THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 53,

NUMBER 8 15 OCTOBER 1970

Theory of Reactive Collisions: Conformal Transformation*

J. N. L. Connor axD R. A. Marcus

Noyes Chemical Laboratory, University of Illinois, Urbana, Illinois 61801
(Received 9 June 1970)

Conformal mapping techniques are applied to the Schrddinger equation for a bimolecular exchange
reaction, with all three atoms lying on a line. For the case of a very heavy central mass, the extension
of the theory to three dimensions is indicated. An angle-shaped region of the potential-energy surface
is mapped onto an infinite strip in order to simplify the theoretical treatment of the boundary conditions.
The mapping function is determined with the help of the Schwarz—Christoffel formula, and its properties
described. The transformed Schrddinger equation is converted into an integral equation using the method
of Green’s functions, and integral representations for the reflection and transmission coefficients are ob-

tained.

I. INTRODUCTION

A well-known difficulty in the quantum-mechanical
treatment of the bimolecular exchange reaction

A+BC—AB+C (1.1)

is that, in the center-of-mass reference frame, the co-
ordinates appropriate to asymptotic reactant con-
figurations differ from those appropriate to asymptotic
product configurations.!

In the present paper, we overcome this difficulty by
applying the theory of conformal transformations® to
the reactive collision (1.1), for the case that all three
atoms lie on a line. (The analysis is also valid when the
line is allowed to rotate in three-dimensional space.®*)
When the atom B of Reaction (1.1) possesses a very
heavy mass, the theory may be extended to three dimen-
sions in a straightforward way.

The development of the theory depends directly on
the fact that the Schrédinger equation for a collinear
collision depends on two (real) variables, which may be
identified with the real and imaginary parts of a single
complex variable. The basic feature of our approach is
to map an angle-shaped region of the potential-energy
surface onto an infinite strip (see Figs. 1 and 2). In
this new space, the coordinates appropriate to reactants
change smoothly to those appropriate to products, and
numerical techniques developed for nonrearrangement
collisions® may be applied to the transformed Schro-
dinger equation. However, this simplification in the
treatment of the boundary conditions is obtained at the
expense of a more complicated Schridinger equation.

Section II considers the general properties of the
Schridinger equation under a conformal transforma-
tion. Section ITT is devoted to the determination of the
function that maps the angle-shaped region of Fig. 1
onto the infinite strip of Fig. 2; this is accomplished with
the help of the Schwarz-Christoffel formula.? Finally,
in Sec. 1V, the transformed Schrodinger equation is
converted into an integral equation by the method of
Green’s functions, and integral representations for the
reflection and transmission coefficients are obtained.

A useful discussion of the application of conformal
mapping methods to wave equations is given in Ref. 6.

Another method for overcoming the initial and final
state coordinate problem mentioned above is the in-
troduction of natural collision coordinates.*” Both sets
of coordinates are orthogonal; in the present set both
coordinates are curvilinear (see Fig. 4) while in the
natural collision coordinate set, the reaction coordinate
is curvilinear and the vibrational coordinate curves are
straight lines.

II. SCHRODINGER EQUATION

For the electronically adiabatic reaction (1.1) with
the three atoms on a line, let p and 7 be the distance
from A to the center of mass of BC and the BC distance,
respectively, and let u=ma (mp+mc)/ (ma+my+mc)
and m=mpmc/ (mp+mc), where my, mp, mc are the
masses of the atoms A, B, C, respectively. Then in terms
of the mass-weighted coordinates x=pu!/?p and y=m!/?r,
the Schrédinger equation in the center-of-mass refer-
ence frame is

{(0%/0x2) + (8%/0y*) + (2/F) [ E—V (%, y) J}¢ (%, y) =0
(2.1)

with boundary conditions representing incident, re-
flected, and transmitted waves. In Eq. (2.1), E is the
total energy and V(x, ) is the potential energy.

Typically the potential is plotted in an axis system
skewed at an angle ym, defined by tanyr=[mg(ms+
myp+mc) /mamc V2, as shown in Fig. 1.

It is assumed that the energetically accessible regions
of V(x,y) may be contained within the open polygon
formed from the limit of ABCD in Fig. 1. This may be
accomplished by a suitable choice of the widths b and ¢
and by scaling the potential surface if necessary. The
domain D, defined by this open polygon may be mapped
onto the domain D,,, which is the strip of width d shown
in Fig. 2. For the development of the theory in the next
section, it actually proves more convenient to consider
the inverse mapping to this one: i.e., the domain D, is
mapped onto D, by the transformation z=f(w), where
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THEORY OF REACTIVE COLLISIONS

w=u+1iv lies in D,, z=x+1iy lies in D,, and, except at
certain points, f(w) is an analytic function of w.
Clearly, we require f:D,—D, to be a one-to-one and
onto transformation. The determination of f is achieved
with the aid of the Schwarz—Christoffel transformation?
and is the subject of the next section.

