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Abstruct- We propose earlier an optimization based flow control 
for the Internet called Random Early Mark@ (REM). In this paper 
we propose and evaluate an enhancement that attempts to sped up 
the convergence of REM in the face of large feedback delays. REM 
can be regarded as an implementation of an optimization algorithm in 
a distributed network. The basic idea is to treat the optimization algo- 
rithm as a discrete time system and apply linear control techniques to 
stabilize its transient. We show that the modified algorithm is stable 
globally and converges exponentially locally. This algorithm translates 
into an enhanced REM scheme and we illustrate the performance im- 
provement through simulation. 
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I. INTRODUCTION 

We proposed earlier a flow control scheme for the Inter- 
net called Random Early Marking (REM) [ 11. It is derived 
from an optimization model where each source is charac- 
terized by a utility function that models its valuation of 
bandwidth and the goal is to maximize aggregate source 
utility over their transmission rates subject to capacity con- 
straints [2]. 131, [4]. The basic flow control algorithm can 
be regarded as a distributed computation performed by the 
sources and links to minimize the dual problem. The al- 
gorithm however requires communication between sources 
and links. This communication requirement is greatly sim- 
plified in [51, [ l ]  and leads to REM, a binary feedback 
scheme similar to Random Early Detection (RED) [6].  The 
purpose of this paper is to propose an enhancement to REM 
that attempts to significantly speed up its convergence in the 
face of large feedback delays. 

The value of the optimization model presented in [2], [4] 
is twofold. First, though it may not be possible, nor criti- 
cal, that optimality is exactly attained in a real network, the 
optimization framework offers a means to explicitly steer 
the entire network towards a desirable operating point. Sec- 
ond it makes possible a systematic method to design and 
refine practical flow control schemes, which can be treated 
simply as implementations of a certain optimization algo- 
rithm, where modifications to the flow control mechanism 
is guided by modifications to the optimization algorithm. 
For instance, it is well known that Newton algorithm has 
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much faster convergence than gradient projection algorithm. 
By replacing the gradient projection algorithm presented in 
[Z], [4] by the Newton algorithm we derive in [7] a practi- 
cal Newton-like flow control scheme that can be proved to 
maintain optimality, has the same communication require- 
ment as the original scheme but enjoys a much better con- 
vergence property. This paper provides another example on 
how the optimization framework can be exploited to sys- 
tematically refine REM. 

There is a tremendous literature on flow control. The 
works closest to this paper are optimization based [8], [9],  
[lo], [ll], 1121, [13], [21, [SI, [ l ]  where the problem is 
formulated as one of optimizing a social welfare and the 
flow control mechanisms are derived as solutions to the op- 
timization problem. They differ in their choice of objec- 
tive functions or their solution approaches, and result in 
rather different flow control mechanisms to be implemented 
at the sources and the network links. In particular both [ 1 I], 
[ 121 and our work solve the same optimization problem of 
maximizing aggregate utility over source transmission rates. 
The two works however differ in their solution approach, 
which lead to different algorithms and their implementation 
through marking [13], [I]. See [4] for a detailed compari- 
son. 

The paper is structured as follows. In Section I1 we sum- 
marize our optimization model and the REM algorithm. In 
Section In we extend the model to include feedback de- 
lay and derive the enhanced algorithm. In Section IV we 
present preliminary simulation results to illustrate the per- 
formance improvement. We conclude in Section V with fu- 
ture work. All proofs are omitted and can be found in a 
forthcoming full paper. 

