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The problem of electromagnetic wave propagation in a turbulent plasma is formulated in terms of the
radiative transport equation. A singular eigenfunction solution is obtained for the case of isotropic plasma
turbulence, and detailed numerical calculations are presented. The intensity distribution is studied as a
function of the turbulent spectrum and relative strength of scattering attenuation to total attenuation.
For a highly forward peaked scattering law characteristic of many physical situations it is found that
the reflected backscatter intensity is relatively insensitive to the angle of incidence, except as grazing
incidence is approached. The importance of multiple scatter is studied as a function of the properties of

the medium.

I. INTRODUCTION

In an attempt to develop a theory of electromagnetic
scattering from turbulent ionized media, we have
developed and reported on an analysis based on the
radiative transport equation.! Initiaily, the formulation
considered only the first two terms of the Neumann
series solution to the scalar equation. Later, an improved
physical representation was investigated by considering
the Neumann series solution to the vector equation.?
This approach has been successful in predicting the
percentage depolarization for two different experimental
configurations.!* However, the rate of convergence of
the Neumann series becomes slower when one progresses
away from the Born scattering region (where the mean
and fluctuating components of the electron number
density must be well below the critical electron number
density) and approaches overdense scattering condi-
tions and hence, the validity of the calculation is
questionable in that range. For this reason, in this
paper we use an exact solution to the scalar transport
equation which is not dependent upon the convergence
properties of a particular series expansion.

A number of techniques are available for solving the
radiative transport equation, e.g., Monte Carlo,* in-
variant imbedding,® discrete ordinates,® or singular
eigenfunction expansions.” In this work we wish to
investigate the effects of multiple scattering and of
changes in the turbulence spectrum; hence, we find it
sufficient to consider only simple geometries. Thus, the
singular eigenfunction method, suitable for plane-
parallel homogeneous media, is the method which is
utilized. For the case of a homogeneous half-space, this
method provides the exact solution in terms of the
quadratures. The other above-mentioned techniques
would require a more significant computing effort. For
a complicated geometry, on the other hand, the Monte
Carlo approach might be the optimum choice. In this

work, we develop the necessary numerical analysis in
order to proceed from the formal derivations and solu-
tions of the radiative transport equation®' to numerical
results and study the scattering as a function of medium
characteristics. Watson® has studied this problem for
the case of isotropic scattering or the long wavelength
limit.

In the next section we briefly review the radiative
equation formalism as applied to the problem of micro-
wave scattering from a turbulent plasma.??:*1 We also
describe a computational scheme based on the singular
eigenfunction solution to the transport equation for the
case of an isotropic turbulence spectrum. In this case
the scattering function is rotationally invariant and can
be approximated by a finite series of Legendre poly-
nomials. Scattering in a turbulent plasma can be highly
anisotropic which leads to computational limitations.
Other authors have considered highly anisotropic scat-
tering but only azimuthally symmetric radiation
fields.’s1% In the third section, we present and interpret
the numerical results for both the reflected intensity and
the intensity distribution in the model medium. We
investigate the effect of changes in the turbulence
spectrum and in the relative attenuation due to scat-
tering and adsorption. The limitations of the present
approach are discussed. The final section summarizes
the results and conclusions of the paper.

Before proceeding we should emphasize the difference
between the terms homogeneity of the plasma medium,
isotropy of the turbulence, and isotropy of the scattering
function. The first, homogeneity of the plasma medium
means that the statistical averages are uniform in space.
The second, isotropy of the turbulence means that the
turbulent spectrum is not a function of the wave vector
k but rather just of the magnitude | k|. The third,
isotropy of the scattering function means that scattering
has equal probability in all directions. In this paper we
assume homogeneity of the plasma medium and isotropy
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F16. 1. Geometry for
scattering through angle

of the turbulence but not the isotropy of the scattering
function.

