Laboratory evidence for a key intermediate in the Venus atmosphere: Peroxychloroformyl radical

Holger Pernice*, Placido García*, Helge Willner*, Joseph S. Francisco†, Franklin P. Mills‡, Mark Allen§¶, and Yuk L. Yung††

*Fachbereich C-Anorganische Chemie, Universität Wuppertal, Gauss-Strasse 20, D-42119 Wuppertal, Germany; †Department of Chemistry, Earth and Atmospheric Sciences, Purdue University, 1393 H. C. Brown Building, West Lafayette, IN 47907; ‡Centre for Resource and Environmental Studies, Australian National University, Canberra, ACT 0200, Australia; ¶Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 183-401, 4800 Oak Grove Drive, Pasadena, CA 91109; and §Division of Geological and Planetary Sciences, California Institute of Technology, Mail Code 150-21, 1200 East California Boulevard, Pasadena, CA 91125

Communicated by Richard M. Goody, Harvard University, Boston, MA, July 29, 2004 (received for review May 20, 2004)

For two decades, the peroxychloroformyl radical, CIC(O)OO, has played a central role in models of the chemical stability of the Venus atmosphere. No confirmation, however, has been possible in the absence of laboratory measurements for CIC(O)OO. We report the isolation of CIC(O)OO in a cryogenic matrix and its infrared and ultraviolet spectral signatures. These experiments show that CIC(O)OO is thermally and photolytically stable in the Venus atmosphere. These experimental discoveries validate the importance of this radical species.

The composition of the atmosphere of Venus has been analyzed by using ground-based and space-probe observations. These studies have shown that the atmosphere of Venus is composed primarily of CO₂, a small amount of N₂, and trace abundances of CO, H₂O, HCl, and SO₂ (1). The central problem in Venus atmospheric chemistry is the remarkable stability of CO₂ despite its dissociation to CO and O₂ by the absorption of solar ultraviolet (UV) radiation. Several investigations have examined the role of chlorine in the catalytic recombination of CO and O₂ (2–4). One proposed oxidation mechanism (4) involved the chloroformyl radical, CICO, which was shown later to have a lesser role (5, 6). An alternative mechanism for the catalytic oxidation of CO to CO₂ utilizes the peroxychloroformyl radical, CIC(O)OO, as the key reactive agent (6). Inclusion of this chemistry provides an explanation for the low CO and O₂ concentrations in the Venus atmosphere. However, despite its suggested central role in Venus chemistry, CIC(O)OO has been experimentally elusive. Here, we report the laboratory isolation of CIC(O)OO, allowing an examination of its stability at Venus middle-atmospheric temperatures, measurements of its infrared (IR) and UV spectra in low-temperature matrices, and finally, consideration of the implications of these laboratory results for Venus chemistry.

Isolation of CIC(O)OO

The radical CIC(O)OO was prepared from pure CIC(O)ONO₂. The latter species was detected originally in low concentrations in a gas-flow system (7) but was synthesized for the present investigation. In separate experiments, CIC(O)OO was generated by means of thermal decomposition of CIC(O)ONO₂ with the products trapped in frozen matrices or by photolysis of a mixture of CO/Cl₂ in O₂ ice matrices. In either case, the resultant ice matrices were analyzed spectroscopically.

Details of the matrix apparatus are given elsewhere (8, 9). Pyrolysis occurs in a quartz tube with a pinhole 1 mm in diameter at the end of the tube. This tube (the spray-on nozzle) is placed in high vacuum 2 cm in front of the cold matrix support. Ice spectra are recorded by using a Bruker (Billerica, MA) 66v Fourier-transform IR spectrometer in the reflectance mode, with transfer optics from 5,000 to 400 cm⁻¹ and a spectral resolution of 1 or 0.25 cm⁻¹. A deuteroglycinsulfate detector and KBr/Ge beam splitter are used. For these experiments, 64 scans were coadded for each spectrum. The UV spectrum is measured in reflectance with a Perkin–Elmer Lambda 900 UV spectrometer with a 1-nm resolution using two quartz optical fibers and special condenser optics.

