procedure outlined in Sec. I1 B. Thus, we obtain

D
R=% T(T)exp( _ ——)
2T kT

where Y'(T'}is given by Eq. {I1.12). As we shall see in the next
section, contrary to the case of desorption into vacuum, this
function is not necessarily equal to one.

(IV.9)
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V. RESULTS AND DISCUSSION
A. Desorption of atoms and moiecules

We shall now consider some examples of the application
of the theory presented in the previous sections. In the case
of atomic desorption we compare theoretical and experi-
mental results for both chemisorption and physisorption
(the two limits of strong and weak interaction potentials).
For molecular desorption, we examine the desorption of CO
from nickel surfaces.

In Fig. 2(a) we compare the calculated [using Eq. (I1.17a)]
and experimental'” rates of desorption as a function of tem-
perature for chemisorbed K on W(111). In addition, the re-
sults calculated by De et al.*® are shown. In these calcula-
tions we used the surface-adsorbate potential ¥ (z), obtained
from the parameters of Ref. 4{a). For this system our results
deviate from experiment by ~ (.2 orders of magnitude, well
within the experimental uncertainty.

The desorption rates of physisorbed Xe from W(111) are
plotted in Fig. 2(b) with a comparison both to the experimen-

T [°k]
1250 1000 833 714
10 T T T T ——
e —— PRESENT WORK
o - —— EXPERIMENT
lonn CALCULATION OF
®®® ¢ ET AL
i0'F
g 6°t
w
PaloM
o De = 2640meV
o Qo= 13,7 meV
0°F K on W(lI)
-6 L | | 1 i
10
0.8 1.0 1.2 1.4
(a) 1000/T [°K]
T[°k]
s 250 167 125 100
10 T T -1 T T T T
—— PRESENT WORK
- ——— EXPERIMENT
_n - CALCULATION OF DE ET AL
10
TU- ’05_
@
2 |
o
a 10’}
@ D =217 meV
[ Q.= 3mev '~
1
Tolls .
Xe on W (i1 .
- \\
|d‘ | ! 1 L I - L
4.0 6.0 8.0 10.0
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Fi1G. 2. (a) Desorption rates for a chemisorbed atomic system K on W(111);
{b) desorption rates for a physisorbed atomic system Xe on W(111) [after
Ref. 7(b)).
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tal data'™ and to the calculations of De et al.** Again we
find that the desorption rate obtained from EQ. (IL.17a)is an
excellent agreement with experiment.

These results clearly show that Eq. (II.17a) provides a very
accurate description of the rate of desorption of atoms from
solid surfaces. The simple relation between the rate of de-
sorption R and the characteristic microscopic parameters of
the system {2, and D, makes it possible to predict one of the
quantities from experimental determinations of the other
two.

As an example of molecular desorption we have consid-
ered CO chemisorbed on Ni(110).”-'® In Fig. 3 we present the
results of our calculations {Eq. (11.7b}], as well as the experi-
mental values of Helms and Madix.'® We also show the rate
of desorption that one would obtain if the CO were treated as
an atom [Eq. (II.17a)]. The excellent agreement between the
theoretical calculation and the experimental data shown in
Fig. 3 suggests that the frustrated rotational motion is re-
sponsible for the two order of magnitude increase in the
preexponential factor.

B. Coverage dependence

To study the effect of coverage on the desorption rate
within the framework described in Sec. III a model system
was chosen. A difficulty associated with this type of study
stems from the lack of quantitative experimental and theo-
retical data on the modifications to the adsorbate-surface
and adsorbate-adsorbate interaction potentials due to
changes in coverage. Such changes should become evident in
systems where three-body interactions and/or charge trans-
fer effects are important. In the present study we are mainly
concerned with the qualitative behavior of the desorption
rates as a function of coverage.

