Atmospheric Bromine and Ozone Perturbations in the Lower Stratosphere

Y. L. Yung
California Institute of Technology, Pasadena, CA 91125

J. P. Pinto
Goddard Institute for Space Studies, New York, NY 10025

R. T. Watson and S. P. Sander
Jet Propulsion Laboratory, Pasadena, CA 91103

(Manuscript received 4 May 1979, in final form 26 September 1979)

ABSTRACT

The role of bromine compounds in the photochemistry of the natural and perturbed stratosphere has been reexamined using an expanded reaction scheme and the results of recent laboratory studies of several key reactions. The most important finding is that through the reaction BrO + ClO → Br + Cl + O₂ there is a synergistic effect between bromine and chlorine which results in an efficient catalytic destruction of ozone in the lower stratosphere. One-dimensional photochemical model results indicate that BrO is the major bromine species throughout the stratosphere, followed by BrONO₂, HBr, HOBr and Br. We show from the foregoing that bromine is more efficient than chlorine as a catalyst for destroying ozone, and discuss the implications for stratospheric ozone of possible future growth in the industrial and agricultural use of bromine. Bromine concentrations of 20 pptv (2 × 10⁻¹¹), as suggested by recent observations, can decrease the present-day integrated ozone column density by 2.4%, and can enhance ozone depletion from steady-state chlorofluoromethane release at 1973 rates by a factor of 1.1-1.2.

1. Introduction

In recent years, photochemical models have been used to understand the factors that control the distribution and column abundance of ozone in the present stratosphere, and to assess the impact of perturbations by stratospheric aviation (Crutzen 1970; Johnston 1971) and the release of chlorofluoromethanes (McElroy et al. 1974; Molina and Rowland 1974; Cicerone et al. 1974; Wofsy et al. 1975a; NAS, 1976; NASA, 1977; Crutzen et al. 1978). Although the importance of HO₂, NO₃ and Cl₂ in controlling stratospheric ozone is now well recognized, the close coupling that exists between members of different families has only recently become fully apparent. Indeed, the net effect of these interactions can be subtle, e.g., ClONO₂ is a reservoir species for Cl₂, but the formation of ClONO₂ via the reaction ClO + NO₂ + M → ClONO₂ + M can result in either a decrease or in an increase in the catalytic destruction of odd oxygen depending on the photolytic fragmentation products of ClONO₂ (Smith et al., 1977; Chang et al., 1979). Although both Watson (1975) and Wofsy et al. (1975b) recognized the importance of bromine for catalytic destruction of ozone, neither paper considered the coupling of the chlorine and bromine systems. Derwent and Eggleton (1978) included the coupling of the chlorine and bromine systems in a calculation of ozone depletion in the natural atmosphere due to 10 pptv Br₂ and 1.3 ppbv Cl₂, but did not discuss the catalytic cycles or the effect on ozone in any detail.

Wofsy et al. (1975b) calculated the magnitude of the ozone perturbation by bromine through two catalytic cycles

\[
\begin{align*}
\text{Br} + \text{O}_3 & \rightarrow \text{BrO} + \text{O}_2 \quad (1) \\
\text{BrO} + \text{O} & \rightarrow \text{Br} + \text{O}_2 \quad (8) \\
\end{align*}
\]

Net \[\text{O}_3 + \text{O} \rightarrow 2\text{O}_2 \]

\[
\begin{align*}
2(\text{Br} + \text{O}_3 & \rightarrow \text{BrO} + \text{O}_2) \quad (1) \\
\text{BrO} + \text{BrO} & \rightarrow 2\text{Br} + \text{O}_2 \quad (9) \\
\end{align*}
\]

Net \[2\text{O}_3 \rightarrow 3\text{O}_2 \]

However, Wofsy et al. (1975b) did not consider the following catalytic cycles:
\[
\begin{align*}
\text{Br} + \text{O}_3 & \rightarrow \text{BrO} + \text{O}_2 & (1) \\
\text{Cl} + \text{O}_3 & \rightarrow \text{ClO} + \text{O}_2 & (15) \\
\text{BrO} + \text{ClO} & \rightarrow \text{Br} + \text{Cl} + \text{O}_2 & (10a) \\
\text{Cl} + \text{O}_3 & \rightarrow \text{ClO} + \text{O}_2 & (15) \\
\text{ClO} + \text{NO}_2 + \text{M} & \rightarrow \text{ClONO}_2 + \text{M} & (19) \\
\text{ClONO}_2 + \text{hv} & \rightarrow \text{Cl} + \text{NO}_3 & (J_{16}) \\
\text{NO}_3 + \text{hv} & \rightarrow \text{NO} + \text{O}_2 & (J_9) \\
\text{NO} + \text{O}_3 & \rightarrow \text{NO}_2 + \text{O}_2 & (20) \\
\end{align*}
\]

Net \(2\text{O}_3 \rightarrow 3\text{O}_2\)

\[
\begin{align*}
\text{Br} + \text{O}_3 & \rightarrow \text{BrO} + \text{O}_2 & (1) \\
\text{BrO} + \text{NO}_2 + \text{M} & \rightarrow \text{BrNO}_2 + \text{M} & (11) \\
\text{BrNO}_2 + \text{hv} & \rightarrow \text{Br} + \text{NO}_3 & (J_1) \\
\text{NO}_2 + \text{hv} & \rightarrow \text{NO} + \text{O}_2 & (J_9) \\
\text{NO} + \text{O}_3 & \rightarrow \text{NO}_2 + \text{O}_2 & (20) \\
\end{align*}
\]

Net \(2\text{O}_3 \rightarrow 3\text{O}_2\)

\[
\begin{align*}
\text{Br} + \text{O}_3 & \rightarrow \text{BrO} + \text{O}_2 & (1) \\
\text{BrO} + \text{HO}_2 & \rightarrow \text{HOBr} + \text{O}_2 & (12) \\
\text{HOBr} + \text{hv} & \rightarrow \text{OH} + \text{Br} & (J_9) \\
\text{OH} + \text{O}_3 & \rightarrow \text{HO}_2 + \text{O}_2 & (24) \\
\end{align*}
\]

Net \(2\text{O}_3 \rightarrow 3\text{O}_2\)

\[
\begin{align*}
\text{Br} + \text{O}_3 & \rightarrow \text{BrO} + \text{O}_2 & (1) \\
\text{BrO} + \text{O}_3 & \rightarrow \text{Br} + 2\text{O}_2 & (13) \\
\end{align*}
\]