II. SOLUTION OF THE RADIATIVE TRANSPORT
EQUATION FOR A LEGENDRE POLYNOMIAL
FIT TO A ROTATIONALLY INVARIANT
SCATTERING LAW

A, Formulation of Problem

The radiative transport equation for the intensity,
I(r,n), (power at r flowing in direction #, per unit
solid angle about » per unit volume at r), in the medium
is

(nV)I(x, m)+[x(r)+o(r) ) (r, )
=[o(r)/4x]f dQ(n") p(n, n') I (x,n"), (1)

where we have written the scattering law in the form
o(r)[p(n, n') /4x] with (4x)"fp(n, n') dQ(n’)=1. In
Eq. (1) o(r) is scattering probability per unit length
and «(r) represents absorption probability per unit
length. We assume I(r,n) represents intensity of a
given frequency, and that energy exchange between
frequencies can be neglected. The quantity dQ(»’) is a
differential solid angle about #'. Rigorous derivations
of Eq. (1) and a discussion of the range of validity of
this equation may be found in the literature.’.9:10:13

Our intent here is to investigate the solutions of Eq.
(1) for a homogeneous half-space with a scattering law
characteristic of an isotropic turbulent plasma. We thus
assume the medium under consideration fills the half-
space 2>0 and, with the homogeneity assumption,
write Eq. (1) in the form

(”'aa—x +1) I (%, p) =%‘:’0/Pm(p, p) Iz, u') dy!, (2)

where « is the optical thickness

2= [ (ko) d'=s(xto), 3)
0
and the single scatter albedo  is
6)0=a/(x+¢r). (4)
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In Eq. (2) u=cosf, the cosine of the polar angle. The
scattering phase function p is assumed to be azimuthally
symmetric. The coordinate system is shown in Fig. 1.
In general, I will depend on (#, g, ¢) ; hence, we have
also made the usual expansions

I(x: My ‘P) = Z exp(”’“P)I"’(x: I‘);

m

p(n,n') = X explim(o—¢') Jp™(u, ).

Since the exp(imep) form an orthogonal set, Eq. (2)
holds for each m with no coupling between different
values of m. Equation (2) thus represents a set of equa-
tions describing radiative transport within the model
space.

B. Method of Solution

We briefly outline the singular eigenfunction solution
technique as applied to Eq. (2). Since the details of the
solution may be found in McCormick and Kusler,” we
merely sketch the important points. We first assume
that the scattering phase function can be approximated

by
(5)

where O is the scattering angle, and P, are the Legendre
polynomials. We note that the expansion of p(cos6) in
Legendre polynomials is not the only possible procedure.
Other basic functions could be utilized, or one could
deal directly in the computations with p(cos8). Use of
an analytical expression for p(cos®) such as Eq. (5),
however, allows the formal analysis to be carried farther
than in a purely numerical treatment.
Use of the ansatz

I"(x, ) = exp(—x/u)¢™(v, p) (1—p)™?

yields the equation for the eigenfunctions ¢™

+1
=m0 =B [ )86, ) dm(u'), (1)

N
@op(cosO) = 3 @iPi(cosO),
w0

(6)

where v plays the role of an eigenvalue, and
P )= £ cmpe ) pe ).
In the above p;™(u) are the associated Legendre poly-
nomials divided by (1—u?)™/? and
=i (I—m) !/ (I+m) .
We have also introduced the notation
dm(p) = (1—p*)mdu.

The singular eigenfunction approach is similar to the
standard techniques used to solve ordinary differential
equations, One first seeks the solutions of eigenfunctions
¢™(v, u) of the homogeneous transport equation, Eq.
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(7). The solution for I is then expanded in terms of
these eigenfunctions with the expansion coefficients
determined by the boundary conditions. In general,
there are two types of solutions to Eq. (7) : continuum
solutions and discrete solutions.

(i) Continuum Solutions

For v€ (—1, 1) there corresponds a continuous set of
singular eigensolutions

¢m(y’ ”') =%ng(”’ "”)P(”'—“)_l
+Am(v) (1= ™5 (v—p), (8)

where P denotes the Cauchy principal value, and

my it [ L 1) dmu)
) =1-pp [(EZESEE ()
N
e 0= T argre)pre),  (10)

+1
)= [ oo wpre) dnG). (1)

(ii) Discrete Solutions
For »§ (—1,1) there may exist a set of discrete
eigenfunctions

o (v, p) =t (g (2v w)/ v Fa) ], (12)
which are the roots of the dispersion relation
Am(2) =0, (13)

where A™(z) has the same integral representation as
M(u) but with 2§ (—1,1). The number of discrete
roots may be found by the argument principle