In the thermolysis experiments, CIC(O)OO was formed in flowing mixtures of CIC(O)ONO₂/Ar or Ne heated at 200, 250, 300, 350, 400, and 450°C:

\[
\text{CIC(O)ONO}_2 \rightarrow \text{CIC(O)OO} + \text{NO}_2. \quad [1]
\]

CIC(O)OO also was produced by photolysis at λ > 305 nm of a frozen composition of Cl₂/O₂ in a ratio of 1:20:400. The formation of CIC(O)OO results from the following reaction sequence:

\[
\begin{align*}
\text{Cl}_2 + \text{hv} & \rightarrow 2\text{Cl} \quad [2] \\
\text{Cl} + \text{CO} & \rightarrow \text{CICO} \\
\text{CICO} + \text{O}_2 & \rightarrow \text{CIC(O)OO}.
\end{align*}
\]

Fig. 1 compares the IR matrix spectrum of the starting material CIC(O)ONO₂ (Fig. 1A), resulting from photolysis of the CO/Cl₂/O₂ ice mixture (Fig. 1B) thermolysis of CIC(O)ONO₂ at 250°C (Fig. 1C). There are common features in Figs. 1B and C that are not shown in Fig. 1A, which are attributed to the CIC(O)OO radical. As expected from Eq. 1, the other expected thermolysis product, NO₂, is trapped and is clearly evident in the spectrum shown in Fig. 1C. The thermolysis and photolysis results are consistent with previous work suggesting the existence of CIC(O)OO [(i) thermolysis of CIC(O)ONO₂ yielding NO₂ and CO₂ (7) and (ii) measurements of the oxidation of CICO by O₂ (7, 10)], but the existence of CIC(O)OO had not been demonstrated explicitly.

Spectroscopy

The CIC(O)OO radical has as its ground state the \(\tilde{X} \, A^\prime \) electronic configuration. There are two rotamers for the CIC(O)OO radical: cis and trans conformations defined by the CICO dihedral angle.

\[
\begin{align*}
\text{cis} & \quad \begin{align*}
\text{trans} & \quad \\
\end{align*} \\
\end{align*}
\]

Abbreviations: CCSD(T), single and double excitation-coupled cluster with a perturbation basis set.

*To whom correspondence should be addressed. E-mail: mark.allen@jpl.nasa.gov.

© 2004 by The National Academy of Sciences of the USA
Vibrational spectra were calculated theoretically by using the single and double excitation-coupled cluster with a perturbation estimate of triple excitations [CCSD(T)] theory (11) based on unrestricted Hartree–Fock wavefunctions. Structures of the local minima were fully optimized by using the Dunning augmented correlation-consistent basis set (aug-cc-pVDZ) (12). The optimized geometries for trans-ClC(O)OO and cis-ClC(O)OO are as follows: CCSD(T)/aug-cc-pVDZ optimized geometry for trans-ClC(O)OO is \(r(C\rightarrow Cl) = 1.747 \text{ Å}, r(C\rightarrow O) = 1.188 \text{ Å}, r(O\rightarrow O) = 1.434 \text{ Å}, \theta(O\equiv C\equiv O) = 126.5^\circ, \theta(C\equiv C\equiv O) = 127.7^\circ, \theta(COO) = 110.4^\circ \), and \(\pi(COO) = 180.0^\circ \); and CCSD(T)/aug-cc-pVDZ optimized geometry for cis-ClC(O)OO is \(r(C\rightarrow Cl) = 1.741 \text{ Å}, r(C\rightarrow O) = 1.192 \text{ Å}, r(C\rightarrow O) = 1.438 \text{ Å}, r(O\equiv O) = 1.337 \text{ Å}, \theta(O\equiv C\equiv O) = 117.8^\circ, \theta(C\equiv C\equiv O) = 127.0^\circ, \theta(COO) = 114.8^\circ \), and \(\pi(CCO) = 0.0^\circ \).

The observed vibrational band positions and band intensities for ClC(O)OO obtained by thermolysis of ClC(O)OONO\(_2\) and quenched in an argon matrix are given in Table 1. For compar-