Net \(2\text{O}_3 \rightarrow 3\text{O}_2\)

We shall argue that cycle (III) is an example of an interaction between radical species from different families which may provide an important additional photochemical sink for ozone, especially in the lower stratosphere, where competing rate determining reactions such as

\[
\begin{align*}
\text{ClO} + \text{O} & \rightarrow \text{Cl} + \text{O}_2 & (16) \\
\text{NO}_2 + \text{O} & \rightarrow \text{NO} + \text{O}_2 & (17) \\
\end{align*}
\]

are rapidly falling off with decreasing altitude. Cycle (IV) requires that the photolysis products of \(\text{BrNO}_2\) and \(\text{NO}_3\) are \(\text{Br} + \text{NO}_3\) and \(\text{NO} + \text{O}_2\), respectively. For alternative dissociation paths \(\text{BrNO}_2 \rightarrow \text{BrO} + \text{NO}_2\), \(\text{BrNO}_2 \rightarrow \text{O} + \text{BrNO}\) and \(\text{NO}_2 \rightarrow \text{NO} + \text{O}_2\), the cycle would not result in a net destruction of ozone. This paper will discuss the close coupling of the \(\text{Br}_x\) system with the \(\text{HO}_x\), \(\text{NO}_2\) and \(\text{Cl}_x\) systems with emphasis on the reactions

\[
\begin{align*}
\text{BrO} + \text{hv} & \rightarrow \text{Br} + \text{O} & (J_2) \\
\text{BrO} + \text{ClO} & \rightarrow \text{Br} + \text{Cl} + \text{O}_2 & (10a) \\
\text{BrO} + \text{NO}_2 + \text{M} & \rightarrow \text{BrNO}_2 + \text{M} & (11) \\
\text{BrO} + \text{HO}_2 & \rightarrow \text{HOBr} + \text{O}_2 & (12) \\
\end{align*}
\]

which have not been previously examined. Our discussion also includes other catalytic cycles involving \(\text{Cl}_x\)-\(\text{NO}_2\) and \(\text{Cl}_x\)-\(\text{HO}_x\) systems which might also lead to an efficient destruction of ozone in the lower stratosphere:

We may note that in all one-dimensional modeling studies of the effect of halogenated compounds on \(\text{O}_3\) (see, e.g., Chang 1976; Logan et al. 1978), perturbations above 25 km are significantly larger than those between 16 and 25 km. The present work raises the possibility of additional \(\text{O}_3\) reductions in the lower stratosphere not considered in the previous works. In another paper (Wang et al. 1979), we calculate the effects of \(\text{O}_3\) depletion in the lower stratosphere on the earth's surface temperature. A net cooling of the surface \((\Delta T_s \approx -0.3 \text{ K})\) could result, a value which is sufficient to nearly cancel the chlorofluoromethane-induced greenhouse effect.

2. Photochemistry of bromine compounds

Table 1a summarizes the reactions involving bromine-containing species, thought to be important in the photochemistry of the stratosphere, along with the preferred values of their rate coefficients. As will be shown later, the partitioning of inorganic bromine into its constituent species \((\text{Br}_x = \text{HBr} + \text{BrNO}_2 + \text{BrO} + \text{HOBr} + \text{Br})\), and the magnitude of its effect on ozone, is sensitive to only a few of these rate coefficients. The reaction scheme is similar to that suggested by Watson (1975) and Wofsy et al. (1975b), but has been expanded somewhat to include the formation and destruction of \(\text{BrNO}_2\) and \(\text{HOBr}\) and the interaction between the \(\text{Br}_x\) and \(\text{Cl}_x\) systems. The basic set of key reactions in the \(\text{Br}_x\) system is similar to that in the \(\text{Cl}_x\) system, with a few important exceptions: 1) hydrogen atom abstraction by atomic bromine from \(\text{H}_2\) and \(\text{CH}_4\) are highly endothermic; consequently, these reactions are too slow to be important in the stratosphere; and 2) radical-radical processes such as the bimolecular disproportionation of \(\text{BrO}\) radicals may play an important role in \(\text{Br}_x\) chemistry (the magnitude of the effect is critically dependent on the mixing ratio of total inorganic bromine), whereas their chlorine analogs are thought to be of little importance; and 3) the photolysis rate for \(\text{BrO}\) is two to three orders of magnitudes faster than that for \(\text{ClO}\).
Atomic bromine can be converted into the inactive form of HBr by three processes:

\[
\begin{align*}
\text{Br} + \text{HO}_2 & \rightarrow \text{HBr} + \text{O}_2 \quad (2) \\
\text{Br} + \text{H}_2\text{O}_2 & \rightarrow \text{HBr} + \text{HO}_2 \quad (3) \\
\text{Br} + \text{H}_2\text{CO} & \rightarrow \text{HBr} + \text{HCO} \quad (4)
\end{align*}
\]

An estimated value of \(2 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}\) has been used for \(k_2\) in most of our calculations as there has not been a direct study of this reaction using a modern kinetic technique. The sensitivity of our model to the absolute value of \(k_2\) has been tested by using values of 0.5 and \(4 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}\). Using the upper limit tabulated for \(k_3\), it can be shown that reaction (3) is not an important loss mechanism for Br. It can also be shown that reaction (4) is unlikely to be comparable in magnitude to reaction (2) as a loss process for Br, as \(k_4\) would have to be greater than \(1 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}\) at stratospheric temperatures (this assumes that the mixing ratio for HCO is \(\sim 0.1 \text{ ppbv}\)), whereas an estimated value of \(\approx 10^{-13} \text{ cm}^3 \text{ s}^{-1}\) is more realistic. Consequently, the only important formation process for HBr is reaction (2) (the formation of HBr via the reaction of BrO with OH is discussed later). The major process by which atomic bromine is regenerated from HBr is

\[
\text{OH} + \text{HBr} \rightarrow \text{H}_2\text{O} + \text{Br} \quad (5)
\]

Other minor loss mechanisms for HBr are

\[
\begin{align*}
\text{HBr} + h\nu & \rightarrow \text{J} + \text{Br} \quad (J_3) \\
\text{HBr} + \text{O} & \rightarrow \text{OH} + \text{Br} \quad (6)
\end{align*}
\]

Since the calculations of Wofsy et al. (1975b), the rate coefficients for

\[
\begin{align*}
\text{HO}_2 + \text{NO} & \rightarrow \text{OH} + \text{NO}_2 \quad (22) \\
\text{HO}_2 + \text{O}_3 & \rightarrow \text{OH} + 2\text{O}_2 \quad (18)
\end{align*}
\]

have been revised (Howard and Evenson 1977; Howard 1978), resulting in higher concentrations of OH, and lower concentrations of HO\(_2\) and H\(_2\)O\(_2\). The net result is that the Br:HBr ratio is significantly higher in the present model than in previous models. We may note that the Br:HBr ratio is significantly higher than the Cl:HCl ratio in the stratosphere due to slower rates of formation of HBr compared to HCl, combined with the much greater reactivity of HBr, over HCl, toward OH radicals.

