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Abstract—Network coding substantially increases network
throughput. But since it involves mixing of information inside
the network, a single corrupted packet generated by a malicious
node can end up contaminating all the information reaching a
destination, preventing decoding.

This paper introduces distributed polynomial-time rate-optimal
network codes that work in the presence of Byzantine nodes. We
present algorithms that target adversaries with different attacking
capabilities. When the adversary can eavesdrop on all links and
jam zo links, our first algorithm achieves a rate of C' — 2z, where
C' is the network capacity. In contrast, when the adversary has lim-
ited eavesdropping capabilities, we provide algorithms that achieve
the higher rate of C' — zo.

Our algorithms attain the optimal rate given the strength of
the adversary. They are information-theoretically secure. They
operate in a distributed manner, assume no knowledge of the
topology, and can be designed and implemented in polynomial
time. Furthermore, only the source and destination need to be
modified; nonmalicious nodes inside the network are oblivious to
the presence of adversaries and implement a classical distributed
network code. Finally, our algorithms work over wired and wire-
less networks.

Index Terms—Byzantine adversaries, distributed network
error-correcting codes, eavesdroppers, information-theoretically
optimal, list decoding, polynomial-time algorithms.

1. INTRODUCTION

ETWORK coding allows the routers to mix the infor-
mation content in packets before forwarding them. This
mixing has been theoretically proven to maximize network
throughput [1], [23], [21], [15]. It can be done in a distributed
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manner with low complexity, and is robust to packet losses and
network failures [10], [25]. Furthermore, recent implementa-
tions of network coding for wired and wireless environments
demonstrate its practical benefits [18], [8].

But what if the network contains malicious nodes? A ma-
licious node may pretend to forward packets from source to
destination, while in reality it injects corrupted packets into
the information flow. Since network coding makes the routers
mix packets’ content, a single corrupted packet can end up
corrupting all the information reaching a destination. Unless
this problem is solved, network coding may perform much
worse than pure forwarding in the presence of adversaries.

The interplay of network coding and Byzantine adversaries
has been examined by a few recent papers. Some detect the pres-
ence of an adversary [12], others correct the errors he injects into
the codes under specific conditions [9], [14], [22], [31], and a
few bound the maximum achievable rate in such adverse envi-
ronments [3], [29]. But attaining optimal rates using distributed
and low-complexity codes was an open problem.

This paper designs distributed polynomial-time rate-optimal
network codes that combat Byzantine adversaries.! We present
three algorithms that target adversaries with different strengths.
The adversary can inject zo packets per unit time, but his lis-
tening power varies. When the adversary is omniscient, i.e., he
observes transmissions on the entire network, our codes achieve
the rate of C' — 2z, with high probability. When the adversary’s
knowledge is limited, either because he eavesdrops only on a
subset of the links or the source and destination have a low-rate
secret channel, our algorithms deliver the higher rate of C' — 2.

The intuition underlying all of our algorithms is that the ag-
gregate packets from the adversarial nodes can be thought of as
a second source. The information received at the destination is a
linear transform of the source’s and the adversary’s information.
Given enough linear combinations (enough coded packets), the
destination can decode both sources. The question however is
how does the destination distill out the source’s information
from the received mixture. To do so, the source’s information
has to satisfy certain constraints that the attacker’s data cannot
satisfy. This can be done by judiciously adding redundancy at
the source. For example, the source may add parity checks on
the source’s original data. The receiver can use the syndrome of
the received packets to determine the effect of the adversary’s
transmissions. The challenge addressed herein is to design the
parity checks for distributed network codes that achieve the op-
timal rates.

Independently and concurrently to our work, Koetter and Kschischang [19]
present results of similar nature which are discussed in detail in Section II.

0018-9448/$25.00 © 2008 IEEE
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Conceptually, our proof involves two steps. We first analyze
standard network coding in the presence of Byzantine adver-
saries (without adding additional redundancy at the source). In
this setting, as expected, destination nodes cannot uniquely de-
code the source’s data, however, we show that they can list de-
code this data. Namely, receivers can identify a short list of po-
tential messages that may have been transmitted. Once this is
established, we analyze the effect of redundancy at the source
in each one of our scenarios (omniscient or limited adversaries).