![IR spectra of ClC(O)OONO\(_2\) and products in frozen matrices. IR spectra of ClC(O)OONO\(_2\) isolated in an argon matrix (A), Cl\(_2\)/CO mixture in an O\(_2\) matrix (relative abundances 1:20:400) after 15 min of irradiation at \(\lambda > 305 \text{ nm} \) (B), and thermolysis products of ClC(O)OONO\(_2\) at 250°C isolated in an argon matrix (C). The positions of the ClC(O)OO features tabulated in Table 1 are indicated; they are not present in A but are clearly present in both B and C. (D) The difference spectrum of C and the resultant IR spectrum after 30 min of photolysis at \(\lambda = 255 \text{ nm} \). Note that the ClC(O)OO features are negative in the difference spectrum, indicating that they have decreased in intensity as a result of the photolysis. (E) IR spectra of thermolysis products of ClC(O)OONO\(_2\) at 200, 250, 300, 350, 400, and 450°C isolated in an argon matrix. Because the thermal dissociation threshold for ClC(O)OONO\(_2\) is \(\sim 200^\circ \text{C} \), the ClC(O)OO abundance is largest in the 200°C experiment. When the temperature increases to \(>350^\circ \text{C} \), ClC(O)OO thermally decomposes and CICO features appear in these spectra.
ison, vibrational frequencies for the CCSD(T) level of theory calculated numerically by using the above geometries are also shown. To check the consistency and reliability of these results, an independent calculation using density functional theory with the Becke three-parameter functional method (13) was used with the aug-cc-pVDZ basis set. All bands belonging to the cis or trans species are easily assigned by comparison with the predicted IR ab initio calculation results. In the 1,850 cm⁻¹ region, the deviations from the predictions are not satisfying, because the ν(C=O) bands are disturbed by Fermi resonances with the ν₂ band. Note that the ratio of the observed summed relative intensities reported in Table 1 for cis/trans is ≈0.6, which is close to the thermodynamic equilibrium value of ~0.7 at 250°C expected because the relative energy of the trans rotamer is ≈1.5 kJ mol⁻¹ below that of the cis rotamer.

Additional evidence for the identification of ClC(O)OO comes from isotope-substitution experiments. For cis-ClC(O)OO produced by photolysis in an ¹⁸O₂ matrix, the bands at 1,106, 952, 637, and 567 cm⁻¹ are shifted to lower wavenumbers by 52, 16, 10, and 19 cm⁻¹, respectively. The first three measured shifts are consistent in magnitude and sign with the predicted shifts (14) for the assignment of those bands attributed to the O—O, C—O, and C—Cl stretch vibrations of cis-ClC(O)OO, respectively.

The UV spectrum of the thermolysis-produced matrix-isolated products is shown in Fig. 2. In this spectrum, the ClC(O)OO radical is a strong absorber around 230 nm. Photoysis of the matrix at λ = 255 nm results in the simultaneous decrease of all ClC(O)OO IR bands and an increase in CO₂ IR bands (Fig. 1D). In addition, the resultant UV spectrum shows a decrease in the 230-nm band and the appearance of a band due to ClO, which suggests that the photodissociation of ClC(O)OO results in the elimination of ClO:

\[
\text{ClC(O)OO} \rightarrow \text{CO}_2 + \text{ClO}.
\]

Although the dissociation limit of the ground electronic state of ClC(O)OO favors formation of ClCO and O₂, the above result shows that excited-state photochemistry does not mimic necessarily the ground state, nor is the ground state structure a good predictor of excited-state photochemistry.

Table 1. IR band positions and intensities of ClC(O)OO isolated in an argon matrix

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ν₁</td>
<td>—</td>
</tr>
<tr>
<td>2ν₅</td>
<td>—</td>
</tr>
<tr>
<td>ν(a')</td>
<td>—</td>
</tr>
<tr>
<td>ν(C=O)</td>
<td>—</td>
</tr>
<tr>
<td>ν(O=O)</td>
<td>—</td>
</tr>
<tr>
<td>δ(C=O=O)</td>
<td>—</td>
</tr>
<tr>
<td>δ(O=C=O)</td>
<td>—</td>
</tr>
<tr>
<td>δ(O=C=Cl)</td>
<td>—</td>
</tr>
</tbody>
</table>

*Frequencies are in units of cm⁻¹; relative intensities are presented in parentheses.

†Frequencies are in units of cm⁻¹ were calculated at the CCSD(T)/aug-cc-pVDZ level of theory. The relative intensities (in parentheses) were calculated at the Becke three-parameter functional/aug-cc-pVdZ level of theory. The relative intensity of 100 was assigned to the absolute intensity 402.8 kJ mol⁻¹.

Thermal Stability of ClC(O)OO

Fig. 1E shows the IR spectra from all the thermolysis experiments. The matrix abundance of ClC(O)OO is largest in the 200°C experiment, which is consistent with the threshold of 115 ± 3.2 kJ mol⁻¹ (15) for dissociation of ClC(O)OO NO₂ yielding ClC(O)OO. Note that some CO₂ also can result from the self-reaction of ClC(O)OO. At and above a thermolysis temperature of ~350°C, the matrix abundance of ClC(O)OO is seen to decrease, and secondary dissociation into CICO [reported IR spectra (16)] and O₂ is observed. Because the dissociation threshold for the ClC(O)—O₂ bond is higher than the threshold for the ClC(O)OO—NO₂ bond by a factor of ~1.5, the bond energy for ClC(O)OO dissociation should be ~169 kJ mol⁻¹.