The other major pathway for atomic bromine is its reaction with O\(_3\) to form BrO:

\[
\text{Br} + \text{O}_3 \rightarrow \text{BrO} + \text{O}_2 \quad (1)
\]

Once formed, BrO participates in a series of reactions similar to those of the ClO radical in the Cl\(_x\) system:

\[
\begin{align*}
\text{BrO} + h\nu & \rightarrow \text{Br} + \text{O} \quad (J_2) \\
\text{BrO} + \text{NO} & \rightarrow \text{Br} + \text{NO}_2 \quad (7) \\
\text{BrO} + \text{O} & \rightarrow \text{Br} + \text{O}_2 \quad (8) \\
\text{BrO} + \text{BrO} & \rightarrow 2\text{Br} + \text{O}_2 \quad (9a) \\
& \quad \rightarrow \text{Br}_2 + \text{O}_2 \quad (9b) \\
\text{BrO} + \text{ClO} & \rightarrow \text{Br} + \text{Cl} + \text{O}_2 \quad (10a) \\
& \quad \rightarrow \text{Br} + \text{OClO} \quad (10b) \\
\text{BrO} + \text{NO}_2 + \text{M} & \rightarrow \text{BrONOO}_2 + \text{M} \quad (11) \\
\text{BrO} + \text{HO}_2 & \rightarrow \text{HOBr} + \text{O}_2 \quad (12) \\
\text{BrO} + \text{O}_3 & \rightarrow \text{Br} + 2\text{O}_2 \quad (13) \\
\text{BrO} + \text{OH} & \rightarrow \text{HO}_2 + \text{Br} \quad (14a) \\
& \quad \rightarrow \text{HBr} + \text{O}_2 \quad (14b)
\end{align*}
\]

Reactions (\(J_2\)), (7), (8) and (11)–(14) play the same roles as their chlorine analogs. Using the absorption data obtained by Durie and Ramsay (1958) and Clyne and Cruse (1970), we repeat Watson’s (1975) analysis and estimate a diurnally averaged photolysis rate \(J_2 = 1 \times 10^{-2} \text{ s}^{-1}\) (including corrections for Rayleigh scattering and ground albedo). Since the possibility of continuum absorption underlying the series of bands in the region 289–355 nm is not ruled out from either Durie and Ramsay’s (1958) or Clyne and Cruse’s (1970) data, \(J_2\) could be as high as \(3 \times 10^{-2} \text{ s}^{-1}\). In the stratosphere, reactions (\(J_2\)) and (7) are both important, but not as effective in limiting the catalytic efficiency of Br\(_x\) as the NO + ClO reaction is in the Cl\(_x\) system. The primary reason is that while BrO is the major form of Br\(_x\), ClO is not the major form of Cl\(_x\) in the stratosphere. Although the rate coefficient for reaction (8) is uncertain by a factor of 3 this does not introduce a significant uncertainty in the magnitude of the ozone perturbation, for reasons which will be discussed in the section on atmospheric modeling. The formation and destruction of BrONOO\(_2\) through

\[
\begin{align*}
\text{BrO} + \text{NO}_2 + \text{M} & \rightarrow \text{BrONOO}_2 + \text{M} \quad (11) \\
\text{BrONOO}_2 + h\nu & \rightarrow \text{Br} + \text{NO}_3 \quad (J_1)
\end{align*}
\]

results in cycle (IV). The rate coefficient for reaction (11) is taken to be twice that for the formation of ClONO\(_2\) via reaction (19), based on data collected between 50 and 700 Torr at 298 K by Sander et al. (1979).