M=x"1A argA ™ (v=ie) Jou, (14)
where M is the number of discrete roots with positive
real parts and

Agm(v) = lim, A" (vie)

=\"(v) £dimgn (v, ) (1= (15)

In Eq. (14) [AargA,™(u)Jow1 is the change in the
argument of A,™(u) as u varies continuously from O to 1.
It can be shown that the number of positive roots
is limited byt
M<LN—m+1

with N the highest-order Legendre polynomial occur-
ring. It can be shown that there is at least one real
positive root for m=0." As &, increases, v/ increases to
infinity and additional roots appear at »=1. We also
note, as the order of the polynomial fit is increased, that
there is the possibility of additional roots.

IN PLASMA TURBULENCE 1643

Once the eigenfunctions Eqs. (8) and (12) have been
found, it is necessary to establish the completeness of
the ¢™, so that an expansion of /™ in terms of the ¢™
can be properly made and interpreted. Completeness of
the ¢™ follows from a theorem’ ? which states that an
arbitrary Holder continuous function on [0, 1] can be
expanded in terms of the ¢’s as

M
In(%, p) = El a"¢™(v;", u) exp(—ax/v;i")

+1
+ [ Am0)4n o, k) exp(—a/) dv. (16)
0

The proof is constructive in that once completeness is
proven, it explicitly yields a calculational scheme for the
expansion coefficients a; and A™(»). For details of the
proof, the reader is referred to the literature.”*? We
simply quote the results relevant to our problem.

The expansion coefficients may be written in terms of
the adjoint eigensolutions as

7™ (057, o) poH™ (10)

o el He o) LA (/02 oo
(17)
i _ 27)7™ (v, po) H™(uo) (1—s)™
Ar()= X™(v)vH"(v) , (18
Xm(v)=A"(v) A" (v). (19)
The adjoint eigensolutions are given by
80 ) =3B (o, o)+ L) g

(vi™— o)

and

g (v, m0) |, A (v)8(v—po)
E—, ]+ A=A

(21)

(0, w0) = [Bm<v, o)+

The H™ functions are given by

[H™(u) = (1-u>-mﬂ 1+ (u/oi)

ARW
n S8 Llb) 1),
(22)

Xexp ((2m)—1 f
0
The B™(v, u) are given by

N-1

Br(v,u)= IZ B (v) Pin (), (23)

where the By are determined by solving the polynomial
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F16. 2. Polynomial fits to von Kérmén interpolation formula.

equations
T Be0)Kr0) ==170,), ()
In(6#) = )" £ am
X[gn(s) Kin () — gn(&) K (@), (29)

(:gm(y, I-L) _gm(”’ M)]
(v—p)
p(v)
+2 [H'"("V) ]AS’ (26)

where 4.5 means we keep the polynomial part in an
expansion about y= o,
With the above results, we can write the final result as

K (v) = /1 pim(w) pH™(u) dm(u)
0

I(z,p,0)= 2_:0(2-50.»1)1"'(96, ) (1= p2) 72 (1— pe?) '

X cosm (¢— o) +8(u—po) exp(—x/p0)
N

X[6(e—@0)— (2r)7' 22 (2—b0.m) cosm(e—eo)], (27)

m=0

where (uo, v0) specify the incident wave direction.

C. Relation to Experimentally Measured Quantities

In order to calculate the intensity distribution given
by Eq. (27) we need explicit expressions for the scatter-
ing phase function, the scattering per unit length ¢, and
the absorption per unit length «. For the absorption per
unit length, we use the development of Sen and Wyler"”
specialized to the case of small »/w,

k=vN/cNcg, (28)

PIECH, AND LEONARD

where IV is the mean plasma concentration, » is the
collision frequency, « is the microwave frequency, Ncr
is the critical plasma concentration, and ¢ is the speed
of light. For the scattering law, we assume that the
criteria discussed by Watson® are satisfied. Then, the
scattering law is simply given by the Born cross section

oBorn=0(1)p(n, n") /4w =7 NemS(k—X’), (29)

where S is the spectral function of the electron density
fluctuations, k and k’ are the incident and scattered
wave vectors, respectively, 7. is the classical electron
radius, and N is the root mean square of the electron
density fluctuations. The scattering phase function is
normalized such that