This paper makes several contributions. The algorithms pre-
sented herein are distributed algorithms with polynomial-time
complexity in design and implementation, yet are rate-optimal.
In fact, since pure forwarding is a special case of network
coding, being rate-optimal, our algorithms also achieve a
higher rate than any approach that does not use network coding.
They assume no knowledge of the topology and work in both
wired and wireless networks. Furthermore, implementing our
algorithms involves only a slight modification of the source and
receiver while the internal nodes can continue to use standard
network coding.

II. RELATED WORK

Work on network coding started with a pioneering paper by
Ahlswede et al. [1], which establishes the value of coding in
the routers and provides theoretical bounds on the capacity of
such networks. The combination of [23], [21], and [15] shows
that, for multicast traffic, linear codes achieve the maximum
capacity bounds, and both design and implementation can be
done in polynomial time. Additionally, Ho ef al. show that the
above is true even when the routers perform random linear op-
erations [10]. Researchers have extended the above results to a
variety of areas including wireless networks [25], [17], [18], en-
ergy [28], secrecy [2], content distribution [8], and distributed
storage [16]. For a couple of nice surveys on network coding
see, e.g., [30], [7].

A Byzantine attacker is a malicious adversary hidden in a net-
work, capable of eavesdropping and jamming communications.
Prior research has examined such attacks in the presence of net-
work coding and without it. In the absence of network coding,
Dolev et al. [5] consider the problem of communicating over a
known graph containing Byzantine adversaries. They show that
for k adversarial nodes, reliable communication is possible only
if the graph has more than 2k + 1 vertex connectivity. Subrama-
niam extends this result to unknown graphs [27]. Pelc et al. ad-
dress the same problem in wireless networks by modeling mali-
cious nodes as locally bounded Byzantine faults, i.e., nodes can
overhear and jam packets only in their neighborhood [26].

The interplay of network coding and Byzantine adversaries
was examined in [12], which detects the existence of an adver-
sary but does not provide an error-correction scheme. The work
of Cai and Yeung [2], [29], [3] generalizes standard bounds on
error-correcting codes to networks, without providing any ex-
plicit algorithms for achieving these bounds. Our work presents
a constructive design to achieve those bounds.

The problem of efficiently correcting errors in the presence of
both network coding and Byzantine adversaries has been con-
sidered by a few prior proposals. Earlier work [22], [9] assumes
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a centralized trusted authority that provides hashes of the orig-
inal packets to each node in the network. Charles ef al. [4] ob-
viates the need for a trusted entity under the assumption that
the majority of packets received by each node is uncorrupted.
Recently, Zhao et al. [32] have demonstrated error detection in
the public key cryptographic setting. In contrast to the above
schemes which are cryptographically secure, in a previous work
[14], we consider an information-theoretically rate-optimal so-
lution to Byzantine attacks for wired networks, which however
requires a centralized design. This paper builds on the above
prior schemes to combine their desirable traits; it provides a dis-
tributed solution that is information-theoretically rate optimal
and can be designed and implemented in polynomial time. Fur-
thermore, our algorithms have new features; they assume no
knowledge of the topology, do not require any new function-
ality at internal nodes, and work for both wired and wireless
networks.

The work closest in spirit to our work is that of Koetter and
Kschischang [19], who also studied the presence of Byzantine
adversaries in the distributed network coding setting. They
concentrate on communicating against an omniscient adver-
sary, and present a distributed scheme of optimal rate C' — 2z.
The proof techniques of [19] differ substantially from those
presented in this work. In a nutshell, Koetter and Kschischang
reduce the model of network coding to a certain point-to-point
channel. They then construct generalizations of Reed—Solomon
codes for this channel, which enables the authors to construct
deterministic network error-correcting codes as mentioned
above.

We would like to note that the abstraction used in [19] (al-
though very elegant) comes at a price. It does not encapsulate
the additional Byzantine scenarios that arise naturally in prac-
tice and are addressed in our current paper (i.e., adversaries of
limited knowledge, discussed in Sections VI and VIII). More
specifically, our protocol enables us to attain the higher rate of
C — zo, albeit only under the (weaker) requirement of list de-
coding. List decoding in the setting of network communication
is a central ingredient in our proofs for limited adversaries. To
the best of our current knowledge, the abstraction of [19] (al-
though based on Reed—Solomon like codes) does not allow ef-
ficient list decoding.