Reactions (9a) and (9b) [BrO + BrO] are several orders of magnitude faster than reactions (23a), (23b) and (23c) [ClO + ClO]. Therefore, reactions (9a) and (9b) can become important at high BrO concentrations (Br\(_x\) \(\approx 100 \text{ pptv}\)). Even though the branching ratio of reaction (9) has been incorporated into the model, it is unimportant as Br\(_2\) undergoes
<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Coefficient Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BrONO₂ + hν → Br + NO₃</td>
<td>1.6 × 10⁻³, 1.1 × 10⁻³, 9.8 × 10⁻⁴</td>
</tr>
<tr>
<td>BrO + hν → Br + O</td>
<td>1 × 10⁻²</td>
</tr>
<tr>
<td>HOBr + hν → OH + Br</td>
<td>1.7 × 10⁻³, 1.3 × 10⁻³, 1.1 × 10⁻³</td>
</tr>
<tr>
<td>Br₂ + hν → Br + Br</td>
<td>1.5 × 10⁻²</td>
</tr>
<tr>
<td>HBr + hν → H + Br</td>
<td>5.8 × 10⁻⁴, 4.9 × 10⁻⁴, 2.8 × 10⁻⁹</td>
</tr>
<tr>
<td>CH₃Br + hν → CH₃ + Br</td>
<td>7.3 × 10⁻⁹, 4.1 × 10⁻⁴, 2.2 × 10⁻⁹</td>
</tr>
<tr>
<td>NO₂ + hν → NO₂ + O</td>
<td>1 × 10⁻²</td>
</tr>
<tr>
<td>NO₃ + hν → NO₂ + O₂</td>
<td>5 × 10⁻³</td>
</tr>
<tr>
<td>HOCl + hν → OH + Cl</td>
<td>2 × 10⁻⁴</td>
</tr>
<tr>
<td>ClONO₂ + hν → Cl + NO₃</td>
<td>3.5 × 10⁻⁴, 8.8 × 10⁻⁴, 5.7 × 10⁻⁴</td>
</tr>
<tr>
<td>NO₂ + hν → NO + O</td>
<td>7.5 × 10⁻³</td>
</tr>
<tr>
<td>HONO₂ + hν → OH + NO₂</td>
<td>2.8 × 10⁻⁹, 5.7 × 10⁻⁴, 3.9 × 10⁻⁷</td>
</tr>
<tr>
<td>Br + O₃ → BrO₂ + O₂</td>
<td>1.4 × 10⁻¹²e⁻⁷⁵⁵/T</td>
</tr>
<tr>
<td>Br + H₂O₂ → HBr + O₂</td>
<td>2 × 10⁻¹¹</td>
</tr>
<tr>
<td>Br + H₂O → HBr + HO₂</td>
<td>< 2 × 10⁻¹²e⁻¹⁴⁵⁰⁷</td>
</tr>
<tr>
<td>Br + H₂CO → HBr + HCO</td>
<td>< 1 × 10⁻¹³</td>
</tr>
<tr>
<td>OH + HBr → H₂O + Br</td>
<td>8.5 × 10⁻¹²</td>
</tr>
<tr>
<td>O + HBr → OH + Br</td>
<td>7.6 × 10⁻¹²e⁻¹⁰⁷¹⁷/T</td>
</tr>
<tr>
<td>Br₂O + NO → Br₂ + NO₂</td>
<td>3.7 × 10⁻¹¹</td>
</tr>
<tr>
<td>BrO + O + Br → Br₂ + O₂</td>
<td>2.1 × 10⁻¹²e⁻³⁴⁴³/T</td>
</tr>
<tr>
<td>BrO + Br + O → Br₂ + O₃</td>
<td>3.5 × 10⁻¹³e⁻³⁴⁴³/T</td>
</tr>
<tr>
<td>BrO + Cl → Br + Cl + O₂</td>
<td>6.7 × 10⁻¹²</td>
</tr>
<tr>
<td>BrO + ClO → Br + Cl₂ + O₂</td>
<td>6.7 × 10⁻¹²</td>
</tr>
<tr>
<td>BrO + NO₂ + M → BrONO₂ + M</td>
<td>2k₁₁</td>
</tr>
<tr>
<td>BrO + HO₂ → HOB + O₂</td>
<td>4 × 10⁻¹⁵</td>
</tr>
<tr>
<td>Br₂O → Br + 2O₂</td>
<td>< 1 × 10⁻¹³e⁻¹⁰⁷⁰⁰/T</td>
</tr>
<tr>
<td>BrO + OH → HO₂ + O₂</td>
<td>1.1 × 10⁻¹⁴e⁻⁵⁴⁰/T</td>
</tr>
<tr>
<td>Cl₂ + O → ClO + O₂</td>
<td>1.4 × 10⁻¹⁸</td>
</tr>
<tr>
<td>ClO -> Cl + O₂</td>
<td>1.6 × 10⁻¹⁸</td>
</tr>
<tr>
<td>NO₂ + O₂ + NO + O₃</td>
<td>1.7 × 10⁻¹⁹</td>
</tr>
<tr>
<td>HO₂ + O₂ → OH + O₃</td>
<td>3.8 × 10⁻¹⁵</td>
</tr>
<tr>
<td>ClO + HO₂ → HOCl + O₂</td>
<td>3.4 × 10⁻¹²e⁻²⁵⁰⁰/T</td>
</tr>
<tr>
<td>ClO + ClO → products</td>
<td>9.9 × 10⁻¹²e⁻¹³³⁰/T</td>
</tr>
<tr>
<td>OH + O₂ + H₂O → HO₂ + O₃</td>
<td>2.5 × 10⁻¹³</td>
</tr>
<tr>
<td>CH₃Br + CH₃Br → products</td>
<td>4.7 × 10⁻¹²e⁻¹¹¹⁴/T</td>
</tr>
<tr>
<td>OH + Cl + H₂ → products</td>
<td>7.9 × 10⁻¹³e⁻⁸⁸⁰/T</td>
</tr>
</tbody>
</table>

(a) NASA (1977).
(b) NASA (1979).
(c) Wofsy et al. (1975a,b).
(d) Spencer and Rowlund (1978), recommended by b.
(e) Based on Durie and Ramsay (1958) and Clyne and Cruse (1970).
(f) Based on Molina and Molina (private communication, 1979) cross section for HOCl, red-shifted by 300 nm.
(g) Calvert and Pitts (1966).
(h) Molina and Molina (1979).
(i) Evaluated from the data of Clyne and Watson (1975), Leu and DeMore (1977), Michael et al. (1979) and Michael and Payne (1979), recommended by b.
(j) Estimated.
(k) Based upon the unpublished upper limit reported for k(298K) by Leu and DeMore, recommended by b.
(l) Estimated.
(m) Mean of values reported by Takacs and Glass (1973a) and Ravi Shanker et al. (private communication, 1979), recommended by b.
rapid photolysis in the stratosphere. Cl_r and Br_r
reactions are unimportant at night as both ClO and
BrO are tied up as ClONO₂ and BrONO₂, respectivley. The Cl_r and Br_r systems are coupled through
reactions (10a) and (10b). It is unimportant whether
process (10a) actually proceeds through either Br
+ ClOO or Cl + BrOO as both peroxo radicals
undergo rapid thermal decomposition. Even if the
products were BrCl + O₂, it is equivalent to writing
Br + Cl + O₂ as BrCl rapidly photolyzes in the
stratosphere. Unfortunately reaction (10a), which is
the key reaction, has only been studied at 298 K
and the two published studies report values which
differ by a factor of 3; k_{10a} could exhibit either
a small positive or negative temperature dependence.
Reaction (10b) only participates in a net-nothing
cycle, as the photolysis products of OCIO are
O(3P) and ClO:

\[\begin{align*}
\text{Br} + \text{O}_3 & \rightarrow \text{BrO} + \text{O}_2 \\
\text{BrO} + \text{ClO} & \rightarrow \text{Br} + \text{OCIO} \\
\text{OCIO} + \text{hv} & \rightarrow \text{O} + \text{ClO} \\
\text{O} + \text{O}_2 + \text{M} & \rightarrow \text{O}_3 + \text{M}
\end{align*} \]

Net: nothing

For cycles (V) and (VI) to be important, the rate-
limiting steps (12) and (13) must be comparable to
the rate-limiting steps in cycles (I)–(IV). The important
formation and destruction processes for HOBr are:

\[\begin{align*}
\text{HO}_2 + \text{BrO} & \rightarrow \text{HOBr} + \text{O}_2 \\
\text{HOBr} + \text{hv} & \rightarrow \text{OH} + \text{Br}
\end{align*} \]

The steady-state concentration of HOBr is

\[[\text{HOBr}] = \frac{k_{12}[\text{HO}_2][\text{BrO}]}{J_3}. \]