(4m) " fp(n, n') d2(n') =1, (30)

where d2(»’) is a differential solid angle about #’.
For the spectral function we assume the turbulence is
isotropic and given by the von Kédrmén interpolation
formula'®

S(k) =Ca*/ (1+a?k?)1s, (31)

where C is the normalization chosen to satisfy Eq. (30),
a is the scale size that characterizes the spectrum, and
k is the wave number. Because S depends only on the
magnitude of k—k’, the scattering law is rotationally
invariant.

It is also necessary to have a finite polynomial
approximation of Eq. (31) in order to use the analysis
as developed in McCormick and Kuséer.”” In Fig. 2
we depict spectra and their polynomial approximations
for two values of the product ako, where & is the incident
wavenumber. It is this product that governs the degree
of anisotropy. The polynomial fits were chosen to both
minimize the order and yield the correct ratio of forward
to backscatter. We note that Watson has presented
calculations for the isotropic case of ak,=0.? The scat-
tering angle @ is related to the wave number by

k= Zko sin% .

Table I summarizes the various values of ako used in the
calculations. The value aky=06.8 approximately repre-
sents the degree of anisotropy for the axial spectral
function and microwave wave - length reported by
Feinstein and Granatstein.! It is advantageous to use
the lowest-order polynomial possible, since numerical
calculations become progressively more difficult as the
order is increased. Unfortunately, as the degree of
anisotropy increases the order of the polynomial must
be increased to obtain an adequate representation.

III. NUMERICAL RESULTS AND
INTERPRETATION

The calculations (see Butler ef al.” for a complete
description), although quite involved, are actually
reasonably straightforward. For example, considerable
care must be taken to evaluate both the discrete roots
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and integrands entering into the calculations. As roots
appear at v=1, the integrands vary quite rapidly near
u=1, and much finer grid spacing is required for evalua-
tion of the integral in this region. In addition, calcula-
tions are difficult for large values of the discrete roots
v, because of the polynomial expansions used. The
magnitude of v/ increases with &, the single scatter
albedo or ratio of scattering to total attenuation.
Additional roots, »™, appear as the degree of anisotropy
is increased. Hence, the calculations become more
difficult as the scattering becomes more anisotropic or
as &y approaches unity.

In Fig. 3 we show the root trajectories (»;” vs &) for
aky=5.5 or a ratio of forward to backscatter of 532.9
to 1. Since the roots v, are in the interval (1, ), we
have plotted (v/*—1) to show their behavior near 1.
The behavior for other ako is, in general, the same, We
observe that there is at least one root for m=0.!
Additional roots appear for m=0 as & increases and
also for m>0.

TaBLE I. Spectra used in calculations.

Ratio of forward

akoy to backscatter Order of polynomial
0 1 0
2.6 44.6 3
3.7 136.5 5
5.5 532.9 9
6.8 1143.3 15

All the roots reach an asymptotic value as @, ap-
proaches 1 except for the first root for m=0 which
tends to infinity. It is this large magnitude which causes
the computational problems. It is also this root which
dominates the decay of the intensity for large optical
depths. However, this root affects only the azimuthally
independent part of the computation and thus the
developments of Kaper ef al.'® and Eccleston ef al.® may
be used to overcome the numerical difficulties. Note,
that although the scattering law is assumed azimuthally
symmetric, neither the boundary conditions nor inten-
sity distribution need be azimuthally symmetric.

Although computational time is not excessive, the
numerical codes are quite involved, hence some verifica-
tion of the calculations is desirable. Before discussing
the intensity distribution calculations, let us briefly
mention several such checks which have been made.
Chandrasekhar®® uses the discrete ordinate technique
to solve the problem of reflection from a homogeneous
half-space for an isotropic, linear, and quadratic
(Rayleigh) scattering phase function. The present
singular eigenfunction computation reproduces Chand-
rasekhar’s results to the five figure accuracy he has
published. As an additional check, one can show from
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F16. 3. Root trajectories for ratio of forward peaking of 532.9
to 1 with 9th order polynomial for ake=S5.5.

the reciprocity relationship® that the eigenfunctions
obey the following symmetry law

pod™ (— py pio) = ™ (— pioy 1) . (32)

This relationship is satisfied for ratios of forward
peaking up to at least 43.3 to 1 or aky=6.8.

