CaltechAUTHORS
  A Caltech Library Service

Picosecond excitation and selective intramolecular rates in supersonic molecular beams. III. Photochemistry and rates of a charge transfer reaction

Syage, J. A. and Felker, P. M. and Zewail, A. H. (1984) Picosecond excitation and selective intramolecular rates in supersonic molecular beams. III. Photochemistry and rates of a charge transfer reaction. Journal of Chemical Physics, 81 (5). pp. 2233-2256. ISSN 0021-9606. http://resolver.caltech.edu/CaltechAUTHORS:SYAjcp84a

[img]
Preview
PDF - Published Version
See Usage Policy.

2178Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:SYAjcp84a

Abstract

The picosecond state-selective dynamics and photochemistry of the molecule A–(CH2)3–[cursive phi], where A and [cursive phi] are aromatic chromophores, was studied under collision-free conditions in a supersonic beam. Time-resolved fluorescence measurements of the reactant and the charge transfer (exciplex) product were undertaken as a function of specific vibrational energy above the zero point level of S1. From these studies along with an analysis of the excitation spectra, dispersed flourescence, and quantum yields, the following results and conclusions were reached: (i) IVR is much faster than reaction at all excess energies studied. (ii) The energy threshold for product formation is E0[approximately-equal-to]900 cm^−1 (2.6 kcal/mol). The analysis of the rates using an effective temperature model gives a frequency factor of A0[approximately-equal-to]1.2×10^10 s^−1. Four torsions were identified as critical to the reaction dynamics which were modeled according to a multidimensional reaction coordinate using an RRKM scheme. (iii) The thermodynamics of the isolated charge transfer product indicates strong stabilization DeltaH=−9.2 kcal/mol and extensive charge transfer, the static dipole moment is 13 D, and the charge transfer contribution to the total electronic wave function |c2|^2 is 0.86. (iv) A comparison of the present work to solution phase studies of A–(CH2)3–[cursive phi] indicates similar static properties but different dynamics. The calculated thermal (room temperature) reaction time for exciplex formation in the vapor (540 ps) was compared to the shortest observed value in solution (1.4 ns) to assess the role of the solvent on the chain motions which lead to product formation.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1063/1.447925DOIUNSPECIFIED
http://link.aip.org/link/?JCPSA6/81/2233/1PublisherUNSPECIFIED
Additional Information:Copyright © 1984 American Institute of Physics. Received 20 January 1984; accepted 13 March 1984. We gratefully acknowledge the support of this work by the National Science Foundation, We are especially thankful ti Prof. D.A. Evans for the use of his laboratory facilities and to Mr. Carl Illig for considerable advice in the synthesis of the model compound A-(CH2)3-φ. Finally, we wish to thank the organic chemistry group at the University of Bordeaux for providing us with a sample of 9-hexylanthracene. [P.M.F. was an] IBM Research Fellow. [A.H.Z. was a] Camille and Henry Dreyfus Foundation Teacher-Scholar. Arthur Amos Noyes Laboratory of Chemical Physics, Contribution No. 6976.
Funders:
Funding AgencyGrant Number
National Science FoundationUNSPECIFIED
IBM Corp.UNSPECIFIED
Camille and Henry Dreyfus FoundationUNSPECIFIED
Subject Keywords:MOLECULAR BEAMS, EXCITATION, PHOTOCHEMICAL REACTIONS, CHARGE EXCHANGE, CHEMICAL REACTION KINETICS, SUPERSONIC FLOW, FLUORESCENCE, EMISSION SPECTRA, AROMATICS, ANTHRACENE, PS RANGE
Other Numbering System:
Other Numbering System NameOther Numbering System ID
Arthur Amos Noyes Laboratory of Chemical Physics6976
Record Number:CaltechAUTHORS:SYAjcp84a
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:SYAjcp84a
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:11712
Collection:CaltechAUTHORS
Deposited By: Archive Administrator
Deposited On:21 Sep 2008 03:22
Last Modified:26 Dec 2012 10:18

Repository Staff Only: item control page