We have studied, as a model system, the desorption of Xe
atoms from W{111) surfaces. Because of the weak bonding
{D, = 5 kcal/molj we expect only a small overlap between
the adsorbate and surface electronic wave functions, and
hence the three-body and charge transfer effects should be
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F1G. 3. Desorption rates for CO on Ni(110) [after Ref. 7(b)}. The experimen-
tal results are those of Helms and Madix [Ref. 1(a}].
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negligible. Consequently, the adsorbate—surface interaction
can be obtained from low coverage experimental results,'”
however, the nature of the adsorbate-adsorbate interaction
is not well known. We consider two limiting cases: (i) an
attractive Xe—Xe interaction obtained from gas phase scat-
tering experiments”® and (i) a purely repulsive Xe—Xe inter-
action based also on experimental gas phase studies.?’ The
presence of the surface will probably make the effective Xe—
Xe interaction less attractive than in the gas phase so that the
actual potential should be in between the above two cases.

In calculating the desorption rate, we always focus on a
site that happens to be occupied, and we calculate the rate of
desorption from this site. The specific arrangement of occu-
pied sites used in calculating the TPD spectra is the most
probable one (the lowest free energy) for a given coverage ¢
and temperature T. The details of this calculation are pre-
sented in Ref. 7(c).

For the attractive Xe—Xe interaction, a common charac-
teristic is that for all the coverages studied the optimum ar-
rangement (configuration) is independent of temperature
over the range considered (50 to 150 K). Essentially, at these
temperatures, the system has condensed to the lowest enth-
alpy configuration. At higher temperatures the entropy
would lead to a more dispersed arrangement of the adsorbed
particles.

The results of the calculations show 7' that at a given
temperature, the desorption rate increases with decreasing
coverage. This behavior is a consequence of the attractive
Xe-Xe interactions that lead to an increase of the effective
bond energy as the coverage is increased. This trend is appar-
ent from an examination of Fig. 4, where the variation in
bond energy is given as a function of coverage. The depen-
dence of the preexponential factor on the coverage is also
shown in Fig. 4, where we find that 4 (€ ) is essentially inde-
pendent of 8. Thus, one can assume a constant preexponen-
tial factor throughout the range of coverages studied. This
behavior is somewhat surprising, since it suggests that the
shape of the net potential [Eq. (II1.3)] is independent of cov-
erage. Hence, the most important factor governing the cover-
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FIG. 4. Variation of the effective dissociation energy and the preexponential
factor as a function of coverage for the desorption of Xe from W{111] (using
the attractive Xe-Xe interaction) at 125 K [after Ref. 7(c}].
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age dependence of the overall rate of desorption (for an attrac-
tive Xe—Xe interaction) is the variation of the well depth.

In contrast with the results obtained for the attractive po-
tential case, the repulsive Xe—Xe interaction exhibits opti-
mum (lowest free energy) configurations that depend on the
temperature. In particular, for some coverages, it is possible
to find two different optimal arrangements of adparticles in
the desorption region, depending on the temperature. This
phenomenon is due to the increasing importance of the en-
tropy term in the expression for the free energy, Eq. (I11.2).

In this case we find that, for a given temperature, the de-
sorption rate increases with increasing coverage. This behav-
ior is opposite to that found for the attractive potential. As
one would expect, the difference between the attractive and
repulsive potentials is most marked for high coverages (e.g.,
for 8 = 0.95 the rates of desorption differ by at least six or-
ders of magnitude, whereas for 6 = 0.1, they differ by ~0.5
orders of magnitude). Figure 5 shows the variation of the
effective dissociation energies and preexponential factors as
a function of coverage. Again we find that the dissociation
energy has a strong dependence on the coverage, while the
preexponential factor is practically constant. As a result, zhe
dominant factor in the behavior of the total rate of desorption
is the decrease of the effective dissociation energy with increas-
ing coverage.