11. OPTIMIZATION MODEL AND REM 

Consider a network that consists of a set L = { 1, . . . , L} 
of unidirectional links of capacity q. 1 E L. The network 
is shared by a set S = (1,. . . , S) of sources. Source 
s is characterized by four parameters (L(s),U,,m,, M8) .  
The path L(s)  C L is a subset of links that source s uses, 
U, : R+ 3 !R is a utility function, m, 2 0 and M ,  2 00 

are the minimum and maximum transmission rates, respec- 
tively, required by source s. Source s attains a utility U, (z,) 
when it transmits at rate 2, that satisfies m, 5 zs 5 M,. 
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We assume U, is increasing and strictly concave in its argu- 
ment. Let 1, = [m,, MB] denote the range in which source 
rate z8 must lie and I = (I,, s E S) be the vector. For each 
link 1 let S(1) = {s E S 1 1 E L(s ) )  be the set of sources 
that use link 1. Note that 1 E L(s)  if and only if 8 E S(I). 

Our objective is to choose source rates z = (z,, s E S) so 
as to: 

p: maX2.€l,,sES CV,(za) (1) 
8 

subject to z8 5 q, I = 1,. . . , L.(2) 
SES(1) 

The constraint (2) says that the total source rate at any link 
1 is less than the capacity. A unique maximizer, called the 
primal optimal solution, exists since the objective function 
is strictly concave, and hence continuous, and the feasible 
solution set is compact. 

Though the objective function is separable in z8, the 
source rates z8 are coupled by the constraint (2). Solv- 
ing the primal problem (1-2) directly requires coordination 
among possibly all sources and is impractical in real net- 
works. The key to a distributed and decentralized solution 
is to look at its dual, e.g., [ 14, Section 3.4.21, [ 151: 

D: min,>o D ~ P )  = c~,(Ps) + C P ~  (3) 
8 1 

where 

ps = p1. 
EL(,) 

(4) 

(5) 

The first term of the dual objective function D(p) is decom- 
posed into S separable subproblems (4-5). If we interpret 
pi as the price per unit bandwidth at link 1 then p s  is the 
total price per unit bandwidth for all links in the path of S. 

Hence zapa represents the bandwidth cost to source s when 
it transmits at rate E,, and B8(p8) represents the maximum 
benefit s can achieve at the given price pa. We shall see 
that this scalar pa summarizes all the congestion informa- 
tion source s needs to know. A source s can be induced to 
solve maximization (4) by bandwidth charging. For each p ,  
a unique maximizer, denoted by z@(p), exists since U8 is 
strictly concave. ~ 

In general (z8(p), s E S) may not be primal optimal, 
but by the duality theory, there exists a p* 3 0 such that 
(z8@), s E S) is indeed primal optimal. Hence we will 
solve the dual problem (3). Given minimizing prices p* the 
primal optimal source rates z* = z(p”) can be obtained by 
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individual sources s : ~  

U:-’@) ifUi(M8) L P I ~ i ( m , )  
if UL(m8) < p (6) ( 2  if U;(M8)  > p 

Here is the inverse of U:, which exists over the range 
[U:(M8), U;(m8)] since U; is continuous and U, strictly 
concave. It is illustrated in Figure 1. Let z(p) = ( z8 (p) , s E 

X 8 ( p )  = 

S) 
“a, 

Fig. 1. Source rate zs (p) as a function of (scalar) price p .  

In [2], [4] we propose to solve the dual problem using 
the gradient projection algorithm that leads to the following 
optimization flow control algorithm: 
Al: Basic OFC 

P l ( t  + 1) = kl(t) 4- r(z’(t) - a>]+ 
z s ( t )  = 2 8 O l s ( t ) )  

Here z‘(t) := CsEs(l) z8( t )  is the aggregate source rate 
at link I at time t, and [2]+ = max{z,O}. Hence a link 
raises or reduces its price accordingly as the demand 2’ (t) 
is greater or less than the supply cr of bandwidth. A source 
raises or reduces its rate accordingly as the path price p 8 ( t )  
is low or high (see (6)). 

It is shown in [4] that provided all utility functions are 
strictly concave increasing and their second derivatives are 
bounded away from zero, the basic OFC (optimization flow 
control) algorithm A1 converges to yield the optimal rates 
for sufficiently small stepsize 7. As discussed there, though 
the optimization problem is formulated as a static problem 
the flow control algorithm naturally adapts to changing link 
capacities and set of sources at a link. simply use the current 
link capacity q( t )  and the current set S(l; t )  of sources at 
link 1. 