III. MODEL AND DEFINITIONS

We use a general model that encompasses both wired and
wireless networks. To simplify notation, we consider only the
problem of communicating from a single source to a single des-
tination. But similarly to most network coding algorithms, our
techniques generalize to multicast traffic.

A. Threat Model

There is a source, Alice, who communicates over a wired or
wireless network to a receiver Bob. There is also an attacker
Calvin, hidden somewhere in the network. Calvin aims to pre-
vent the transfer of information from Alice to Bob, or at least
to minimize it. He can observe some or all of the transmissions,
and can inject his own. When he injects his own data, he pre-
tends they are part of the information flow from Alice to Bob.
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Fig. 1. Alice, Bob, and Calvin’s information matrices.

Calvin is quite strong. He is computationally unbounded. He
knows the encoding and decoding schemes of Alice and Bob,
and the network code implemented by the interior nodes. He
also knows the exact network realization.

B. Network and Code Model

Network Model: The network is modeled as a hypergraph
[24]. Each transmission carries a packet of data over a hyper-
edge directed from the transmitting node to the set of observer
nodes. The hypergraph model captures both wired and wire-
less networks. For wired networks, the hyperedge is a simple
point-to-point link. For wireless networks, each such hyperedge
is determined by instantaneous channel realizations (packets
may be lost due to fading or collisions) and connects the trans-
mitter to all nodes that hear the transmission. The hypergraph is
unknown to Alice and Bob prior to transmission.

Source: Alice generates incompressible data that she wishes
to deliver to Bob over the network. To do so, Alice encodes her
data as dictated by the encoding algorithm (described in subse-
quent sections). She divides the encoded data into batches of b
packets. For clarity, we focus on the encoding and decoding of
one batch.

A packet contains a sequence of n symbols from the finite
field F,. All arithmetic operations henceforth are done over
symbols from . (See the treatment in [20].) Out of the n sym-
bols in Alice’s packet, 6n symbols are redundancy added by the
source.

Alice organizes the data in each batch into a matrix X as
shown in Fig. 1. We denote the (7, j)th element in the matrix
by (i, 7). The ith row in the matrix X is just the ith packet
in the batch. Fig. 1 shows that similarly to standard network
codes [10], some of the redundancy in the batch is devoted
to sending the identity matrix I. Also, as in [10], Alice takes
random linear combinations of the rows of X to generate her
transmitted packets. As the packets traverse the network, the in-
ternal nodes apply a linear transform to the batch. The identity
matrix receives the same linear transform. The destination dis-
covers the linear relation, denoted by the matrix 7', between the
packets it receives and those transmitted. This is done by in-
specting how I was transformed.

Adversary: Let the matrix Z be the information Calvin
injects into each batch. The size of this matrix is zp X n, where
zo 1is the number of edges controlled by Calvin (alternatively,
one may define zp to be the size of the min-cut from Calvin
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to the destination). In some of our adversarial models we limit
the eavesdropping capabilities of Calvin. Namely, we limit the
number of transmitted packets Calvin can observe. In such
cases, this number will be denoted by z;.

Receiver: Analogously to how Alice generates X, the re-
ceiver Bob organizes the received packets into a matrix Y. The
ithreceived packet corresponds to the sth row of Y. Note that the
number of received packets, and therefore the number of rows
of Y, is a variable dependent on the network topology. Bob at-
tempts to reconstruct Alice’s information X, using the matrix
of received packets Y.

As mentioned in the Introduction, conceptually, Bob recovers
the information of Alice in two steps. First, Bob identifies a set
of linear constraints which must be satisfied by the transmitted
information X of Alice. This set of constraints characterizes a
linear subspace of low dimension in which X must lie. We refer
to this low-dimensional subspace as a linear list decoding of X.
Once list decoding is accomplished, unique decoding follows
by considering additional information Bob has on the matrix
X (such as its redundancy, or information transmitted by Alice
over a low rate secret channel).

Network Transform: The network performs a classical dis-
tributed network code [10]. Specifically, each packet transmitted
by an internal node is a random linear combination of its in-
coming packets. Thus, the effect of the network at the destina-
tion can be summarized as follows:

Y =TX+TZ. (1)

This can be written as

i %)
where X is the batch of packets sent by Alice, Z refers to the
packets Calvin injects into Alice’s batch, and Y is the received
batch. The matrix 7' refers to the linear transform from Alice to
Bob, while 7" refers to the linear transform from Calvin to Bob.
Notice that neither T nor 7" are known to Bob. Rather, as shown
in Fig. 1, Bob receives the matrix T, which cannot be directly
used to recover X.