In the (#,7) coordinate system, the Schrédinger
equation becomes?®®

{(8*/0u?) +(8°/9v") + (2/77) T (u, v)

where

J(u,v)=|dz/dw (2.3)

is the Jacobian of the transformation f: D,—D,. Clearly
the simpler shape of D, compared with D, has been
achieved at the expense of a more complicated Schro-
dinger equation; compare Egs. (2.1) and (2.2). The
shapes of D, (namely the use of a channel) and of D,
have been chosen so that the boundary conditions in
(#, v) space take a simple form in D,,. However, further
discussion of the boundary conditions is postponed until
Sec. IV, in order that the properties of f and J(u, )
may first be determined (next section).

It is also appropriate to remark here that the separa-
ble potentials studied by Hulburt and Hirschfelder®
(i.e., those for which no change in vibrational quantum
number can occur) may be obtained from Eq. (2.2)
and Fig. 2, as special cases, by following the procedure
in Ref. 6.

The transformation described above may also be
used when the Hamiltonian contains additional kinetic-
energy operator terms. As an example of this, consider
the reaction (1.1) in three dimensions, but with B
having an infinite mass. If the polar coordinates of A

Zzx+iy

Fi1c. 1. The complex z=x--iy plane. The domain D, is the
open polygon formed from the limit of the closed polygon ABCD.
B=(0, 0) and D= (b cotyr+c cosecyr, b). vyr is defined by
tanyr = [ma(matmptme) /mamc 2. The arrows indicate
incident, rellected, and transmitted waves.
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F16. 2. The complex w=u-7vplane. The domain D, is the strip
formed from the limit of the triangle ABC. B=(0, 0) and D=
((d/m)lne, d), where a= (¢/b)@~1, The arrows indicate incident,
reflected, and transmitted waves.

and C are (7a, 84, ¢a) and (rc, 8c, ¢c), respectively,
then the Schrodinger equation in terms of y=r,rc¥ is

{mA_102/37A2+m(7_162/37'02+ (mArAQ) —lffzh ¢a
+ (merd?) Lo g0+ (2/7)
X[E—V(ra, rc, 1a-1c) J}¢=0,

where 12 a6a and fﬂac% are the usual angular-momen-
tum operators. Clearly the identifications x=mal%r
and y=mc'?rc allow Eq. (2.4) to be transformed by
z=f(w) into a form similar to that of Eq. (2.2). The
domain of f is now the strip of Fig. 2 and the co-domain
of fis a right-angle-shaped region in Fig. 1. In the new
space, # and v pass smoothly from the initial state
variables to the final state variables, thereby allowing
a numerical treatment of the transformed Schrodinger
equation similar to that® for nonrearrangement
collisions.

(2.4)

III. SCHWARZ-CHRISTOFFEL
TRANSFORMATION

This section is devoted to the determination of the
mapping f:D,—D,, and via Eq. (2.3) the Jacobian
J(u,v). f is found by using the Schwarz—Christoffel
transformation? to map an open (or closed) polygon
onto the upper half of a complex plane. For this pur-
pose, we introduce a third complex plane {=§&+im,
shown in Fig. 3, and define D; to be the upper half
of this plane. f:D,—D, is then obtained from the
product f= gk, where g: Dy—D, and %: Dy—D,,.

A. The Mapping g:D;—D,

In order to apply the Schwarz-Christoffel trans-
formation, it is necessary to know the interior angles of
the polygon and to assign to the vertices, image points
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I't6. 3. The complex {=£4iy plane. The domain D) is the
upper half of this plane. The image points A, B, C, D, are A=
(—1,0),B=(0,0),C=(a,0),and D= (=, 0).

in the ¢ plane.? Regarding the domain D, as the limiting
form of the polygon ABCD in Fig. 1, it is seen that the
interior angles of this open polygon are 0, y=, 0, 2zr—yr.
On the real axis in the { plane, we choose the image
points to correspond with these vertices —1, 0, a, o,
where « is to be determined (three image points may
be chosen arbitrarily?).