Algorithm A1 requires communication of link prices to 
sources and source rates to links, and hence cannot be im- 
plemented on the Internet. In [SI we show that a link can 

We abuse notation and use zs ( a )  both as a function of scalar price p E 
R+ and of vector price p E WF’. When p is a scalar, z s ( p )  is given 
by (6). When p is a vector, zs@) = zS(ps) = z . Y ( C ~ ~ ~ ( ~ ) P I ) .  The 
meaning should be clear from the context. 
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simply set its price to a fraction of the buffer occupancy. 
This is equivalent to the link estimating the aggregate source 
rate z’(t) by the measured aggregate input rate $l(t)  at the 
link and using this estimate in the calculation of the gra- 
dient. We prove there that this approximate gradient pro- 
jection algorithm also converges to yield the optimal rates. 
This simplification eliminates the need for explicit commu- 
nication from sources to links. In the reversed direction we 
propose a method in [l] that communicates link prices to 
sources using only binary feedback. The basic idea is for a 
link to mark a packet with a probability that is exponential to 
its link price pr (t) so that the end to end marking probability 
of a packet is exponential to the path price p s  (t) . A source 
can then estimate the end to end marking probability and 
hence p 8 ( t ) .  This can be implemented using the proposed 
ECN (Explicit Congestion Notification) bit in the IP header 
[16], [17]. Combining these two simplifications yields the 
REM algorithm of [ 11, where the marking probability is ex- 
ponential in buffer occupancy. 
A2: REM 
Link Z’s algorithm: 
1. Set price pl ( t )  = 7bi ( t )  where bl ( t )  is the (average) 
buffer occupancy in period t .  
2. For eachpacket that is notmarked, markit with theprob- 
ability 

Source s’s algorithm: 
1. Count the fraction rizs (t) of packets received in period t 
that are muked, and estimate the path price by: 

a”@) = - log2(1 - ??P(t)) 

2. Choose a new transmission rate zs(t + 1) for the next 
period: z,(t + 1) = z8(lj8(t)). 

111. ENHANCED ALGORITHM 

The model and algorithms in the last section assume zero 
feedback delay. In this section we relax this assumption and 
propose an enhanced algorithm. 

Let 71, and r81 be the (constant) delay from link 2 
to source 8 and from s to 1, respectively. Let 2 = 
maxp,t,,C~p~ + ~ , 1  I s E S(2) n S(I’)}. We will see be- 
low that d is the maximum time for a price change in link 
I’ to affect the price at link 1 through shared sources 8. In 
particular - if delays are symmetric, Tis = T ~ Z  for all I, s, then 
d is the maximum round trip delay of the network. 

The basic OFC algorithm A1 becomes: 

4- 7( zs(t - 7 8 1 )  - cr) (7) 
SES(1) I’ 

Hence link 2 computes the next price using the delayed 
source rates z,(t - ~ ~ 1 )  and source s computes a new rate 
using delayed prices pl ( t  - 71,). It is important to note that 
the algorithm described by (7-8) does not require the links 
and sources to know their delays 719, ~ , 1 .  This algorithm 
is a special case of the asynchronous model considered in 
[4] where links and sources update every period using the 
most recent data. According to [4, Theorem 21 the algo- 
rithm converges to yield the optimal source rates provided 
the stepsize 7 is small enough. 

Suppose there is a unique dual optimal price P * . ~  This 
would be the case, e.g., if the utility functions are U, (5,) = 
a, logz, and every link I with pf > 0 has a single-link 
connection s( l ) ,  i.e., for all I, there exists s(l) such that 
L(s(Z)) = ( 1 ) .  We may assume without loss of gener- 
ality that p; > 0 for all 1,  because links 1 with p; = 0 
are not saturated in equilibrium and hence can be omit- 
ted from consideration. Then provided that the stepsize is 
sufficiently small the sequence { p ( t ) }  generated by (7-8) 
converges to p* .  Moreover for all sufficiently large t ,  we 
have pi ( t )  > 0 for all I, and we can omit the projection 
operation in price computation for sufficiently large t. As- 
sume also that U:-’(Ms) = 0, Ui-l(m,) = CO so that 
5, (p) = 

m(t+ 1) = PI@) 4- Y( zs(t - T s l )  - 4 (9) 

(p). Then the system is described by: 

S € S ( I )  

We will regard (9-10) as a discrete time system to be stabi- 
lized, where the states are the link prices. 