Notice that in our model the error imposed by the Byzantine
adversary Calvin is assumed to be added to the original informa-
tion transmitted on the network. One can also consider a model
in which these errors overwrite the existing information trans-
mitted by Alice. We stress that if Calvin is aware of transmis-
sions on links, these two models are equivalent. Overwriting a
message with Z is equivalent to adding — Xz + Z on the links
controlled by Calvin, where X represents the original trans-
missions on those links.

Definitions: Table I lists notation needed for our main re-
sults. We define the following concepts.

* The network capacity, denoted by C, is the time average
of the maximum number of packets that can be delivered
from Alice to Bob, assuming no adversarial interference,
i.e., the max flow. It can be also expressed as the min-cut
from source to destination. (For the corresponding multi-
cast case, C is defined as the minimum of the min-cuts over
all destinations.)
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TABLE I
TERMS USED IN THE PAPER
[ Variable [ Definition |

C Network capacity.
zZo Number of packets Calvin can inject.
Zr Number of packets Calvin can hear.
b Number of packets in a batch”.
n Length of each packet.
[} Alice’s redundancy.

“Throughout this work b is defined as C' — zo.

» The error probability is the probability that Bob’s recon-
struction of Alice’s information is inaccurate.

e The rate R is the number of information symbols that can
be delivered on average, per time step, from Alice to Bob.
Rate R is said to be achievable if forany e; > Oand e; > 0
there exists a coding scheme of block length n with rate
> R — ey and error probability < €.

IV. SUMMARY OF RESULTS

We have three main results. Each result corresponds to
a distributed, rate-optimal, polynomial-time algorithm that
defeats an adversary of a particular type. The optimality of
these rates has been proven by prior work [2], [3], [29], [14].
Our work, however, provides a construction of distributed
codes/algorithms that achieve optimal rates. To prove our
results, we first study the scenario of high rate list decoding in
the presence of Byzantine adversaries. In what follows, let |7 |
denote the number of receivers, and |€| denote the number of
(hyper)-edges in the network.

A. Shared Secret Model

This model considers the transmission of information via net-
work coding in a network where Calvin can observe all trans-
missions, and can inject zo corrupt packets. However, it is as-
sumed that Alice can transmit to Bob a message (at asymptoti-
cally negligible rate) which is unknown to Calvin over a separate
secret channel. In Section VI, we prove the following.

Theorem 1: The Shared Secret algorithm achieves an optimal
rate of C' — 2o with code-complexity O(nC?).

B. Omniscient Adversary Model

This model assumes an omniscient adversary, i.e., one from
whom nothing is hidden. As in the Shared Secret model, Calvin
can observe all transmissions, and can inject zo corrupt packets.
However, Alice and Bob have no shared secrets hidden from
Calvin. In Section VII, we prove the following.

Theorem 2: The Omniscient Adversary algorithm achieves
an optimal rate of C' — 2z with code-complexity O((nC)3).

C. Limited Adversary Model

In this model, Calvin is limited in his eavesdropping power;
he can observe at most z; transmitted packets. Exploiting this
weakness of the adversary results in an algorithm that, like the
Omniscient Adversary algorithm, operates without a shared se-
cret. In Section VIII, we prove the following.
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Theorem 3: If z; < C — 220, the Limited Adversary algo-
rithm achieves an optimal rate of C' — z with code-complexity
O(nC3).

D. Linear List Decoding Model

A key building block in some of our proofs is a linear list
decoding algorithm. The model assumes the Omniscient Ad-
versary of Section IV-B. We design a code that Bob can use to
output a linear list (of low dimension) that is guaranteed to con-
tain Alice’s message X . The list is then refined to obtain the
results stated in Theorems 1-3. In Section V we prove the fol-
lowing.

Theorem 4: The Linear List Decoding algorithm achieves a
rate of C' — 2z and outputs a list L that is guaranteed to contain
X. The list L is a vector space of dimension b(b + zp). The
code-complexity is O(nC?).