In terms of these angles and image points, the
Schwarz-Christoffel transformation is [from Eq. (7)
on p. 221 of Ref. 2]

-t _
=4 [ e+ ) (E—a) g+ B,

where _fi and B are to be determined. Since {=0 for
3=0, B is equal to zero if the lower limit of the integral
is set equal to zero. Thus the transformation becomes

s
=4 [ D) E—a) . (3)
0

The constants A and @ may be found from the change
in ¢ around small semicircles of radius e about the
points A and C (see Fig. 3) together with the cor-
responding changes in 2. For example, as ¢ travels from
—e to +¢€ around C, 2 changes by (e« 4b) — (o0 4-0),
i.e., #b, so that

_ [ate
= [ et G (32)

and upon evaluating the integral by Cauchy’s integral
formula

A=—a7(14a)b/x. (3.3)

A second equation for A and « is found by consider-
ing the change in { around the point A. From the
geometry in Fig. 1, the corresponding change in 3 is
ic exp(iyw), and in a similar way as above, it is found
that

A=~ (1+4a)c/x. (3.4)
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Solving Eqs. (3.3) and (3.4) for 4 and « gives
= (c/b)110=),
A=—[1+(c/b)V=1T¢/r.

Note that for b=¢, a=1 and A= —2¢/x, whilst for
b=c=m a=1and A=—2.

Writing f=¢7 in Eq. (3.1) allows the integral to be
written

5= Aly(14-a) T ( f (= )it~ / t (;1/v+1)—1dz).

0 0

(3.3)
(3.6)

(3.7

For 1/y=positive integer, the above integrals can al-
ways be evaluated.®’ The integrals in Eq. (3.7) may also
be written!?

z=cY (may) LF (1, y;v+1; ¢ /a)
+aF(1,v;v+1; =67,

where F(a, B; v; §) is the hypergeometric function.

As examples of the above transformations, consider
the case of an infinite mass for B so that y=3 and let
b=c¢=m, so that a=1, A=—2. Then from Eq. (3.7)
or (3.8)

(3.8)

z=2(tanh™1¢24 tan—1gl2), (3.9a)

As a second example, consider the H+H,—H,+H
reaction in which y=3%, then with b=c so that a=1,
A=—2¢/m, we have from Eq. (3.7)

z=(¢/7) {3 tanh~'{"*— tanh—{

43112 tan~1[312¢18/ (1— %) ]}, (3.9b)

B. The Mapping /%:Dr—D,,

In Fig. 2, we consider the strip as the limiting form
of the triangle ABC and hence possessing interior
angles of 0, =, 0. The images of the vertices in the {
plane are assigned the points —1, 0, «, where a is
given by Eq. (3.5). Since Fig. 2 may be regarded as a
special case of Fig. 1 with y=1 and ¢=d, we may pro-
ceed directly from Eq. (3.8). Using the result"
F(1,1;2; &2) =Fz"1In(17F2), it follows that

w=(d/7) [ (1+¢)/(1—F/a) ],

or, inverting this equation to give #~': D,~—Dy, yields

(3.10)

¢=[exp(wn/d)—17/{{exp(wr/d)]/a+1}. (3.11)
For a=1 (i.e., b=¢), Eq. (3.11) simplifics to
¢= tanh(wr/2d). (3.12)

The point D= («,0) in the { plane corresponds to
((d/w) Ine, d) in the w plane. An alternative derivation
of Egs. (3.10) -(3.12) follows the lines of that used for

8.
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It is clear from the preceding equations that, from a
theoretical point of view, the simplest choice of channel
widths is b=c=d==. Figure 4 shows the domain D.
that corresponds to a rectangular grid of lines in D,
with y=1 and b=c=d=35. [Equations (3.9b) and
(3.12) were used.| Notice that, since the mapping is
conformal, lines that are orthogonal in D, are also
orthogonal in D.. In adiabatic or near-adiabatic theories
of chemical reactions,*” motion perpendicular to a re-
action coordinate plays an important role and it is seen
that this property is retained in the transformed space.

It is clear from Figs. 1, 2, and 4 that for b= ¢, points
symmetrical about BD in D, correspond to points
symmetrical about BD in D,. From the geometry of
Iigs. 1 and 2, the symmetrical points w and —w* in
D, correspond with z[=f(w)] and (—1)vz* in D,
respectively, and this may also be verified analytically
from Egs. (3.7) and (3.12).