For the rest of the section we first consider the linearized 
system of (9-10) in the neighbourhood of the unique equi- 
librium p*. Then we will design a deadbeat controller for 
the linearized system to speed up its convergence. This con- 
trol law however requires a link to know the entire network 

2The simulation in Section IV also shows what might happen when dual 
optimal prices are nonunique: link prices may oscillate between two dual 
optimal limit points while source rates converge to the unique primal opti- 
mal vector. 
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topology and is therefore impractical. Next we derive an 
approximate control law that can be implemented by each 
link using local information. Finally we apply the control 
law to the REM algorithm. 

Even though the control laws are derived for a linear sys- 
tem around the equilibriump* their performance in the non- 
linear setting away from the equilibrium is investigated in 
the next section through simulation. 

A. Linearized system 

Let p ( t )  be the (2 + l)L dimensional expanded ‘state’: 

whereeachp(t-T),T = 0,. . . ,d,isaL-vector. The(1,~)th 
element of p( t )  is pr(t - 7). Let p* be the (2 + l)L d’ imen- 
sional vector with each of p(t - T ) ,  7 = 0, . . . , d, replaced 
by the unique equilibrium p* . 

- 

For any scalar p define p8 (p) by 

1 
= -u;’(zs(p)) 

where z(p) is given by (6). 
Then after some manipulations we have 

wherep8(t) = ( ~ I E L ( s ) p ~ ( t  - TI#)). Hencethefirstorder 
term in the Taylor expansion of z8 (t) is 

Vjj~SW)@(t) - P*) 
-Pep'"> c 

l’EL(8) 

Linearizing (9-30) around the equilibrium p* and letting 
$(t) = p ( t )  - p* we thus have, after rearranging, 

$I(t + 1) = ?ji(t) - Y ~ b n ~ $ v ( t  - 71‘8 - 7 8 1 ) ( 1 1 )  

where b1r1 = CsEs(l)ns(l,) pa@”). The last equality uses 
the fact that x1 (p*) = cr by complementary slackness, since 
by assumption pf > 0. (1 1) makes the interdependence of 
link prices apparent. It says that the new price pi ( t  + 1) at 
link 1 depends not only on the current price at link 1,  but 
also on past prices pp (t - nt8 - ~ ~ 1 )  at other links 1’. This 

1’ 

is because in response to a price change at link l ‘ ,  sources 
s E S(1) n S(1’) that traverse both links I‘ and I adjust their 
rates, which then affect the price at link 1. Hence there is a 
delay of Tits + r81 for a price update at link I’ to affect the 
price at link 1 through shared sources S. This coupling of 
link prices is described by blp . 

To express (1 1) in matrix form, define the L x L matrices 
A(T),  T = 0,. . . , z, by: 

[A(7)111’ = P S W )  l(7-1’8 + 781 = 7) 
8cs(l)ns([I) 

Then we have, defining @(t) = E(t)  ij(t - 1) a . . ij(t - 

This describes the local behavior of the gradient projec- 
tion algorithm around the (unique) equilibrium p* when the 
feedback delays are nonzero. 