2% I
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F16. 4. Backscattered intensity from the half-space into the
incident direction (f=x—8,, p=x=¢o) as a function of incident
direction.
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265 ( 0, = 28° tion. We have not included the special backscatter
correction to the transport equation®® which should

1 20 w affect the absolute magnitude but not the form of the
@ ° curves.
g - *\_—/\ .In. Fig's. 5, 6, and' 7 we present reflected intensity
> distributions for various incident angles for aky=2.6,
Z 6, = 76° 5.5, and 6.8, respectively, for @=0.7. We again observe
g 10f the reduction in intensity as the scattering function
E ———— becomes more strongly peaked. For aky= 2.6, we observe
< s} maxima and minima as a function of 8. This behavior
— is also observed by Chandrasekhar’ for low order poly-
0 I T S T S nomial scattering laws. The results for the higher-order

180 170 160 150 140 130 120 110 100 90 fits shown in Figs. 6 and 7 still exhibit the extrema, but
the amplitudes of the extrema are not nearly as large,
indicating that the intensity reflected from the half
F16. 5. Reflection from half-space for ake=2.6. space for a highly forward peaked scattering function

is more diffuse, and relatively insensitive to angle of

O (deg ) —

In Fig. 4 we display the backscattered intensity (i.e.,
u=—u, =7+, Hence, §=r corresponds to intensity
returning normal to the medium surface) for a forward
peaking of 44.6 to 1 (N'=3, ako= 2.6), a forward peaking
of 532.9 to 1 (N=9, aky=5.5), and a forward peaking
of 1143.3 to 1 (N=15, aky=6.8), as a function of the
incident directions for Gy=0.7. We note that the back-
scattered intensity is relatively insensitive to variations
in the incident direction except near grazing incidence
(6=x/2). The sensitivity is diminished as the forward
peaking of the scattering function is increased, or
equivalently as ak, is increased. We also observe that
the backscattered intensity is larger for the less strongly
peaked scattering functions or smaller ko This result
can be explained by the fact that, for the more strongly o
peaked scattering function the probability for back- 180 50 150 %0
scatter is decreased. This leads to a longer pathlength e —»
in the medium and more energy will be lost by absorp- FiG. 7. Reflection from half-space for ako=6.8.

I (ARBITRARY UNITS) —»
N
L

incidence. These results differ from the first order Born
approximation which predicts a monotonic behavior
for the bistatic backscattered intensity. We also note
that, for all three scattering laws, the reflected intensity
tends to reach a maximum and then decrease as ¢
approaches 7/2 except for near grazing incidence. This
phenomenon is also observed by Kaper ef 4l in their
eigenfunction solution for the slab with an azimuthally
symmetric boundary condition. It may be understood
if we consider a photon at an optical depth x in the
af medium traveling in direction p toward the surface.
The photon has an escape probability of exp(—/u).
2t As u—0 this probability decreases, decreasing the
reflected intensity in this direction. This is analogous
! ( to limb darkening.
\ R In Figs. 8 and 9 we show the radiance distribution as
180 150 120 20 a function of optical depth for optical depths from 1 to
e —* 12, for a plane wave incident at 60° from the surface
F16. 6. Reflection from half-space for ake=35.5. normal, for @=0.7. In Fig. 8 the ratio of forward

1 (ARBITRARY UNITS) —»
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peaking is 136.5 to 1, and in Fig. 9 the ratio is 532.9
to 1. The curves represent only the scattered intensity
at ¢= ¢y, i.e., in the plane of the zenith and the incident
directions. The unscattered intensity is a decaying
exponential in x at 8= 60°. As expected for small optical
depths, a maximum occurs about the incident direction.
At greater depths in the medium, this maximum moves
toward 0°, and the intensity distribution becomes inde-
pendent of the angle of incidence. Comparing Figs. 8
and 9, we see that the observed maximum becomes more
pronounced for a given depth as the scattering law
becomes more strongly peaked in the forward direction,
and one must go to larger optical depths before it

0
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F1G. 8. Intensity distribution within the medium as a function
of polar angle in plane of the zenith for ake=3.7.

diffuses. The rate of measured decay of the maximum
about the incident angle, coupled with the ability to
compute decay as a function of degree of forward
peaking, may offer an indirect measure of this peaking
and yield information about the spectrum.