C. TPD spectra

As discussed above, our calculations show (Figs. 4 and 5)
that the preexponential factors for both the attractive and
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F1G. 5. Variation of the effective dissociation energy and the preexponential
factor as a function of coverage for the desorption of Xe—Xe interaction at
125 and 80 K. The preexponential factors and dissociation energies corre-
sponding to the optimum configuration at 125 K correspond to the circles
and triangles, respectively, and are connected by solid lines. The corre-
sponding quantities at 80 K are denoted by crosses and squares, respective-
ly, (these are only shown when they differ from the respective values at 125
K) [after Ref. 7(c})].
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repulsive Xe—Xe interactions are practically coverage inde-
pendent. Thus, we have taken A4 (@) in Eq. (I11.4) to be con-
stant and equal to 7.0 X 10'" s~ for the attractive potential
and 6.5 10'"! s ' for the repulsive potential. Figures 4 and 5
show that the variation of D, with the coverage can be ap-
proximated by a linear relationship of the form

D,(0)=D: + 6, (V.y)

where D0 =0.217 eV and B,uracive = 0.152 €V; B, puicive
= —0.061eV.

The TPD spectra corresponding to the attractive and re-
pulsive potentials (with values of 5 obtained from the results
presented in Figs. 4 and 5) are shown in Figs. 6(a) and 6(b).
Figure 6(c) shows the corresponding TPD curves for an at-
tractive interaction (8 =0.02 eV) intermediate between
those of Figs. 6{a) and 6(b). These results indicate that one
can use this method to fit experimental data by varying the
values of 4, D?, and B.

D. Desporption into liquids

One of the major difficulties in most microscopic theories
of solid/liquid interfaces arises from the lack of reliable in-
teration potentials for such systems. As an example, we have
chosen a model potential of the Morse type.’

In Fig. 7 we present the calculated desorption rate as a
function of temperature for two different values of {2, (all
other parameters are kept constant). In both cases the solid
line represents the actnal rate while the dashed line repre-
sents the rate that one would obtain by setting Y (7') = 1. Itis
clear from these results that ' (7}is very sensitive to changes
in the stretch frequency while its dependence on the vari-
ation in T is weak. Moreover, from the functional form of 7
{Eq. (I1.12)] one can see that this quantity will tend to reduce
the desorption rate into a liquid with respect to that into
vacuum. Figure 8 shows the variation of log(Y") as a function
of the mass of the adparticle for different frequencies and
bond strength of the total potential. This figure shows that
Y (T ) exhibits a strong dependence on M, £2, and D, , while it
is weakly dependent on both D, (in the physically meaning-
ful range of the diffusion constant, 5X 107°-5xX 10~%) and
T. Because Y (T') differs greatly from unity and depends sen-
sitively upon various parameters, the characteristics of de-
sorption into a liquid are considerably different from the
case of desorption into vacuum.

VI. APPLICATION OF TST TO DESCRPTION1
The TST rate of desorption is given by

R= £I—j::exp(— —E:-),
h f
where k is the Boltzmann constant, T is the absolute tem-
perature, f* and fare the partition functions for the activat-
ed complex and the adsorbed particle, respectively, and E is
the activation energy for desorption. The main difficulty
with TST concerns the definition of the transition state for
the desorbing species. A common choice is to assume that
the transition state is located at an infinite absorbate—surface
separation. For example, Garrison and Adelman® used the
TST approach to derive an expression for the one-dimen-

(VL1)
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sional desorption rate of an atom from a solid surface (mo-
tion of the adparticle restricted to the direction normal to the
surface). In their derivation they assumed an activated com-
plex located at an infinite distance from the substrate, lead-
ing to the partition function corresponding to a free atom
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FiG. 7. Rates of desorption versus temperature for two different stretch
frequencies (a) £2, = 600 cm ™ '; (b) £2, = 900 cm '. The solid line corre-
sponds to the calculated rate while the dashed line represents the rate that
would be obtained by setting Y'(7T'} = 1 (after Ref. 9).