Substituting our best estimates for \(k_{12} \) and \(J_3 \)
(see Table 1a) results in a ratio of \(\sim 0.1 \) for \([\text{HOBr}] / [\text{BrO}]\). Therefore, HOBr is not a significant reservoir
of Br_r. In the current atmosphere (assuming 20
pptv Br_r and 2.3 ppbv Cl_r) cycle (V) is not
important unless \(k_{12} \gg 4 \times 10^{-12} \text{ cm}^3 \text{s}^{-1} \), an unlikely
possibility. Cycle (VI) does not become important

\(k_{13} \gg 3 \times 10^{-16} \text{ cm}^3 \text{s}^{-1} \) at stratospheric tempera-
tures. An upper limit of \(\leq 5 \times 10^{-15} \text{ cm}^3 \text{s}^{-1} \) has
recently been reported for \(k_{13} \) at 298 K by Sander and
Watson (1979). However, it must be stressed that
no reaction was observed, and that the chlorine
analog of reaction (13) is very slow with an upper
limit of \(\sim 10^{-18} \text{ cm}^3 \text{s}^{-1} \) (Lin et al. 1975). In our
calculations we do not include reaction (13).

The OH + BrO reaction (14) has not been in-
cluded in the model as neither the overall rate
coefficient nor the product distribution is known.
Although reaction (14a) can participate in the
catalytic cycle

\[\begin{align*}
\text{Br} + \text{O}_3 & \rightarrow \text{BrO} + \text{O}_2 \\
\text{OH} + \text{BrO} & \rightarrow \text{Br} + \text{HO}_2 \\
\text{HO}_2 + \text{O}_3 & \rightarrow \text{OH} + 2\text{O}_2
\end{align*} \]

Net: \(2\text{O}_3 \rightarrow 3\text{O}_2 \)

it is unimportant as the magnitude of the rate-deter-
mining step is not comparable to those in cycles
(I)–(IV) unless \(k_{14a} \gg 10^{-10} \text{ cm}^3 \text{s}^{-1} \) which is quite
unlikely (the magnitude of \(k_{14} \) is expected to be
quite similar to \(k(\text{OH} + \text{ClO}) \) which has recently
been reported to be \(9.1 \times 10^{-12} \text{ cm}^3 \text{s}^{-1} \) at 298 K by
Leu and Lin (1979). Reaction (14b) can be important
in reducing the catalytic efficiency of Br_r by
decreasing the BrO/Br_r ratio. For reaction (14b) to be
important the magnitude of \(k_{14b}[\text{OH}][\text{BrO}] \) must be
comparable to \(k_4[\text{Br}][\text{HO}_2] \) in order to influence
the rate of formation of HBr and the partitioning
of Br_r. This occurs when \(k_{14b}/k_2 = 0.1 \), i.e., \(k_{14b}
\approx 2 \times 10^{-12} \text{ cm}^3 \text{s}^{-1} \).

3. Atmospheric modeling

Singh et al.’s (1977) measurements of halogenated
organic species indicate that methyl bromide (CH₃Br)
is probably the major bromine species in the
troposphere with concentrations ranging from 1 to
300 pptv. The average concentration is \(\sim 5–10 \) pptv
in clean air and 20 pptv in marine air (Singh, 1979,
private communication). The main source of CH₃Br
is marine biological activity (Lovelock, 1975). There
Table 1b. List of reactions used in our model in addition to those given in Table 1a. Values for the mean dissociation rate \(J \) are given for 40 km.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>(J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O_2 + h\nu \rightarrow 2O)</td>
<td>1.8 (10)</td>
</tr>
<tr>
<td>(O_3 + h\nu \rightarrow O_2 + O)</td>
<td>9.0 (4)</td>
</tr>
<tr>
<td>(O_3 + h\nu \rightarrow O_2 + O^+ (O^+D))</td>
<td>6.8 (4)</td>
</tr>
<tr>
<td>(H_2O + h\nu \rightarrow H + OH)</td>
<td>6.6 (10)</td>
</tr>
<tr>
<td>(HNO_3 + h\nu \rightarrow 2OH)</td>
<td>1.9 (5)</td>
</tr>
<tr>
<td>(N_2O + h\nu \rightarrow N_2 + O^+ (O^+D))</td>
<td>1.4 (7)</td>
</tr>
<tr>
<td>(NO + h\nu \rightarrow N + O)</td>
<td>9.1 (8)</td>
</tr>
<tr>
<td>(NO_2 + h\nu \rightarrow NO_2 + NO_3)</td>
<td>9.8 (5)</td>
</tr>
<tr>
<td>(Cl + h\nu \rightarrow 2Cl)</td>
<td>1.2 (3)</td>
</tr>
<tr>
<td>(HCl + h\nu \rightarrow H + Cl)</td>
<td>8.6 (8)</td>
</tr>
<tr>
<td>(ClO + h\nu \rightarrow Cl + O)</td>
<td>6.2 (5)</td>
</tr>
<tr>
<td>(CFC_3 + h\nu \rightarrow products)</td>
<td>3.4 (6)</td>
</tr>
<tr>
<td>(CFCl_3 + h\nu \rightarrow products)</td>
<td>3.8 (7)</td>
</tr>
<tr>
<td>(CHCl_3 + h\nu \rightarrow products)</td>
<td>7.7 (8)</td>
</tr>
<tr>
<td>(CCl_4 + h\nu \rightarrow products)</td>
<td>1.6 (5)</td>
</tr>
<tr>
<td>(COF_2 + h\nu \rightarrow products)</td>
<td>9.5 (8)</td>
</tr>
<tr>
<td>(COFCl + h\nu \rightarrow products)</td>
<td>1.3 (6)</td>
</tr>
<tr>
<td>(CO_2 + h\nu \rightarrow CO + O)</td>
<td>1.8 (11)</td>
</tr>
<tr>
<td>(CH_4 + h\nu \rightarrow CH_3 + H)</td>
<td>6.4 (36)</td>
</tr>
<tr>
<td>(CH_2O + h\nu \rightarrow CHO + H)</td>
<td>1.5 (5)</td>
</tr>
<tr>
<td>(CH_2O + h\nu \rightarrow HCO + CO)</td>
<td>2.4 (5)</td>
</tr>
<tr>
<td>(CH_2O + h\nu \rightarrow CH_2O + OH)</td>
<td>1.9 (5)</td>
</tr>
</tbody>
</table>