Note the difference between our system and that of [18]. 
Their system has two important features that simplify sig- 
nificantly the controller design. First their control (the ex- 
plicit rates) are calculated at the network link where the 
current as well as past buffer levels are available. Second, 
all sources receive the same explicit rate (single congestion 
node case), except possibly with different feedback delay, 
and these past rates are also available at the link for calcu- 
lation. These allow a simple proportional-plus-derivative 
controller and lead to the simple close loop equations (38) 
and (39) in their paper. In our case, current source rates are 
not available at a link; moreover a link may not know the 
value of +rsl and hence may not be able to use past source 
rates in price adjustment (except the most recent one). On 
the other hand a link always has the most current price, so 
we consider a controller that uses only past values of local 
prices. 

B. Deadbeat controller 

Suppose in computing a new price each link 1 averages 
its past link prices and diagonally scale the gradient: 
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Note that link 1 uses only the most recent source rates and 
this does not require it to know the value of r81. The goal is 
to compute the averaging parameters pi (T) and the scaling 
parameter 71 in order to place the poles of the discrete time 
system (12) at the origin, i.e., deadbeat control law. In equi- 
librium both sides of (12) must be p* and hence p~ (T )  must 
satisfy (since CsEs(r) 2: = cr in equilibrium) 

- 
d 

C p r ( T )  = 1, fordl z (13) 
T=o 

Following similar derivation as in the last subsection, the 
linearized system around p* is 

( 14) 

where M(T) = diag(pr(T)), T = 0 ,...,a, and G = 
diag(y1) are L x L diagonal matrices. The following result 
explains how to choose the averaging matrices M ( T )  and 
the scaling matrix G .  For simplicity of exposition we as- 
sume a large network where all delays are nonzero, qa 2 1, 
T,~ 2 1 (otherwise, condition (15) below is replaced by 
det(X1- M ( 0 )  -t- GA(0)) = XL) .  

Theorem 1: Suppose all delays are nonzero. Then all 
poles of (14) are at the origin if and only if M ( T )  and G 
are chosen to satisfy 

M ( 0 )  = 0 (15) - 
det(M(.r) - GA(7)) = 0, T = 0,. . . , d (16) - 

d 

C M ( 7 )  = I (17) 
T=o 

Moreover the above conditions uniquely determine the di- 
m 

Interestingly the theorem says that if all delays are nonzero 
then current prices m(t) should not be used in the weighted 
average of past prices. 

Note that the above theorem ensures rapid convergence 
only around the unique equilibrium point. p*.  In order to 
choose the averaging parameters pi (7) to place all poles at 
the origin, we have given up the choice of stepsize 7 (which 
now becomes a matrix). This loss of freedom may upset 
global stability. This is indeed observed in our simulation, 
presented in the next section. 

agonal matrices M ( T )  and G. 

C. Appmxinlate deadbeat controller 

Theorem 1 describes how to choose the averaging matri- 
ces M(T) and the gain matrix G to enforce rapid conver- 
gence towards the equilibrium p* when the system is in a 
neighborhood of p'. However the equations (15-16) in the 
theorem can only be solved centrally, as the off-diagonal el- 
ements of the matrices A(T) imply that a link needs to know 
information on sources at other links, and hence is imprac- 
tical. In this subsection we derive an approximation to the 
control law of the last section that can be implemented by 
individual links locally. The idea is to approximate the ma- 
trices A(T) by their diagonal terms. 

Let B(7) = diag(P'(T),1 E L) be the L x L diagonal 
matrices whose diagonal elements are 

In words the Ith diagonal elements P ~ ( T )  of B(7) are the 
sums of (f), sum over all sources s that traverse link I 
and have a round trip delay of 7. With this approximation 
there is enough degree of freedom, provided 2 2 2, that we 
can reduce the gain matrix G to an arbitrary scalar -y > 0. 
This means that we can choose 7 to be sufficiently small 
to ensure global convergence; contrast this with the exact 
deadbeat control law of the last subsection. We will see in 
the next section that the performance of this controller can 
be better than that of the exact deadbeat controller whose 
stepsize y is fixed by the condition (13). 

The conditions corresponding to (15-17) in Theorem I 
reduce to the following choice of weights pr (7): 

and for all other I and T, p 1 ( ~ )  are chosen to satisfy 

d 

r=O 

This control law is much simpler than that expressed in The- 
orem 1: a link I can choose its own weights p l ( ~ )  based on 
the information about sources that traverse link 1; we will 
come back to this point in Section V. 

