Abrol, Ravinder and Kuppermann, Aron (2002) An optimal adiabatictodiabatic transformation of the 1 2A[prime] and 2 2A[prime] states of H3. Journal of Chemical Physics, 116 (3). pp. 10351062. ISSN 00219606. http://resolver.caltech.edu/CaltechAUTHORS:ABRjcp02

PDF
See Usage Policy. 809Kb 
Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:ABRjcp02
Abstract
Molecular reaction dynamics in the adiabatic representation is complicated by the existence of conical intersections and the associated geometric phase effect. The firstderivative coupling vector between the corresponding electronically adiabatic states can, in general, be decomposed into longitudinal (removable) and transverse (nonremovable) parts. At intersection geometries, the longitudinal part is singular, whereas the transverse part is not. In a twoelectronicstate Born–Huang expansion, an adiabatictodiabatic transformation completely eliminates the contribution of the longitudinal part to the nuclear motion Schrödinger equation, leaving however the transverse part contribution. We report here the results of an accurate calculation of this transverse part for the 1 2A[prime] and 2 2A[prime] electronic states of H3 obtained by solving a threedimensional Poisson equation over the entire domain [sansserif U] of internal nuclear configuration space [script Q] of importance to reactive scattering. In addition to requiring a knowledge of the firstderivative coupling vector everywhere in [sansserif U], the solution depends on an arbitrary choice of boundary conditions. These have been picked so as to minimize the average value over [sansserif U] of the magnitude of the transverse part, resulting in an optimal diabatization angle. The dynamical importance of the transverse term in the diabatic nuclear motion Schrödinger equation is discussed on the basis of its magnitude not only in the vicinity of the conical intersection, but also over all of the energetically accessible regions of the full [sansserif U] domain. We also present and discuss the diabatic potential energy surfaces obtained by this optimal diabatization procedure.
Item Type:  Article 

Additional Information:  ©2002 American Institute of Physics. (Received 31 July 2001; accepted 1 October 2001) This work was supported in part by NSF Grant No. CHE 9810050. The authors thank Mr. Prashant Purohit for suggesting the derivation given in the Appendix. 
Subject Keywords:  hydrogen neutral molecules; molecular electronic states; Schrodinger equation; Poisson equation; potential energy surfaces 
Record Number:  CaltechAUTHORS:ABRjcp02.pdf 
Persistent URL:  http://resolver.caltech.edu/CaltechAUTHORS:ABRjcp02 
Alternative URL:  http://dx.doi.org/10.1063/1.1419257 
Usage Policy:  No commercial reproduction, distribution, display or performance rights in this work are provided. 
ID Code:  1139 
Collection:  CaltechAUTHORS 
Deposited By:  Archive Administrator 
Deposited On:  22 Dec 2005 
Last Modified:  26 Dec 2012 08:42 
Repository Staff Only: item control page