Table 1b. (Continued)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CH_3Cl + OH \rightarrow products)</td>
<td>(a)</td>
</tr>
<tr>
<td>(ClOO + M \rightarrow Cl + O_2 + M)</td>
<td>(b)</td>
</tr>
<tr>
<td>(CH_3O_2 + NO \rightarrow CH_2O + NO_2)</td>
<td>(b)</td>
</tr>
<tr>
<td>(CH_3O + O_2 \rightarrow CH_2O + HO_2)</td>
<td>(a)</td>
</tr>
<tr>
<td>(CH_3O + H_2O \rightarrow CH_3OH + H_2O)</td>
<td>(b)</td>
</tr>
<tr>
<td>(CHO + O_2 \rightarrow O + HO_2)</td>
<td>(a)</td>
</tr>
<tr>
<td>(CH_2O + HO_2 \rightarrow CH_2OOH + O_2)</td>
<td>(b)</td>
</tr>
<tr>
<td>(ClOOH + OH \rightarrow ClOOH + H_2O)</td>
<td>(b)</td>
</tr>
<tr>
<td>(CH_2 + O_2 + M \rightarrow CH_2O + M)</td>
<td>(c)</td>
</tr>
<tr>
<td>(CH_2 + O_2 \rightarrow CH_2O + OH)</td>
<td>(c)</td>
</tr>
</tbody>
</table>

(a) NASA (1977).
(b) Logan et al. (1978).
(c) Wofsy (1976).
(d) DeMore (1978, private communication). This value is close to \(4.5 \times 10^{-11} \) recommended by NASA (1979).

is a smaller contribution from anthropogenic sources, associated with its use as a soil fumigant. Other bromine compounds such as dibromomethane (\(CH_2Br_2 \)), bromoform (\(CBr_3 \)) and dibromochloromethane (\(CHClBr_2 \)) could also be produced in the marine environment and subsequently released to the atmosphere (Burreson et al., 1975; Theiler et al., 1978; Helz and Hsu 1978), but they have not yet been detected in the atmosphere. Leinster et al. (1978) and Singh (1979, private communication) have detected ethylene dibromide in urban air. Its concentration lies in the range from 0.1 to 20 pptv, and is clearly related to the use of ethylene dibromide as a gasoline additive. Spencer and Rowland (1978) have suggested that additional anthropogenic sources of bromine could come from some bromofluorocarbon compounds (e.g., CF_2Br, CF_3BrCF_2Br) which are used extensively as flame retardants, and will be ultimately released to the atmosphere. The lifetimes and source strengths of important organic bromine species are summarized in Table 2. Compounds with long lifetimes in the troposphere are eventually transported into the stratosphere, where they can be readily decomposed to provide a source of inorganic stratospheric bromine.

In the stratosphere the presence of small concentrations of bromine was first reported by Lazor et al. (1976), using an air filter technique for capturing stratospheric halogens from a balloon platform. Recently, Lazorus et al. (1979) performed a comprehensive set of measurements of stratospheric bromine and chlorine, using analytical techniques that include neutron activation analysis. Neither the neutral nor base-impregnated filters collect organic compounds (e.g., \(CH_2Br, CF_3Br \)). The collection efficiencies for the alkaline-based filters have been calibrated for HCl, ClO, ClONO_2, HBr and Br_O, but not for BrONO_2 or HOBr. However, we do not expect large deviations in collection.
Table 2. Lifetimes and sources of important organic bromine compounds.

<table>
<thead>
<tr>
<th></th>
<th>CH$_3$Br</th>
<th>C$_2$H$_5$Br$_2$</th>
<th>CF$_3$Br</th>
<th>CHBr$_3$</th>
<th>CH$_3$CBr$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globally averaged mixing ratio (pptv)</td>
<td>5–10 (a)</td>
<td>0.1–1 (b)</td>
<td><1 (c)</td>
<td>(d)</td>
<td>(d)</td>
</tr>
<tr>
<td>Major sink</td>
<td>CH$_3$Br + OH(e)</td>
<td>C$_2$H$_5$Br$_2$ + OH(e)</td>
<td>CF$_3$Br + h$_x$(f)</td>
<td>CHBr$_3$ + OH(e)</td>
<td>CH$_3$CBr$_3$ + OH(c)</td>
</tr>
<tr>
<td>Mean lifetime</td>
<td>2.1 years</td>
<td>3 months</td>
<td>70 years</td>
<td>1 year</td>
<td>5.7 years</td>
</tr>
<tr>
<td>Globally averaged source strength (106 gm Br year$^{-1}$)</td>
<td>35–70</td>
<td>12–120</td>
<td><0.21</td>
<td>(d)</td>
<td>(d)</td>
</tr>
<tr>
<td>Global industrial production (108 gm Br year$^{-1}$)</td>
<td>14 (h)</td>
<td>182 (h)</td>
<td>1.1 (h, i)</td>
<td>(d)</td>
<td>(d)</td>
</tr>
</tbody>
</table>

(a) Based on Singh et al. (1977), and Singh (1979, private communication).
(b) Estimated from Leinster et al. (1979). These numbers must be considered as illustrative rather than representative of true mean values.
(c) Singh (1979, private communication).
(d) Information not available.
(e) We assume a mean tropospheric OH concentration of 5 x 104 cm$^{-3}$ (Singh, 1977; Chang and Penner, 1978). The rate coefficients are given in Table 1.
(f) Based on dissociation cross-sections measured by Molina and Molina (1979).
(g) A much more difficult quantity to estimate is the release rate to the atmosphere, which probably ranges from 10 to 50% of the production rate for most of the compounds considered here.
(h) Based on 1975 and 1976 data published in Bureau of Mines Yearbook, U.S. Department of Interior. Since the United States accounts for 67% of all bromine produced, we estimate the global production rate by multiplying the U.S. production rate by a factor of 1.5.
(i) Based on U.S. 1976 production of 0.75 x 106 gm Br, see text.

Efficiencies among the major inorganic halogen species. Fig. 1 shows the mixing ratio for total inorganic bromine Br$_x$ (=Br + 2Br$_2$ + BrO + HBr + BrONO$_2$ + HOBr) at 19 km from the equator to 70$^\circ$N. The dots and crosses represent data obtained in April 1976 and July 1977, respectively. The noticeable increase in Br$_x$ both as a function of altitude and latitude suggests that stratospheric bromine is derived from a tropospheric precursor, such as CH$_3$Br or CF$_3$Br. In subsequent computations, we shall assume that all Br$_x$ is derived from a CH$_3$Br source. A vertical profile for Br$_x$, obtained by averaging all of the 1976 and 1977 data, is given in Fig. 2. We have decided to ignore the anomalously high data point at 37 km. Indeed, for the last two altitudes, 32 and 37 km, a different air injection technique, used to collect the samples, might have led to spurious results. Alternatively,
the collection efficiencies of the filters may have been influenced by the exceedingly reactive chemical environment in the middle and upper stratosphere. However, the anomalously high bromine values are reminiscent of Anderson et al.’s (1977) high chlorine values. These measurements may reflect our imperfect understanding of the sources of stratospheric halogens and the species partitioning amongst them.