The shift of the maximum to zero degrees is in agree-
ment with the observations of underwater illumination
in the sea.” The general structure of the intensity curves
of Figs. 8 and 9 is also in qualitative agreement with
such experimental data, e.g., that of Tyler.2®

Figure 10 represents the same physical situation as
Fig. 9, except we vary the optical depth x from 0.01
to 1.4. We observe that the peak about the incident
direction disappears as the optical depth approaches
zero, with a sharp maximum in the intensity occurring
at 90° or parallel to the surface of the medium. One
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F1c. 9. Intensity distribution within the medium as a function
of polar angle in plane of the zenith ake=35.5.

may think of this effect as photons trapped close to the
surface, traveling parallel to the surface which is the
reverse of the limb darkening effect described before.
This phenomenon is observed by Tyler®:* in his under-
water optics work. For the radiance at 0°, he first
observes an increase then a decrease as the optical depth
is increased which is in agreement with our calculations.
Tyler also observes the maximum in the radiance dis-

10 OPTICAL DEPTH

I {ARBITRARY UNITS)—»

1 0.3 i 1 L ) I )
30 40 50 60 70 80 90
e—>

Fi16. 10. Intensity distribution within the medium as a function
of polar angle in plane of the zenith for small optical depths.
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Fic. 11. Intensity distribution for isotropic scattering for small
optical depths.

tribution shifting toward 90° as the optical depth
approaches zero.

Both the photon trapping and limb darkening are
not predicted by the Born approximation, One can,
however, gain some insight into this behavior by looking
at the case of isotropic scattering. We write the trans-
port equation in the form

(o +1) 1=t G
where p(x) is the integrated angular intensity
o) = [ 1) i (30
The boundary condition is
I(0, ) =6(p—m), u>0. (35)

The details of the solution to Eq. (33) can be found
in the literature.” Here, we restrict our attention to
small .

We note immediately that if the derivative (8/8x) X
I(z, ) is finite as p—0 then directly from Eq. (33) we
have

I (x, 0) = }awn(2). (36)

To obtain the behavior for small x=A we integrate
the transport equation (33) and make use of the
boundary condition Eq. (35),

I(A, p)=p! /A exp ('— é‘_ifi) Yaop(x') do’

0

A
e (= ) stum). (37)
By the mean value theorem we can write
A — !
18,0 =32 [ exp (= =5 ) aw
uJg ~
A
e (= 2) stu—m), (38)

FEINSTEIN, BUTLER, PIECH, AND LEONARD

where 5 is the value of p(x) for some 0<x<A. Note
that for small A, 5 will be close to p(0). Equation (38)
may be integrated to give

1(A, u) = $wid [l‘e"p (~ AZ)]

+exp (
Now for small A/u or u—1 we have

A) Su—m).  (40)

i

A)m—m). (39)

7

A
1(8, )49 5 +exp (
For large A/u or u—0 we have
A
I(4, w)~dang-+exp (— ;) Su—p).  (41)

This behavior is shown in Fig. 11 where we have
plotted only the collided intensity (omitting the delta
function term). We observe that the behavior for the
isotropic case is qualitatively the same as that for the
full anisotropic calculation shown in Fig. 10 for A=0.1.

Determination of electron concentration or collision
frequency from a measurement of the reflected inten-
sity, within the context of the present analysis, would
require the single scatter albedo as a function of the
reflected intensity. This is done in Fig. 12 for several
different values ak, for normal backscatter. The first-
order term in an &, expansion is also shown. We observe
that there are significant departures from the first
order approximation as the intensity is increased. We
also observe a saturation effect, since @ cannot become
greater than unity. In addition, we see that as the
aky is increased the curves rise more rapidly and saturate
more sharply.