V. LINEAR LIST DECODING IN THE
OMNISCIENT ADVERSARY MODEL

Here we assume we face an omniscient adversary, i.e., Calvin
can observe everything, and there are no shared secrets between
Alice and Bob. We design a code that Bob can use in this sce-
nario to output a linear list (of low dimension) that is guaranteed
to contain Alice’s message X . Our algorithm achieves a rate of
R = C — zp. The corrupted information Y Bob receives en-
ables him to deduce a system of linear equations that X satis-
fies. This system of equations ensures that X lies in a low-di-
mensional vector space. We now present our algorithm in detail.
Throughout this and upcoming sections, b is fixed as C' — z¢.

A. Alice’s Encoder

Alice’s encoder is quite straightforward. She simply arranges
the source symbols into the b x n matrix X, appended with a
b-dimensional identity matrix. She then implements the clas-
sical random network encoder described in Section III-B to gen-
erate her transmitted packets.

B. Bob’s Decoder

Bob selects b + zp linearly independent columns of Y, and
denotes the corresponding matrix Y ®. Here we assume, without
loss of generality (w.l.0.g.), that the column rank of Y is indeed
b + zo. The column rank cannot be larger than b + zo by (2).
If the column rank happens to be r < b + zo, Bob selects r
independent rows of Y and continues in a procedure analogous
to that described below. We also assume that Y° contains the
last b columns of Y (corresponding to Alice’s b-dimensional
identity matrix). This is justified due to (2) and the assumption
(discussed below) that the intersection of the column spans of
T and T” is trivial, i.e., [T'|T"] is regular (with high probability
over the random choices of internal nodes in the network). The
remaining zo columns of Y'° are chosen arbitrarily so that Y*
is invertible. The columns of X and Z corresponding to those
in Y® are denoted X ® and Z?, respectively. By (2),

Y* = [T|T] [JZ(] .
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Also, since Y*® acts as a basis for the columns of Y, we can
write Y = Y°F for some matrix F'. Bob can compute F' as
(Y*)~'Y. Therefore, Y can also be written as

3)

Y = [T|T'] [XF}

Z°F

Comparing (2) and (3), and again using the assumption that
[T|T"] is invertible (with high probability) gives us

X =X°F 4)
Z =Z°F. &)

In particular, (4) gives a linear relationship on X that can
be leveraged into a list-decoding scheme for Bob (the corre-
sponding linear relationship from (5) is not very useful). The
number of variables in X ® is b(b + zo ). Therefore, the entries
of the matrix X® span a vector space of dimension b(b + zo)
over F,. Bob’s list is the corresponding b(b + 20 )-dimensional
vector space L spanned by X°F.

The only source of error in our argument arises if the intersec-
tion of the column-spans of 7" and 7" is nontrivial, i.e., if [T'|1"]
is singular. But as shown in [11], as long as b+ 2z < C, thisis at
most |7||€|g~! for any fixed network. Since Calvin can choose
his locations in at most (Ifol) ways, the total probability of error
is at most (L‘Z‘) |7||€|g~". The computational cost of design, en-
coding and decoding is dominated by the cost of computing F
and thereby a representation of L. This takes O(nC?) steps.

Note: In the Linear List Decoding scheme described above,
Alice appends an identity matrix to her source symbols to ob-
tain the matrix X, causing (an asymptotically negligible) loss
in rate. This is also the standard protocol of [10]. We note that
our scheme works just as well even if Alice does not append
such an identity matrix, and X consists solely of source sym-
bols. However, the appended identity matrix is used in the model
of Section VII. We now solve (4) under different assumptions on
Calvin’s strength.

VI. SHARED SECRET MODEL

In the Shared Secret model Alice and Bob have use of a strong
resource, namely, a secret channel over which Alice can transmit
a small amount of information to Bob that is secret from Calvin.
The size of this secret is asymptotically negligible in n. Note that
since the internal nodes mix corrupted and uncorrupted packets,
Alice cannot just sign her packets and have Bob check the signa-
ture and throw away corrupted packets—in extreme cases, Bob
may not receive any uncorrupted packets.

Alice uses the secret channel to send a random hash of her
data to Bob. Bob first uses the list-decoding scheme of Section V
to obtain a low-dimensional vector space L containing X . He
then uses Alice’s hash to identify X from L.