With this approximate deadbeat controller the corre- 
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sponding optimization algorithm becomes: 

l +  

where the weights P~(T) are given by (18-22). The lin- 
earized system around the unique equilibrium p* is then 
given by, after some algebra, 

Q(t + 1) 

1 M(0)  - yA(0) * * M(Z) - TA@) 
0 ... 

linearized systems, the (nonlinear) optimization algorithm 
(23-24) is simulated, where the weights ,u~(T) are defined 
by the control laws. 

The simulation study is carried out for the network in Fig- 
ure 2 shared by three connections, with sources Si and desti- 
nations Di, i = 1,2,3.  Connection S1-D1 spanned all links 
1,2; connection S2-D2 spanned link 1; connection S3-D3 
spanned link 2. All links have capacity 200 packets/sec. 
Source S1 transmitted data from time 7ms to time 300ms. 
The start times of the other sources are staggered with S2 
starting at time 8Oms, S3 at time 160ms. Once turned on, 
sources S2 and S3 remained active until time 240ms. This 
enabled us to observe the dynamic behaviour of the algo- 
rithm as demand for bandwidth varies. The utility functions 
of the sources were set to - 2 (M, - z ~ ) ~ ,  with a, and M,  
equal to 1 and 300 respectively for all the sources S132 and 
S3. The feedforward and feedback delays between sources 
and links are given in table V. 
A. BasicOFC 

(25) 

Even though the linearized system (25) may not have all 
poles at the origin, we can ensure that the actual optimiza- 
tion algorithm (23-24) is globally stable and converges ex- 
ponentially to the equilibrium p* locally around p* . 

Theorem 2: With the control law (18-22), provided y > 
0 is sufficiently small, the optimization algorithm (23-24) 
converges globally to p*.  Moreover the linearize system 
(25) around the unique equilibrium p* has all poles within 
the unit disc. 

D. Enhanced REM 

In this subsection we apply the control law (18-22) to the 
REM algorithm. The only modification is in Step 1 of A2: 
instead of setting price pl (t) = ybl(t) to be a fraction of its 
buffer occupancy, link 1 updates its price according to (23) 
with weights pl(7) given by (18-22). 

Iv. SIMULATION RESULTS 

In this section we illustrate the effectiveness of the con- 
trol laws through preliminary simulations. We will present 
results that compare the performance of gradient projection 
algorithm A1 with the deadbeat control law defined by The- 
orem 1, and with its approximation (18-22). We will then 
compare the performance of the original REM algorithm A2 
with the enhanced version described in Section Ill-D. We 
emphasize that though the control laws are derived from 
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In this section we present in Figure 3 three sets of results 
on the system dynamics under the basic OFC algorithm Al, 
under the deadbeat controller described in equations (12)- 
(17), and under the approximation to the deadbeat controller 
described by equations (18)-(22). Each set of results con- 
sists of a graph of the source transmission rate ss, link price 
pl and buffer occupancy ql . 

We can see from Figure 3 that all of the algorithms con- 
verge to the theoretically optimum operating point (given in 
table I). The major differences are in the degree of oscilla- 
tion and speed of convergence. We can see from the figures 
that the application of the deadbeat controller (both in ex- 
act and approximate forms) can speed up the convergence 
significantly. Moreover the buffer requirement under the ap- 
proximate deadbeat controller is 25% less than the other two 
schemes. However, as noted after Theorem 1 the inability 
of the exact deadbeat control law to choose the stepsize (and 
indeed the direction) of the optimization algorithm may up- 
set global stability. This is illustrated in Figure 3(b) where 
the source rate of the first source oscillates around the equi- 
librium from time 7ms to 80ms. Furthermore, as noted in 
Section ID, when dual optimal prices are nonunique, link 
prices may oscillate between two dual optima1 limit points 
without ever converging while source rates converge to the 
unique primal optimal vector. This is illustrated in figure 
3(c) where the link prices oscillate but the source rates have 
converged to the unique primal optimal. 