Implications for Venus Chemistry

These experimental results provide important confirmations for assumptions adopted in Venus chemistry simulations for more than two decades. To explain the stability of the CO₂ atmosphere and reproduce the observed O₂ observations, chemical reactions involving ClC(O)OO were proposed (6, 17). The inclusion of ClC(O)OO chemistry reduces the model prediction for the O₂...
column density from 3×10^{19} to 2×10^{18} cm$^{-2}$ (17), the latter closely approximating the observational upper limit of $<1.5 \times 10^{18}$ cm$^{-2}$ (18, 19) [see Table 2 for summary]. Previous model work (20) predicted a smaller O$_2$ column abundance ($<1.5 \times 10^{18}$ cm$^{-2}$), assuming that CO oxidation occurs primarily by CICO + O$_2$ → CO$_2$ + ClO as proposed (21). More recent measurements (22) suggest, however, that CICO is much less stable than what seems to have been assumed in ref. 20, which would reduce the rate of CO oxidation through this channel and increase the predicted O$_2$ abundance in the absence of another mechanism [such as reactions involving CIC(O)OO]. In light of existing uncertainties in the interpretation of the available Venus O$_2$ observations (19), a definitive confirmation of the CO oxidation mechanism also awaits more precise measurements of the total abundance and altitude distribution of O$_2$ above the cloud tops.

In the earlier models (6, 17), CIC(O)OO was assumed to be stable at Venus middle-atmospheric temperatures of -100 to 0°C, and no thermal dissociation reactions were included in the simulations. The experimental results reported here indicate that the threshold for CIC(O)OO thermal decomposition is 350°C validating this critical model assumption.

Table 2. Comparison of Venus observation of column O$_2$ abundance with model simulations

<table>
<thead>
<tr>
<th>Result</th>
<th>Column O$_2$ * (molecules per cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation (18)</td>
<td>$<1.5 \times 10^{18}$</td>
</tr>
<tr>
<td>Model without CIC(O)OO included</td>
<td>3.05×10^{19}</td>
</tr>
<tr>
<td>Model with CIC(O)OO kinetic reactions</td>
<td>2.14×10^{18}</td>
</tr>
<tr>
<td>Model with CIC(O)OO photolysis and kinetic reactions</td>
<td>2.13×10^{18}</td>
</tr>
</tbody>
</table>

*Integrated from 58-km altitude to top of atmosphere.
†Described in ref. 17.

In the absence of any laboratory measurements of UV cross sections, previous models also did not include CIC(O)OO photodissociation. A recent Venus photochemical simulation (the “one-sigma” model described in ref. 17) was updated to include CIC(O)OO photodissociation using the UV cross sections of Fig. 2. The California Institute of Technology/Jet Propulsion Laboratory photochemical model (23) was used in its one-dimensional mode. Photodissociation rates were calculated for local noon at 45° latitude and then divided by two to simulate global average conditions between 58 and 1.2 km in altitude. Because the primary product of UV photolysis of CIC(O)OO are ClO and CO$_2$, as discussed above, the inclusion in a model of CIC(O)OO UV photolysis based on the spectrum shown in Fig. 2 results in only minor changes in model results for the CO$_2$-reformation rate and the O$_2$ column density. [The abundance of, and the rate of reformation of CO$_2$ through, CIC(O)OO are primarily controlled kinetically, although reformation of CO$_2$ through CIC(O)OO photolysis is not negligible.]

Summary

Essential features of current models accounting for the chemical stability of the Venus atmosphere are now supported by laboratory experiments. To complete a satisfactory understanding of Venus middle-atmosphere chemistry, what is needed is direct detection of key reactive-species abundances consistent with the predictions of the model simulations. The IR spectrum of CIC(O)OO reported herein will allow a search for this central species. In addition, precise measurements of O$_2$ distribution above the cloud tops are needed.

We thank M. F. Gerstell for a critical reading of the manuscript and W. DeMore, H. Hartman, C. Miller, C. Parkinson, V. Krashnopol’sky, and the anonymous referees for useful comments. This research was supported partially by a Deutsche Forschungsgemeinschaft grant. This research was carried out in part at the Jet Propulsion Laboratory (California Institute of Technology) under contract to the National Aeronautics and Space Administration. J.S.F. expresses his thanks to the Alexander von Humboldt Foundation for a research grant for senior U.S. scientists.