Let « be a parameter defined below. Let rq,...,7, be «
elements of [, chosen at random by Alice (and unknown to
Calvin). Let D = [d;;] be an n x a matrix in which d;; = (r;)".
Let XD = H. Alice sends to Bob a secret S comprising of the
symbols 71, ..., r., and the matrix H. The size of this secret is

’ ’

thus a(« + 1), which is asymptotically negligible in 7.
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Claim 5: Forany X' # X the probability (over r1,...,74)

that X'D = H is at most ( 7

Proof: We need to prove that (X — X')D # 0 with high
probability, where 0 is the zero matrix. As X # X’ there is
at least one row of X which differs from X’. Assume w.l.o.g.
that this is the first row, denoted here as the nonzero vector
(z1,...,2n). The jth entry in the first row of (X — X’)D is
F(rj) = i, ;7. As F(r;) is not the zero polynomial, the
probability (over r;) that I'(r;) = 0is at most . This holds for
all entries of the first row of (X — X’)D. Thus, the probability

that the entire row is the zero vector is at most % . O

Let « = b(b+ 20) + 1. Let L be a list (containing X) of
distinct matrices. Let the size of L be ¢® 1.

Corollary 6: The probability (over 7y, ..., r,) that there ex-
ists X’ € L such that X’ # X but X'D = XD is at most

n%/q.
Proof: We use Claim 5, and the union bound on all ele-
ments of L that differ from X. O

Note: The secret channel is essential for the following reason.
If the symbols 71, . . ., 7, were not secret from Calvin, he could
carefully select his corrupted packets so that Bob’s list L would
indeed contain an X’ # X such that X’D = X D.

Bob is able to decode the original information X of
Alice. Namely, Corollary 6 establishes that the system
XD = X°FD = H has a single solution. This solution
can be found using standard Gaussian elimination.

The above implies a scheme that achieves rate C' — zp. The
optimality of this rate is shown in prior work [14]. The prob-
ability of error is at most n%/q + |T||E|(L‘Z|)/q Here a =
b(b+ zo) + 1. The computational cost of design, encoding, and
decoding is dominated by the cost of running the Linear List
Decoding algorithm, which takes time O(nC?).

VII. UNIQUE DECODING IN THE
OMNISCIENT ADVERSARY MODEL

We now consider unique decoding. Our algorithm achieves
arate of R = C — 2z, which is lower than that possible in
the list decoding scenario. Recent bounds [2], [3] on network
error-correcting codes show that in fact C'—2z is the maximum
achievable rate for networks with an omniscient adversary.

To move from list decoding to unique decoding in the omni-
scient model, we add redundancy to Alice’s information as fol-
lows. Alice writes her information X in the form of a len_gth-bn
column vector X. The vector X is chosen to satisfy DX = 0.
Here, D is a én x bn matrix defined as the redundancy matrix.
The matrix D is obtained by choosing each element as an in-
dependent and uniformly random symbol from the finite field
F,, and én > n(zo + ¢) for arbitrarily small e. This choice of
parameters implies that the number of parity checks DX =0
is greater than the number of symbols in the zp packets that
Calvin injects into the network. We show that this allows Bob
to uniquely decode, implying a rate of C'—2z. The redundancy
matrix D is known to all parties—Alice, Bob, and Calvin —and
hence does not constitute a shared secret.

Alice encodes as in Section V. Bob’s decoding is as follows.
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Bob first runs the Linear List Decoding algorithm to obtain
(4) and (5). We denote the matrix comprising of the first zp rows
of F' by F1, and the matrix comprising of the last b rows of F' by
F5>. By the constraints specified in Section V, the last b columns
of X? form an identity matrix. Thus, (4) transforms into

X:XfFl‘i'FQ (6)

where X7 comprises of the first zo columns of X*.
Recall that X is a vector corresponding to the matrix X . Upon
receiving Y, Bob computes F' and solves the system

X =X;F + Fy @)
DX =0. ®)

Here, only D and F' are known to Bob. Our goal is now to show
that with high probability over the entries of the matrix D, no
matter which matrix F' was obtained by Bob, there is a unique
solution to (7) and (8). The matrix F' depends on the errors Z
Calvin injects. Calvin can choose these to depend on D. We take
this into consideration below.

The system of linear equations (7)—(8) can be written in ma-
trix form as

v_ |AUF) | % _
ax=[40] %=
where A comprises of the submatrices A(F}) and D, A(Fy)
is a bn x bn matrix whose entries depend on Fi, and B is a
length-n(b 4+ 6) vector. It holds that the system (7)—(8) has a
unique solution if and only if A has full column rank. However,
Calvin has partial control over F', and his goal is to design his
error Z so this will not be the case.