B. Random Early Marking 

Random Early Marking simplifies greatly communica- 
tion between links and sources. In this section we present 
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80-160 100 100 - 200 0 
160-240 33.3 166.6 166.6 133.3 133.3 1 240-300 I 200 1 - 1 - 1 50* 1 50* I 

TABLE I 
EQUILIBRIUM VALUES 

Fig. 2. Network Topology 

the results of our simulations using Random Early Mark- 
ing. The simulation scenario is identical to that used for 
the results in the previous section. Figure 4 shows the re- 
sults for REM: first using the algorithm A2, then with the 
exact deadbeat controller, and finally using the approximate 
deadbeat controller. The results are similar to those of the 
last subsection. While the use of binary feedback introduces 
extra oscillation around the equilibrium values, the oscilla- 
tions are relatively small in magnitude. Again the use of 
the deadbeat controller (both in the exact and approximate 
form) speeds up system convergence and reduces the buffer 
requirement. 

V. CONCLUSION 

We have derived an enhanced REM algorithm for Inter- 
net flow control and illustrated the performance improve- 
ment through simulation. The basic idea is to stabilize the 
transient behavior of the optimization algorithm of which 
REM is an implementation, by averaging over past prices. 
The averaging allows us to place the poles of the linearized 
system around the origin, ensuring exponential convergence 
locally. Simulation shows significant improvement in con- 
vergence and performance (buffering requirement) over the 
original REM. More importantly, perhaps, this procedure 
demonstrates the advantage of the optimization framework 
which allows a systematic refinement of practical flow con- 
trol schemes. 

We now comment on limitations of this preliminary 
work. The control law of Section 111-C, though much sim- 
pler than the exact deadbeat controller, still involves signifi- 

cant overhead. It requires a link I to know p a  (p’) of sources 
s going through link 1 and their round trip delays. This may 
be impractical for a large network. may be easy to 
determine, e.g., for the quadratic utility functions used in 
Section IV, p,(p‘) is (approximately) a constant which can 
be communicated to the links during connection setup. We 
have also tried simple rules such as choosing to be the 
reciprocal of the number of sources at link 1 and it seems 
to work fine. We are currently investigating ways to sys- 
tematically derive simpler control laws with provably good 
performance. 
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160 240 

TABLE II 
SOURCE STARTING AND FINISHING TIMES 

160-239 240-300 
0 0 
0.2 0 
0 0 
0.2 0 
0.2 0.5 
0.2 0.5 
0.2 0 
0.2 0.5 

I I link 1 I link 2 1 
7-79 80-159 160-239 240-300 
0 0  0 0 
0 0  0.2 0 
0 0  0.2 0 
0 0.33 0.2 0 
0 0  0 0 
0.5 0.33 0.2 0.5 
0.5 0.33 0.2 0.5 
0.5 0.33 0.2 0.5 

time(ms) 
PdO) 
Pdl) 
Clr(2) 
Pd3)  
~ ( 4 )  
PA51 
P d 6 )  
7 

TABLE I11 
'WEIGHTS USED IN THE EXACT ALGORITHM 

link 1 link 2 
7-79 80-159 160-239 240-300 7-79 80-159 160-239 240-300 
0 0 0 0 0 0  0 0 
0 0 0 0 0 0  0 0 
0 0 0 0 0 0  0.5 0 
0 0 0 0 0 0  0 0 
1 0.5 0.5 1 0 0  0 0 
0 0 0 0 0 0  0 0 
0 0.5 0.5 0 1 1 0.5 1 
0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 

Source link1 1 link2 
forward delav I feedback delav I forward delav I feedback delav 

I NIA 
2 2 3 

1 3  I NIA 

TABLE V 
FQEDFORWARD AND FEEDBACK DELAYS BETWEEN LINKS AND SOURCES 
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