C. Jacobian

The Jacobian J (%, v) may be found from Egs. (2.3),
(3.1), and (3.10):
Eii_dZ/dg‘ =_6: y—1

dw  dw/d;  d

Thus
J(u,v)
62

d2

b3

[eo(3)-/ 2

_be (cosh[(mr/d) — Ina ]+ cos(en/d) )1“7
o cosh (um/d) — cos(vr/d) '

(3.13)

J(u, v) is clearly not separable in # and ». Notice that
as expected, the Jacobian reduces to unity for b=c=d
and y=1 since then we have the identity mapping.
Equation (3.13) also shows that J(#,v) is singular at
the points (0,0) and ({(d/7) lna, d); these correspond
to the points B and D in D, at which the transforma-
tion is no longer conformal. For large =, J{(u,v) be-
comes independent of v and equal to a constant:

J(+o,0)=0/d,  J(—wo,0)=c/d (3.14)
When a=1, Eq. (3.13) simplifies to
¢® fcosh (uw/d)+ cos(wr/d))l“7 B
= — . (3.
I (w,v) a2 <cosh(u1r/d) — cos(vr/d) (3.15)

J{u, v) is even in %, which reflects the symmetry of the
domains D, and D,, about BD in this case [ J (%, v) is
also even in v].

The coefficients of J(#,v) in Eq. (3.15) as an ex-
pansion in powers of [cos(vr/d)/cosh(umr/d)] are the
Mittag-Leffler polynomials,'? a result that is useful in
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F16. 4. The domain /), that corresponds to a rectangular grid
of lines in D, for y=1% and b=c¢=d=35. Equations (3.9b) and
(3.12) were used.

integrals containing J(#, v) (see next section):

& cos(vr/d) \*
Tn5) = 55 0) (S T (36)
where
£.(8)=L(B)n/nJF(—n, —B; 1—n—p;—1) (3.17)
2 (D Ban( =B 1)

(n—m) m!

m=0

In Egs. (3.16)-(3.18), 8=1—+, and (#). is Pochham-
mer’s symbol, i.e.,

(B)o=1, (B)u=B(B+1)---(B+n—1).

IV. INTEGRAL EQUATION

In this section, the differential equation (2.2) is
converted into an integral equation, and integral repre-
sentations obtained for the reflection and transmission
coefficients. The inversion uses the method of Green’s
functions.”® Another method for obtaining the reflection
and transmission coefficients that may be applied to
the present problem has been described in Ref. 14 and
7(a).

It is convenient to rewrite Eq. (2.2) in the form
[(9%/0u?) 4 (82/8v%) + k2 (s, v) Welu, v) =0, (4.1)
where
k2 (u, v) = (2/1) J(u, ) LE—V (u,v) ].
It will also prove useful to define

FE2=(2/R*) J (Lo, v)E (4.2)

and

U(fo,v)= () J(£=,0)V(£=,1), (43)
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where J (3=, 1) is given by Eq. (3.14). We now have
(Ao, 0) =kER= (4w ). (1.4)

The boundary conditions satisfied by Eq. (4.1)
represent incident, reflected, and transmitted waves
with the incident wave moving from right to left:

Y(,v) ~ ¢ (v) exp(—ikaTy)

U

+ X Ruwdw P (v) exp(ikn, Pu)

n’=0

~ Z Tnn/(bn'(_)(v) exp(——ikn,(—)u)_

u->—cc nl/=0

(4.5)

In (4.5), {¢.P(v)} are the asymptotic vibrational
wavefunctions with eigenvalues {e,}

[— (/dv*) + U (£ %, v) Jou > (0) = &P, (1),
n=0,1,2-++,
and £,* is defined by

k2= p2_ g @)

where the definitions of Egs. (4.2)-(4.4) have been
used. R, and T, are the reflection and transmission
coefficients from an initial state # to a final state #»/,
respectively. The summations are understood to be in
accord with the conservation of energy.

If Eq. (4.1) is written as

[(0%/01) +(9/90) +-R* (£ 0, ) W' (w, v)

=K (s, 0)PF (u,v), (4.6)

where the (=) signs on the wavefunction correspond
to those in k(£ , 2) and

K& (u,v) =k (£, v)—k(u,1),

then the method of Green’s functions can be used to
convert (4.6) into an integral equation. The Green’s
function is defined by

[(9%/0u*) + (8%/0v*) +* (£ 0, v) G (u, v; ', V')
=6(u—u')s(v—2") (4.7)

and by the condition that it be the outgoing solution.
Since the differential operators in Eq. (4.7) commute,
the Green’s function is%, for &, 0,

G® (u,v;u',0)
_ 2”: 6. () (1)) * exp(ikaP| u—a'|)
o 2ik, :

n=0

(4.8)

Two representations for the Green’s function have been
chosen since, as will become apparent below, one is
more appropriate for the reactive scattering and the
other for the nonreactive scattering.