It has been observed experimentally!?:2% that the
single scatter or modified first Born approximation
seems to have wider range of applicability than origin-

0.9
08
0.7

0.6

0.2 L 1 1 1 1 1 i ]
0 1 2 3 4 5 6 7 8

Ix 102 —»

Fi6. 12. Albedo as a function of normal backscattered intensity.
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ally anticipated. In some of our earlier work with the
Neumann series or multiple scatter expansion of the
transport equation we have found that the second term
of the solution contributes to the total solution in a
manner to give an effective modified first Born appear-
ance.!® Perhaps some insight into this behavior may
be gained by looking at the multiple scatter expansion
for I :

I= 3 agla

n=l

(42)

and then looking at the reciprocal relationship between
1/@ and 1/1.% Equation (42) is the Neumann series
solution to the transport equation. Convergence is
assured if (I,41/1,)<1/@&. It is important to realize
that the series in Eq. (42) is not the same as the Born
series solution to Maxwell’s equations but rather an
expansion in terms of the single scatter albedo &o. How-
ever, the first term of the series in Eq. (42), I, is the
well-known distorted. wave Born approximation.? The
utility of this approach is that one can obtain useful
information about the general behavior of the solution
without performing the lengthy numerical integrations
necessary to calculate the I,.

Before proceeding, we note from Eqs. (4), (29), and
(31) that one cannot, in general, vary & and ak
independently but, in the interpretation of the impor-
tance of multiple scatter, it is useful to consider the
expansion in Eq. (42) for various ako.

From Eq. (42) we see immediately that for small &,
we have the linear relation

I, (43)
a straight line through the origin with slope 1/I;. The
next order correction to Eq. (43) may be found by
keeping terms to second order in & in Eq. (42):

It= (&oI1) [ 14-Go( I/ 1)) T (44)
Hence, this correction is approximately
[14@0(Io/ 1)) Tt —an(Io/1h). (45)

Equation (45) shows that the second-order term reduces
the curve from the linear value; more for larger values
of & or smaller values of 1/&. Combining Eqs. (44)
and (45) gives

I = (Goly) 7'~ [Ia/ (11)*]

which shows that 1/7 is linear in 1/&, for small &,.

In Fig. 13 we plot 1/7 as a function of 1/& for several
ratios of forward peaking for backscatter normal to the
surface of the half-space (u=—puy=-~1). We observe
that the linear relation predicted by the first- and
second-order theory is obtained for the exact solution
to the transport equation over a wide range of &.
Slight deviations from linearity are observed as &

(46)

IN PLASMA TURBULENCE 1649

7001
ak,
600} °
T 500 - 5.5
£ 400f 26
-2
“'_-' 300} FIRST ORDER
z
200
__/1-=/,Lo=1
1o0f
0 WO DR N OO U (N U N A WU TR Y SN U [ WS T |
0123456 7182910 112 14 16 18 20
1/Gp—mm

F16. 13. Relationship between reciprocals of intensity and albedo.

approaches 1. Here, the slope of the curve 1/I vs 1/&,
first decreases, behavior opposite to that predicted by
Eq. (44). It was found numerically that further in-
creases in @, although not apparent in Fig. 13, cause
the slope to increase in agreement with Eq. (44). These
transport equation calculations have been experi-
mentally verified for scattering from a known spherical
polydispersion” and have been compared with experi-
mental measurements of underwater irradiance.®

We also observe that as the scattering law becomes
more peaked in the forward direction (ak; is increased)
the slope of the linear relation between 1/I and 1/&
increases. This may be explained by the same argument
used in the discussion of Fig. 4. For the more strongly
peaked function of photon must, on the average, under-
go many more scatterings, mostly through small angles,
before it is emitted in the backscattered direction and,
since its optical path in the medium is longer, more
energy is lost to absorption. Hence, for a given & or
1/&, I will be smaller and 1/7 larger as seen in Fig. 14.

The first-order approximation, Eq. (43), for isotropic
scattering is also shown in Fig. 13. As expected the
slope is the same as the exact calculation but the inter-
cept is larger since the first-order approximation under-
estimates the exact solution.