In what follows, we show that Calvin cannot succeed.
Namely, we show, with high probability over the entries of D,
that no matter what the value of F' is, the system (7)—(8) has
a unique solution. Our proof has the following structure. We
first show that for a fixed F}, the matrix A has full column rank
with high probability over D. We then note that the number
of possible different matrices F} is at most ¢*°™ (this follows
from the size of F}). Finally, applying the union bound we
obtain our result. .

We start with some notation. Assume that X is arranged by
stacking the columns of X one on top of the other, where the
columns of X§ appear on the top of X. Also, we fix the (%, j)th
entry of F; to be f;;. Then, the matrix

-4

has the following form:

r (L= fi)l  —faul —fzond T
: : f 0
_fl,ZOI _f2,ZOI (1 - fZO,Zo )I
_fl,zo+II _f2,zo+1[ _fzo,zo-l—lI
: : : I
_.fl,n _f2,nI _fzo,nI
L D i
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The matrix A is described by smaller dimensional matrices as
entries. Namely, the identity matrices I appearing above have
dimension b, the identity matrix I has dimension b(n — zp),
and the zero matrix 0 has dimension zob X b(n — 2 ). We now
analyze the column rank of A.

Clearly, the last b(n — zp) columns of A are in-
dependent. Thus, any set of dependent columns of A
must include at least one of the first bzo columns. Let
Vo= {u1,.. ., Ubz; V15« Up(n—z0) } be the set of columns
of A (here the {u;} vectors correspond to the leftmost bz
columns of A). We break the {u;} and {v;} vectors into two
parts. The components of the {u;} and {v,} vectors in the top
bn rows of A are denoted, respectively, as {uf} and {v’}. The
components of the {u;} and {v;} vectors in the bottom én
rows of A are denoted, respectively, as {u’} and {v%}. The
matrix A is rank-deficient if and only if there exist {c;} and
{B;}, not all zero, such that ), c;u; + >, Bv; = 0. Note
that there is a one-to-one correspondence between the values
{a;} and the values {;} in the above equality. Namely, for
each setting of {«; }, there is a unique setting of {(; } for which
doioquf + 305 Bjvi = 0. Further, for every setting of the
values {«;} (and a corresponding setting for {3;}), the prob-
ability over D that ), o;ul + > Bjv? = 0 is at most ¢—°".
This implies that the probability ), cju; + 3, v, = 0 is
asymptotically negligible. Then, an additional use of the union
bound on all ¢*#© possible values of {«;} suffices to obtain our
proof.

All in all, Bob fails to uniquely decode with probability
q?omqb*0 q=%" (the first term corresponds to the union bound
over the values of F; = [f;;], the second term corresponds to
the union bound over the values of {«; }, and the third term cor-
responds to the failure probability). Setting § = 2z + ¢ suffices
for our proof. The computational cost of design, encoding, and
decoding is dominated by solving the system of (7)—(8), and
thus equals O((nC)?).

VIII. LIMITED ADVERSARY MODEL

In this section, we combine the strengths of the Shared Se-
cret and the Omniscient Adversary algorithms of Sections VI
and VII, respectively. We then achieve the higher rate of C'— zp
without the need of a secret channel. The caveat is that Calvin is
more limited—he can only eavesdrop on part of the edges in the
network. Specifically, the number of packets he can transmit,
20, and the number he can eavesdrop on, zj, satisfy the tech-
nical constraint

2z0 + 21 < C. 9

We call such an adversary a Limited Adversary.

The main idea underlying our Limited Adversary algorithm
is simple. Alice uses the Omniscient Adversary algorithm to
transmit a “short, scrambled” message to Bob at rate C' — 2z¢.
By (9), the rate z; at which Calvin eavesdrops is strictly less than
Alice’s rate of transmission C' — 2z . Hence, Calvin cannot de-
code Alice’s message, but Bob can. This means Alice’s scram-
bled message to Bob contains a secret S that is unknown to
Calvin. Once $ has been shared from Alice to Bob, they can
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use the Shared Secret algorithm to transmit the bulk of Alice’s
message to Bob at the higher rate C' — zp.