From Egs. (4.6)-(4.8), it follows that ¢ (u,v)

AND R. A.
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satisfies the integral equation

‘ . © ¢, (1) exp(ik,' Vu)
() N = o () . :
B 1) =2, ) 3, P

U d
X / du’ / dv' exp(— ik, @1 )¢, D (/) *
w 0

$a%) (1) exp(—ikan)
ik, )

XK (!, 0 O (o, 0) + 3
n=(

) d
X/ du'/ dv' exp(tk, Pu') ¢, D (v) *
u 0

XE® (o, VWPl )., (4.9)

In Eq. (4.9), .. (2, v) is a solution of Eq. (4.6) with
the right-hand side set equal to zero. From the form of
the boundary conditions (4.5), ¢, (u, v) is chosen as

V@ (1, v) =, (v) exp(—ik,Pu) for (4) solution

=0 for (—) solution.
Comparison of Eq. (4.9) with the boundary conditions
(4.5) shows that R,, is obtained by taking #—o and
the () solution, while T, is obtained from #—— =
and the (—) solution. Thus,

0 o
Rnnz:[Ziknr(ﬂj“/ (Iu’/ dv’ exp(—tk, ')
0

XD (V)*KD (o, o) (o', '), (4.10)
T = [ 2k / du / v/ exp (ikw )
SR
X () KO (!, WO (o, o). (4.11)

Another method of dealing with the partial differ-
ential equation (4.1) is to convert it into a set of
coupled ordinary differential equations by expanding
¥ (u, v) In terms of some vibrational basis set,*” but, as
a similar formalism can be applied in the present case,
it is not considered here. Numerical application of these
coupled differential equations arising from Eq. (4.1)
is currently being undertaken.!
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The PY equation is shown to have a solution which is analytic in the density p near p=0. Analytic pro-
perties of G(k)}, the Fourier transform of the pair correlation function, as a function of k, are discussed.
Corresponding results for the HNC equation are reported also.

In the theory of the equation of state of classical
fluids the method of approximate integral equations
for the pair correlation function plays an important
role. The Percus—Yevick (PY) and the Hypernetted
Chain (HNC) equations in particular have received
much attention and have yielded many interesting re-
sults.! The PY equation has been solved exactly in
several cases.? On both integral equations a great deal
of effort has been spent in solving them numerically by
iterative procedures, for various cases of interaction
potentials.?

A question of interest, which as yet has not been
answered, however, is that of the existence and the
uniqueness of a solution of these integral equations in
general. For example, it has been discussed by Tem-
perley® and by Percus* whether the PY equation, for
hard spheres, admits of a solution at sufficiently high
density corresponding to an ordered phase. Recently,
in work related to an attempt to solve the PY equation
exactly for a mixture of hard spheres with nonadditive
diameters,® the question of the existence and unique-
ness of a solution, at least for sufficiently low densities,
has come up again.®

In this paper we present a simple proof of the exist-
ence of a solution to the PY equation which is analytic
in the density p near p=0, under the fairly general
conditions (a) and (b) below. The HNC equation has
been considered also, and a brief summary of the re-
sults is given. A similar study, with the condition (b)

relaxed so as to include also the case of long-range
(e.g., Coulomb) forces, has been made of several re-
lated integral equations (HNC, PY-Allnatt and mean
spherical model), and will be published in a subsequent
paper.

The Percus—-Yevick (PY) equation for an m-compo-
nent classical fluid of particle densities p, * « - p,, can be
written in the form?

N(1,2)=[d(3)C(1,3)p(3)G(3, 2), (1)
G(1,2)=h(1, 2)N (1, 2)+1(1, 2), (2)
C(L, 2)=f(1, D[1+N (1, 2)]. )

Here 1 stands for (s, 11), 2 for (s, I:), etc., [(3) for
Z dr3)
8,=1

p(3) stands for p,,, where s; (7=1,2,3;5,=1,2, ---, m)
denotes the species number of particle 7 and r; its posi-
tion in d-dimensional space.

¢ (1, 2)=¢s, 5, (11, 1)

is the pair potential between particles 1 and 2 (of species
sy and s, at positions r; and r;). G(1, 2) is the pair corre-
lation function {so that»(1,2)=[14+G(1, 2)Je(1)p(2)
is the pair distribution function} and C(1, 2) is the
direct correlation function of Ornstein and Zernike,
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