The major bromine species in the stratosphere and important paths for cycling between species are schematically summarized in Fig. 3. Fig. 4 presents height profiles computed for BrO, BrONO₂, HBr, HOBr and Br in the present stratosphere with 20 pptv total bromine (Brₓ), as prescribed by the profile shown in Fig. 2. The computations were carried out with a diurnally averaged one-dimensional photochemical model. Our model is based on a set of about 100 essential reactions recommended by NASA (1977), whose rate coefficients we adopt, except as otherwise stated in Tables 1a and 1b. We adopt the U.S. Standard Atmosphere model for 30°N, spring–fall season. Diurnally averaged photodissociation rates were obtained by integration over a 24 h cycle. Corrections to mean dissociation rates due to Rayleigh scattering and ground albedo for species that dissociate at wavelengths >200 nm are approximately made by modifying these quantities by factors taken from NASA (1977) and Wofsy (1978). The equations of continuity are solved from 0 to 80 km for all major Oₓ, HOₓ, NOₓ, Clₓ and Brₓ species, and their precursors, allowing transport by eddy diffusion for long-lived species. We use Huntten’s (1975) eddy diffusivity profile, with modifications recommended by NASA (1977). Altitude profiles of the major stratospheric free radicals computed by the photochemical model are given in Fig. 5. Unless otherwise stated, the number densities in Figs. 4 and 5 will be taken to be representative of the present atmosphere, containing 2.3 ppbv Clₓ, 19 ppbv NOₓ, 6 ppmw H₂O and 20 pptv Brₓ at 40 km. For these calculations, we
lies an important difference between the chemistry of bromine and chlorine. According to current models (see, e.g., Logan et al. 1978), the relatively inert forms of chlorine, HCl or ClONO₂, dominate over ClO throughout most of the stratosphere.

The presence of bromine at today’s level is important in controlling the abundance of O₃ in the present atmosphere (with 2.3 ppbv of Cl). Fig. 6 shows a comparison of O₃ profiles computed with 0 and 20 pptv bromine. The difference in O₃ concentrations reaches 6% in the lower stratosphere, but effectively vanishes above 30 km. The column integrated ozone (from 0 to 80 km) for the two profiles in Fig. 6 differs by 2.4%. The result is somewhat surprising, that such a small amount of bromine can be so effective. Fig. 7 compares the rates of the bromine-related destruction of odd oxygen with other reactions, where “all others” is taken to be equal to 2k(O₃ + O) + 2k₁₆(HO₂ + O₃) + 2k₁₇(NO₂ + O) + 2k₁₆(ClO + O) + 3½k₁₀(ClONO₂) + k₂₁(HO₂ + ClO). The rate-determining reactions for cycles (I)-(V) are the reactions BrO + O (8), BrO + BrO (9), BrO + ClO (10a), BrO + NO₂ + M (11) and BrO + HO₂ (12), respectively. It is clear from Fig. 7 that the impact of bromine on ozone is mostly through cycle (III). Cycle (I) becomes active only in the upper stratosphere, where it competes rather unfavorably with “all others”. On the other hand, cycle (III) peaks in the lower stratosphere, where it can act as a major additional sink for odd oxygen. Cycles (II), (IV) and (V) are insignificant compared with cycle (III) at current Brₓ and NOₓ levels. We now understand why the action of bromine on ozone is almost totally controlled by reaction (10a), and that factors of 3 uncertainty in

![Diagram](image1)

Fig. 4. Altitude profiles for major bromine species in the stratosphere, calculated using the reactions and rate coefficients of Table 1. Total Brₓ at 40 km equals 20 pptv.

![Diagram](image2)

Fig. 5. Altitude profiles for important species in the stratosphere. The standard model contains 2.3 ppbv Clₓ, 19 ppbv NOₓ, 6 ppmv H₂O and 20 pptv Brₓ at 40 km.
when coupled with chlorine, can be an efficient catalyst for destroying ozone. This poses an obvious cause for concern over possible increases in atmospheric bromine as a result of future growth in the bromine industry. The importance of reaction (10a) in the lower stratosphere suggests that previous ozone depletion assessments (NAS, 1976; NASA, 1977) due to steady-state chlorofluoromethane release have been underestimated by not including the effects of bromine. We shall explicitly investigate two problems: 1) the depletion of ozone by bromine as the bromine concentration increases, while keeping the chlorine concentration fixed at its present level (2.3 ppbv); and 2) the depletion of ozone by chlorine due to steady-state chlorofluoromethane release at 1973 rates, while keeping the bromine concentration fixed at its present level (20 pptv).

In attacking the first problem, we must first estimate the source strength of bromine compounds in the present atmosphere. Table 2 lists a number of stable bromine compounds that can be derived from natural or anthropogenic sources, the global production rates required to maintain the steady-state abundances of the observed species, and the current world production rates for compounds that are widely used in industry. According to our estimates, the natural source of CH$_3$Br should be around 35–70 \times 109 gm Br year$^{-1}$. The global industrial production rate of CH$_3$Br in recent years has been about 14 \times 109 gm Br year$^{-1}$, which could account for 20–40% of the total atmospheric budget of CH$_3$Br, if all of it has been released to the atmosphere. However, there are increasingly larger demands for the agricultural use of methyl bromide,
and its production has been rising since 1962 at the rate of 7% a year (Klingman, 1972–75; Foster, 1975–78). If this trend were to continue to the end of the century, the industrial source could exceed the natural source, and the bromine concentration in the atmosphere would greatly increase. Atmospheric bromine can also increase for another reason. The major sink for CH₂Br and C₂H₂Br₂ in the troposphere is by reaction with OH. Wofsy (1976), Sze (1977) and Penner et al. (1977) have suggested that mean OH concentrations in the troposphere could decrease due to an increase in atmospheric CO. This could result in a longer lifetime for CH₂Br and C₂H₂Br₂, and hence a higher concentration of these compounds, even if the sources remain constant.