moving in a direction normal to the surface. The rate expres-
sion obtained was

D, —(1/2)2
R:&exp(——-———-—-—’-—‘ (/>°),
2 kT

T
where £2, and D, are the stretch frequency and binding ener-
gy associated with the absorbate-surface interaction poten-
tial. This leads to preexponential factors in the range 10'?-
10"*s ', On the other hand, Menzel and co-workers®® used
the TST approach to explain the large preexponential factors
obtained for the desorption rate of CO from metal surfaces.
The rate expression derived yields a preexponential factor of
the order of 10" s~ ' which is 10°-10° times larger than the
experimentally observed values. In some cases it has been
assumed?” that the ratio of the partition functions appearing
in Eq. (V1L.1} is approximately equal to one. As a result, con-
siderable discrepancies (two to three orders of magnitude)
with experiment have been obtained (for the case of molecu-
lar desorption).

As pointed out above, the choice of an unambiguous acti-
vated complex is of crucial importance. A criterion for the
choice of the transition state is given by the variational tran-
sition state theory proposed by Horiuti.?* Here, the activated
complex is defined so that the flux at the transition state is an
extremum, leading to a nonlinear differential equation for
the position of the critical surface. If the potential between
the adparticle and the surface increases monotonically from
the equilibrium position to infinity, the only solution to the
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variational equation corresponds to an infinite separation
between the adparticle and the surface. Therefore, applica-
tion of variational transition state theory leads to the activat-
ed complex geometry with the absorbate infinitely removed
from the surface.

In Ref. 10 we consider an adatom of mass m which is at
equilibrium on the surface, at a temperature 7. The potential
near the surface is represented by

Viopa) = —m@3pxp)z — zgxp)]® + Elvy), (VL3)
2

where z, is the equilibrium distance between the adparticle
and the surface, and E (x,y) describes the variation of the
potential parallel to the surface (corrugation). Assuming that
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the surface is periodic in the x and y directions, then, 2, z,,
and E will have the same periodicity. Then the rate of de-
sorption is given by
_ exp| — Dy/kT)
2,2 TAE /2kT A, (E,/2kT)

For the case of a flat surface f2, and E are independent of x
and y, and Eq. {V1. 4} reduces to Eq. (V1.2). In the derivation
of Eq. (V1.4)'° we have expanded {2 ; ' and E (x,p)in terms of
Fourier series [for E,(x,y) we only used the initial terms]

(V1.4)

025 'y =Y 2, cos T cos T, (VL5a)
nm a b
and
Etxy)= — 2 E, cos ™ — LE cos ™. (vL3b)
2 a 2 b

The symbols I,, and 7, in Eq. {(V1.4) stand for the modified
Bessel functions of order n and m, respectively.

The main difference between molecular and atomic de-
sorption is due to two characteristic features of molecular
absorbates. First, molecules have internal degrees of free-
dom that are absent in atomic systems. In addition, mole-
cules exhibit frustrated rotational modes (surface-absorbate
bending modes) strongly coupled to the surface but which
become pure rotational modes in the activated state. For
simplicity, consider first the case of a diatomic molecule de-
sorbing from a surface at temperature 7. As in the case of
atomic desorption, the main contribution to the partition
function arises from configurations near the equilibrium po-
sition. Hence, we shall represent the potential ¥'(q) with a
form similar to that of Eq. (V1.3),

Vig = iiMn 2z — zobe)]? + L2 2 x )07

+ u@ixp)r) + E (x,p), (VL6)

where £2, is the frequency associated with the bending (angle
&) motion, and @, is the frequency of the internal vibration at
the surface. In Eq. {(V1.6) we assumed that the total potential
is independent of the azimuthal angle @. This is generally a
good approximation for binding sites on low Miller index
surfaces but would not necessarily be valid for a molecule
binding at a step or at a surface defect. The quantities de-
pending on x and y will have the same periodicity as the
surface; thus, they can be expanded in terms of the corre-
sponding Fourier series. As in the atomic case, we assume
that E (x,p) has the first order form given in Eq. {V1.5b). The
rate of desorption is then given by