In Fig. 14 we show the reciprocal relationships
between 1/I and 1/é, for several different backscatter
and bistatic angles assuming isotropic scattering. We
observe that the general linear relationship is still found
over a wide range of parameters. We also observe that
the slope is a function of the bistatic angle. The sensi-
tivity of this dependence increases with the degree of
anisotropy of the scattering law, hence may offer a
method of probing the spectrum of turbulence.

An estimate of the full correction may be found by
assuming that the ratio of successive terms approaches
a constant

Lo /T.~K<1. (47)

Mullikan,® in fact, has shown that for isotropic scat-
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F16. 14. Relationship between reciprocals of intensity and albedo
for isotropic scattering for various angles.

tering and a half space medium
const
(n41)32’

hence Eq. (47) holds exactly in the limit of large n.
If we assume Eq. (47) holds to rather low order, say
n=2, we have

I=aoli[1+an(l2/I1) (1~&K)™1], (49)

where we have summed the geometric series in oK.
The reciprocal relation is

1= Gl |

P 4

(48)

1—-&K
14-@ (I:/Iy) - K]
To second order in & this is

I'= (@oly) 1 (I/12) +én(K/I) [(Io/T) —K].  (51)

The first two terms of Eq. (51) are identical to Eq.
(46). The deviation from the linear relationship is
given by the third term. The precise form of the devia-
tion depends on the magnitudes of Iy, I,, and K. Note
that if we had taken #=1 in Eq. (47), then Eq. (51)
would reduce to the linear relationship, Eq. (46).

To better understand these results we can analyti-
cally perform exact calculations for the case of isotropic
scattering. For the ratio I,/I;, we obtain, for the exact
solution JI»/I,=0.693, and from Eq. (48), I,/I,=0.649;
hence, we see that taking K=1 for low # is an over-
estimate. The effect of these approximations may be
seen in Fig. 15 where for isotropic scattering we have
plotted the first-order term, Eq. (43), the linear
approximation, Eq. (46), Eq. (50) with K=1 for #> 2,
and the exact solution. We see all four curves are
approximately linear over the range of @ calculated
(0.1£,<0.9). It is interesting to note that the linear
approximation, Eq. (46), does not significantly improve
the first-order result, Eq. (43). However, the additional

] . (50)

FEINSTEIN, BUTLER, PIECH, AND LEONARD

higher-order terms approximated in Eq. (50) do show
substantial improvement. We have thus demonstrated
analytically and numerically, for the case of isotropic
scattering, that the higher order terms contribute to
1/I in a manner that yields a slope equal to (&l;)™,
over a wide range of @, (0.1<@<0.9).

Finally, it should be pointed out that, although no
mention of the “saturation” effect discussed in the
literature!*- has been made, this effect is a natural
consequence of the transport solution. The exponential
nature of the expansion, Eq. (16) explicitly shows this
effect. In fact, as the scattering becomes strong (i.e.,
@y~1) the first root »° dominates as is shown in Fig. 3
and saturation occurs.

IV. SUMMARY

We have formulated the problem of electromagnetic
scattering in a turbulent plasma in terms of the radia-
tive transport equation. A singular eigenfunction solu-
tion was given for the case of an azimuthally symmetric
scattering law, i.e., for scattering by typical homo-
geneous isotropic plasma turbulence. The degree of
anisotropy in the scattering function is governed by the
product of the turbulent scale size and the wave number
of the incident electromagnetic wave.

Detailed numerical calculations were presented based
on a finite polynomial approximation to the turbulent
spectrum. The intensity distribution was studied as a
function of angle and depth in the turbulent medium.,
The effects of varying the scattering albedo and the
turbulent spectrum were also studied. Several interest-
ing phenomena were found to be present including limb
darkening, photon trapping near the surface, and an
approximate linear relation between the reciprocals of
intensity and albedo.

40 r /
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F16. 15. Relationship between reciprocals of intensity and albedo
for isotropic scattering.
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In order to make direct comparisons with experiment,
the solutions must be modified to consider the effects
of inhomogenities, finite geometries, and anisotropic
plasma turbulence.
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