A. Alice’s Encoder

Alice’s encoder follows essentially the schema described in
the previous paragraph. The information S she transmits to Bob
via the Omniscient Adversary algorithm is padded with some
random symbols. This is for two reasons. First, the randomness
in the padded symbols ensures strong information-theoretic se-
crecy of S. That is, we show in Claim 7 that Calvin’s best es-
timate of any function of S is no better than if he randomly
guessed the value of the function. Second, since the Omniscient
Adversary algorithm has a probability of error that decays ex-
ponentially with the size of the input, it is not guaranteed to per-
form well when only a small message is transmitted.

Alice divides her information X into two parts [ X X5]. She
uses the information she wishes to transmit to Bob (at rate R =
(C — z0)(1 — A)) as the input to the encoder of the Shared
Secret algorithm. The output of this step is the b x n(1 — A)
submatrix X;. Here A is a parameter that enables Alice to trade
between the probability of error and rate loss.

The second submatrix X5, which we call the secrecy matrix,
is analogous to the secret S used in the Secret Sharing algorithm
described in Section VI. The size of X5 is b x nA. In fact, X5 is
an encoding of the secret S Alice generates in the Shared Secret
algorithm. The v = (b(b + z0) + 1)(b + 1) symbols corre-
sponding to the parity symbols {r;} and the hash matrix H are
written in the form of a length-y column vector. This vector is
appended with symbols chosen uniformly at random from [F,

to result in the length-(C' — zo — §)nA vector U'. Alice multi-
/

plies U _by arandom square matrix to generate the input U. This
vector U functions as the input to the Omniscient Adversary al-
gorithm operated over a packet-size nA with a probability of
decoding error that is exponentially small in nA. The output of
this step is Xo.

The following claim ensures that S is indeed secret from
Calvin.

Claim7: Lety = (b(b+2z0)+1)(b+1). The probability that
Calvin guesses S correctly is at most ¢~ 7, i.e., S is information-
theoretically secret from Calvin.

The proof of Claim 7 follows from a direct extension of the
secure communication scheme of [6] to our scenario.

The two components of X, i.e., X and X5, respectively, cor-
respond to the information Alice wishes to transmit to Bob, and
an implementation of the low-rate secret channel. The fraction
of the packet size corresponding to X5 is “small,” i.e., A. Fi-
nally, Alice implements the classical random encoder described
in Section III-B.

B. Bob’s Decoder

Bob arranges his received packets into the matrix
Y = [Y; Y5]. The submatrices Y; and Y5 are, respectively, the
network transforms of X; and X5.

Bob decodes in two steps. Bob first recovers S by decoding
Y5 as follows. He begins by using the Omniscient Adversary
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TABLE II
COMPARISON OF OUR THREE ALGORITHMS

Adversarial Rate Complexity
Strength

Shared zo0 < C, C —zo0 OnC?)

Secret zr = network

Omniscient| zo < C/2, C —2z20 | O((nC)?
zr = network

Limited z1+2z0 < C | C—zo O(nC“‘)

decoder to obtain the vector U. He then obtains U ' from fj by
inverting the mapping specified in Alice’s encoder. He finally
!/

extracts from U the ~ symbols corresponding to S.

Alice has now shared S with Bob. Bob uses S as the side in-
formation used by the decoder of the Shared Secret algorithm
to decode Y;. This enables him to recover X;, which contains
Alice’s information at rate R = C — zp. The probability of
error is dominated by the sums of the probabilities of error in
Theorems 1 and 2, with the parameter n replaced by nA. The
Limited Adversary algorithm is essentially a concatenation of
the Shared Secret algorithm with the Omniscient Adversary al-
gorithm, thus, the computational cost is dominated by the sum
of the two (with nA replacing n). Choosing A appropriately
(say nA = n'/3), one may bound the complexity by O(nC?).

IX. CONCLUSION

Random network codes are vulnerable to Byzantine adver-
saries. This work makes them secure. We provide algorithms?
which are information-theoretically secure and rate-optimal for
different adversarial strengths (as shown in Table II). When
the adversary is omniscient, we show how to achieve a rate of
C — 2z, where z¢ is the number of packets the adversary in-
jects and C is the network capacity. If the adversary cannot ob-
serve everything, our algorithms achieve a higher rate, C' — zo.
Both rates are optimal. Further, our algorithms are practical;
they are distributed, have polynomial-time complexity, and re-
quire no changes at the internal nodes.
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