LETTERS TO THE EDITORS

THE OXIDATION-REDUCTION POTENTIAL OF
COENZYMIE I

Sirs:

The oxidation-reduction potential of cozymase (diphosphopyridine nucleotide) was calculated from the free energies of formation of aqueous d-alanine and d-glutamic acid based on thermal data, and the equilibria measured by Wurmser and Filitti-Wurmser¹ for pyruvate + 2H⁺ + 2(e) ⇌ alanine + H₂O, by Cohen² for α-ketoglutarate + alanine ⇌ d-glutamate and pyruvate, and by von Euler et al.³ for the reaction α-ketoglutarate + NH₄⁺ + reduced cozymase ⇌ glutamate + oxidized cozymase. The value for the potential so calculated is at 30° E₀ = -0.072 - 0.03 pH ± 0.0008 volt.

Its temperature coefficient is ΔE₀/ΔT = -0.00043, calculated from the data given by von Euler, Adler, Günther, and Hellström⁴ and by Barron and Hastings⁵.

As a check on the accuracy of this calculated value of E₀ it was used to calculate −ΔF for the reaction acetaldehyde (aqueous) + 2H⁺ + 2(e) → ethyl alcohol (aqueous) from the equilibrium constant for acetaldehyde + reduced cozymase ⇌ ethyl alcohol + oxidized cozymase determined by Negelein and Wulff.⁶ This constant (corrected for temperature) and the above value of E₀ give −ΔF for acetaldehyde → alcohol at 25° as 11,620 calories. −ΔF calculated from the best thermal and ancillary data is 11,730 calories.

The data of Green and Dewan7 on the reaction acetoacetate \rightarrow β-hydroxybutyric acid \rightarrow oxidized cozymase, and the E'_o values of Hoff-Jørgensen8 for the acetoacetate \rightarrow β-hydroxybutyrate give E'_o for the cozymase (corrected to 30°) at pH 7.0 -0.289, -0.275, and -0.274. The calculated value is -0.282.

Ball and Ramsdell9 recently reported for cozymase a tentative value of E'_o at pH 7.2 and 25° of -0.26 volt. The difference between this and the above calculated value (more than 0.020 volt) may possibly reside in Ball and Ramsdell's having used a flavoprotein as enzyme. With this protein the ratio of the association constants for the reduced and oxidized cozymase may be very different from those with the proteins of the glutamic acid, ethyl alcohol, and β-hydroxybutyric acid dehydrogenases.

\textit{William G. Kerckhoff Laboratories of the Biological Sciences}

\textit{California Institute of Technology}

\textit{Pasadena}

Received for publication, February 21, 1940