R = Texp| — Dy/kT) (VL)

mklw,2,, I, 1, (E/2kT)I,(E, 72kT)’

where 7 is the moment of inertia. In the limit of a flat surface
this expression reduces to

- () o B
2 kT w; kT

Except for a factor of 7/4 { ~0.8) this expression agrees with
the corresponding rate obtained from CSDT. The difference
arises from the fact that in the present treatment the integral

over the angle @ was carried out from zero to infinity, where-
as in the CSDT approach we integrate to a maximum bend-

(VL8)
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ing angle (which was taken to be 7/2). The effect of the inter-
nal vibration on the rate of desorption is given by the ratio
@,/w;. In most cases the internal vibrational frequency at the
adsorbed state is only slightly different {~ 109%-20%) from
the corresponding value for a free molecule, so that this fac-
tor has a negligible effect on the desorption rate.

A comparison between the atomic and diatomic desorp-
tion rate shows that the main difference lies in the additional
degrees of freedom of the diatomic molecule {e.g., frustrated
rotation and internal vibration). The frustrated rotation is
strongly coupled to the surface, so that the total potential
which the absorbed molecule feels has a large component
due to this mode. However, the corresponding mode in vacu-
um is a free rotation. Hence, the ratio of the partition func-
tions in Eq. (VI.1} leads to a special (and relatively large}
contribution to the prefactor.

On the other hand, the internal degrees of freedom contri-
bute to the total potential both at the absorbed state and in
the activated complex. Since the difference between these
contributions to the respective partition functions is small,
their effect on the preexponential factor appears as the ratio
,/w,;, which is always close to unity. Therefore, for a polya-
tomic molecule we can treat the contribution of the internal
modes to the total interaction potential (at the surface) simi-
larly to that of the internal vibration of a diatomic system
(Eq. VI.6}. Consequently, the rate of desorption of a polyato-
mic molecule, for the case of a flat surface, is given by

_ﬁg(.z_l_{fi) (E_) (_22)
=2\ JNG ) )

where the product is over all the internal degrees of freedom.
The corresponding expression for the large corrugation case

is
0, [ Wi} )"2] [ ]
R= (kT)2 I

2D+ E, +E, ]
2kT '

As discussed above, the rate expressions for diatomic mol-
ecules derived in this section are almost identical to those
obtained using the CSDT formalism.?* In the CSDT ap-
proach we assumed that the energy stored in the frustrated
rotation could be transformed (through the coupling to the
surface) into transitional kinetic energy, resulting in an in-
crease in the desorption rate {with respect to the atomic
case). The agreement between those two methods confirms
the validity of this assumption. Therefore, one would expect
that a desorbed diatomic molecule has a rotational tempera-
ture that is about half of the surface temperature. In general,
one expects that the rotational temperature of the desorbed
molecule corresponds to an energy which is ~(1/2)kT less
than the corresponding value at the surface.

(VL9)

Xexp — (VL.10)

Vil. CONCLUSIONS

We find that for processes involving rates far slower than
the characteristic vibrational frequencies, we can apply sto-
chastic methods to describe the dynamics of surface and in-
terface processes. A comparison between CSDT and TST
theories for desorption suggests that it may be possible to
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apply activated complex theory to obtain similar expressions
for systems that are considerably more complicated than
those studied here.

As better knowledge of the potential surfaces of adsorbate
species interacting with each other and with the substrate is
developed, one would hope to be able to extend some of the
ideas reviewed here to study such systems as associative de-
sorption and diffusion.

Although the complications are considerably increased,
we hope to extend some of the ideas of CSDT theory to the
study of systems with time scales comparable to the charac-
teristic vibrational periods (e.g., collisions, reactive scatter-
ing, epitaxial growth, etc.).
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