In the limit of zero applied voltage one can substitute the empirical expression for F into Eq. (3) and deduce that a Schulz mass spectrum yields $\Phi - F = 0.155[\psi(b+3) - \ln(b+2)]$ where ψ is the logarithmic derivative of the gamma function. In principle this allows measurement of sample polydispersity without going to large $|\eta|$ as required by the "method of moments," but this more difficult method will probably be seldom required. For large positive η the difference $\Phi - F$ becomes large, but the moments method is more sensitive. For negative η the moments method is rather insensitive and this method might be useful, but $\Phi - F$ is difficult to express except numerically.

Nonmolecular Nature of Nitric-Oxide-Inhibited Thermal Decomposition of n-Butane

Aron Kupferrmann and John G. Larson

Noyes Chemical Laboratory, University of Illinois, Urbana, Illinois
(Received June 13, 1960)

The thermal decomposition of most organic molecules is generally accepted to occur at least in part via a free radical chain process. Since Hinshelwood and Staveley\(^1\) discovered that small additions of nitric oxide reduced the rate of thermal decomposition, there has been much controversy\(^2\) concerning the nature of the "residual" reaction remaining after further additions of inhibitor produce no further decrease in rate. Jach, Stubbs, and Hinshelwood\(^3\) have shown this limiting rate to be independent of the inhibitor used and attribute this residual reaction to a nonchain molecular process in which the parent molecule breaks up, in a single step, into stable products.

Wall and Moore\(^4\) and later Rice and Varnerin\(^5\) studied isotopic exchange in the thermal decomposition of ethane and ethane-d_4 and found extensive mixing in both the inhibited and normal decompositions. In building a case for concluding that the limiting rate corresponds to the complete suppression of chains and hence to a unimolecular split into stable molecules, Hinshelwood\(^6\) discounts the results of Wall and Moore for not using sufficient inhibitor to produce complete inhibition, and the results of Rice and Varnerin on the grounds that the mixing they observe may result from a secondary process involving the methylene radical formed in the split-off of methane from ethane. He suggests that methylene may not be easily scavenged by NO and thus that the isotopic mixing may be due to this atypical decomposition in which one product is a stable molecule and the other a diradical.

Semenov\(^7\) in quoting work by Voedvodsky, explains complete inhibition as the using up of free valences on the surface of the reaction vessel which would normally produce a higher gas-phase-radical concentration. Voedvodsky\(^8\) has suggested that two heterogeneous initiation processes, a reversible and an irreversible one, satisfactorily explain experimental observations.

If this limiting rate corresponds to a unimolecular process, then there exists a good set of unimolecular reactions for study. If the residual reaction is of the chain variety, then inhibition may shed some light on the mechanism of chain initiation. In either case, it is important to clearly establish the nature of this residual reaction.

In order to obtain unequivocal information about this residual reaction, we have investigated the thermal decomposition of a mixture of n-butane and n-butane-d_10 in the absence and presence of NO. About 10 cm Hg pressure of an equimolar mixture of these butanes was decomposed in a 100-ml pyrex reaction vessel to extents varying from about 1% to 5%. A temperature of about 430°C was selected so that the reaction could be stopped at small percentages of decomposition. The product-reactant mixture was analyzed with the help of a mass spectrometer. The ratio of ion currents at m/e values 20 and 68 (after a small contribution from the unreacted mixture to the current at m/e 20 was subtracted) was taken as a measure of the extent of decomposition. The latter was also determined by the pressure change in the reaction vessel. The CD$_2$H/CD$_4$ ratio was determined from a liquid nitrogen non-condensible fraction of the reacted mixture. This ratio was found not to change as the fractional decomposition varied from 5% down to 1%, which was the lowest value for which reliable measurements could be made. It was further found that this ratio did not change if the reaction was inhibited by initially adding NO to the reaction mixture in amounts variable between 13.4 and 27.6 mole-percent, although this added NO decreased the decomposition-rate-constant by a factor of 3.4. The average CD$_2$H/CD$_4$ ratio was 3.88±0.02 for fifteen uninhibited runs and 2.67±0.04 for fifteen inhibited runs. Conditioning of the vessel by twelve successive runs with pure n-butane did not, within the accuracy of the experiments, change the rate constants or the CD$_2$H/CD$_4$ ratios. A sixty fold increase in the surface to volume ratio, obtained by packing the vessel with pyrex wool, had no detectable effect on the rate-constant or the CD$_2$H/CD$_4$ ratio of the uninhibited runs.

In order to eliminate the possibility that the formation of isotopically mixed methanes in the inhibited reaction might be due to secondary processes, mixtures of 5.15% CD$_4$ and 94.85% C$_2$H$_6$ were reacted in the absence of NO and in the presence of 15.4% of NO, under the same experimental conditions described above, until about 5% of the C$_2$H$_6$ decomposed. No formation of CD$_3$H whatsoever was detected. This
entirely excludes the possibility of mixing of molecularly formed CD₄ by any subsequent secondary processes, whether heterogeneous or gas phase, under these experimental conditions.

If the inhibited reaction were entirely molecular, the corresponding CD₃H/CD₄ ratio should be zero. Since, within experimental error, it was actually the same as in the uninhibited one, it may be clearly concluded that practically no (i.e., less than 2%) methane is formed by a direct split mechanism in the NO-inhibited thermal decomposition of n-butane. This casts very serious doubts on the validity and consequences of the conclusions previously reached⁵,⁶,⁹ that inhibited reactions of this type were entirely molecular. The results of the present experiments are, furthermore, not inconsistent with a heterogeneous initiation mechanism.⁷,⁸

Estimation of the Ionization Potential and Dissociation Energy of Molecular Astatine

ROBERT W. KISER

Department of Chemistry, Kansas State University, Manhattan, Kansas

(Received July 7, 1960)

There does not exist in the literature any directly measured value for the ionization potential or the dissociation energy of astatine. The ionization potential of At has been found to be 9.5 ev.¹ By using empirical correlations one may arrive at estimations of these values.

The values of ω_a of 892, 565, 323, and 215 cm⁻¹ for F₂, Cl₂, Br₂, and I₂ allow the estimation of ω_{At_2} cm⁻¹ for At₂. By using the relation

$$\log \omega_a = a - b \log n I$$ \hspace{1cm} (1)

given by Varshni² for XX molecules, one estimates $I(At_a) = 8.3$ ev, as shown in Fig. 1. $n = \text{principal quantum number}$ and a and b are constants (or nearly so). Values of $I(X_2)$ are 15.83, 11.48, 10.55, and 9.28, for F₂, Cl₂, Br₂, and I₂, respectively.¹,⁴,⁶

The relation given by Mitra for XX molecules,

$$\log D = c + d \log I,$$ \hspace{1cm} (2)

may be used to estimate the dissociation energy, D, of At₂. The curve of Eq. (2) is shown in Fig. 2, and is found to be remarkably linear, except for the data for F₂ which have been omitted. Values of $D(X_2)$ are 1.59, 2.47, 1.97, and 1.54 ev for F₂, Cl₂, Br₂, and I₂, respectively.¹,⁴,⁷ From Fig. 2, $D(At_2) = 1.2$ ev.

The thermochemical cycle

$$D(X_2) = D(X_2) + I(X) - I(X_2)$$ \hspace{1cm} (3)

may be used to calculate values of $D(X_2)$. Taking $I(X)$ equal to 17.42, 13.01, 11.84, and 10.45 ev for $X = F$, Cl, Br, and I, respectively,⁶ we find that $D(X_2)$ is 3.18, 4.00, 3.26, 2.71, and 2.4 ev for $X_2 = F_2$, Cl₂,