For similar reasons, the concentrations of chlorine containing compounds (e.g., CH₂Cl, CHCl₂, CH₂CCl₂) could also increase. There is at least one more potential future source of stratospheric bromine as pointed out by Spencer and Rowland (1978). The 1976 U.S. production of CF₂Br was 0.75 × 10⁶ gm Br.² The upper limit for the rate coefficient for reaction with OH, reported by Lebras and Combourieu (1978), implies a minimum tropospheric lifetime of 60 years. However, because the reaction is highly endothermic, it is more likely that CF₂Br behaves like CFC₁₃ and CF₂Cl₂ toward reaction with OH, and photolysis in the stratosphere is the major sink. We estimate a photolytic lifetime of 70 years for CF₂Br based on the absorption cross-section data of Molina and Molina (1979). In this case, a constant industrial production rate as small as 1 × 10⁶ gm Br year⁻¹ would result in a steady-state concentration of 5 pptv CF₂Br in the lower atmosphere (assuming complete release to the atmosphere). Fig. 8 summarizes the results of the model calculations of ozone depletion as a function of bromine concentration in the atmosphere. In these calculations we take as “standard” a model atmosphere with 2.3 ppbv Cl₂, but no bromine. In the perturbation calculations, we assume that the vertical profile of Br₂ is the same as that due to a CH₂Br source (see Fig. 2). The procedure should yield an exact answer if all stratospheric inorganic bromine is derived from CH₂Br, but must be considered as an approximation if other sources such as CF₂Br and CHBr₂ become important. ∆O₃ in the figure refers to the difference in column-integrated ozone abundance (from the ground to 80 km), and is nearly proportional to Br₂, at least to concentrations ~80 pptv.

Fig. 9 shows the results of model calculations of O₃ depletion due to steady-state chlorofluoromethane release due to 1973 rates and without including an amount of bromine equal to that in the present atmosphere. Curve B₁ is obtained by assuming that the present stratosphere contains 2.3 ppbv Cl₂, and that the perturbed atmosphere contains 8.2 ppbv Cl₂, reflecting a rise in chlorine concentration due to the release of chlorofluoromethanes. The concentrations of CFC₁₃ and CF₂Cl₂ used to model the present and perturbed atmosphere are 0.1, 0.2, and 0.8, 2.3 ppbv, respectively. Following NAS (1976), we assume that yield of Cl atoms from CFC₁₃ and CF₂Cl₂ photolysis are 2.5 and 2.0, respectively. Curve B₂ is obtained in the same way as curve B₁, with the additional assumption of the presence of 20 pptv bromine (as given by the profile in Fig. 2) in both the present and the perturbed atmosphere. To isolate the effect of cycles (V) and (VII), we also show curves B₁* and B₂*, which are obtained in the same manner as that for B₁ and B₂, but with the additional assumption that photolysis of XONO₂ (X = Br, Cl) proceeds by the path XONO₂ → XO + NO₂ (or O + XONO) rather than the path XONO₂ → X + NO₃. The effect on the vertically integrated ozone column abundance is summarized in Table 3. The difference between the present and previous assessments of the chlorofluoromethane impact on stratospheric ozone is about 11%. The difference would be greater (~17%) if cycles (IV) and (VII) were suppressed as in B₁* and B₂*. Our model predicts 0.2 ppbv ClONO₂ at 20 km, a value that should be compared with Murcray et al.’s (1978) upper limit of 0.3 ppbv (at 5% absorp-

² Based on data released to the EPA in 1977 by F. A. Bower of DuPont de Nemours & Co., Wilmington, DE.
Fig. 9. Altitude profiles of ozone reduction due to steady-state chlorofluorocarbons release at 1973 rates. B_3 is based on our standard model with no bromine; B_3^* and B_3^{**} are the same as B_1 and B_2 except that photolysis for XONO$_2$ proceeds by the path XONO$_2$ → XO + NO$_2$ or O + XONO (X = Br, Cl). Details are referred to in Table 3.

As discussed earlier, the additional ozone depletion by bromine is primarily through the effect of cycle (III). The result for column-integration ozone depletion can be approximately expressed as

\[
\Delta O_3 = \left(\frac{1}{180} \frac{\text{Br}_x}{\text{Cl}_x} \right)^{1/3}
\]

where $\text{Br}_x h = 20$ pptv, $\text{Cl}_x h = 2.3$ ppbv, $\text{Br}_x \leq 100$ pptv and 2 ppbv \(\leq \text{Cl}_x \leq 10\) ppbv. The exponent 1/3 in Cl acts as a damping factor and is due to a "self-healing" effect caused by the destruction of O$_3$ at high altitudes. More photons are then allowed to penetrate deeper into the atmosphere where they can photolyze O$_2$. With bromine, however, most of the O$_3$ perturbation takes place in the lower stratosphere below the level of maximum concentration for O$_3$, and the corresponding radiative feedback is absent. Our results for ΔO_3 fall between curves A and B, in Fig. 2 of Wofsy et al. (1975b). It is not meaningful to seek a more detailed comparison between Wofsy et al.'s calculations and ours since the major catalytic cycles and the number densities of important chemical species in the two models are different. Some photochemical models (see, e.g., Derwent and Eggleton, 1978) predict lower concentrations of ClO in the lower stratosphere, for reasons to be discussed in the next paragraph, and the bromine effect is accordingly smaller. Our calculations are based on diurnally averaged values for all stratospheric species. A fully time-dependent calculation will (i) increase the daytime ClO concentration due to J_{10}^*; (ii) increase the daytime BrO concentration due to J_1; and (iii) decrease the daytime BrO concentration due to J_2 and NO. At low values for $J_{10}^*(\leq 3 \times 10^{-3}$ s$^{-1}$), (ii) is much larger than (iii), and our calculations have underestimated the effect of bromine. A comparison between time-dependent and diurnally averaged calculations has been performed by Sze (1979, private communication) using a similar photochemical model with $J_x = 1 \times 10^{-2}$ s$^{-1}$. Sze's results are close to ours. However, his time-dependent calculations predict a 30% larger ΔO_3 than is obtained with the diurnally averaged model.

A number of uncertainties in the current modeling effort of stratospheric bromine can be readily identified. The major bromine-related catalytic cycle is cycle (III), whose effect on O$_3$ is, to first order, given by

\[
-\delta O_3 \propto 2k_{10a}\text{[ClO][BrO]}
\]

In the lower stratosphere, we can derive approximate expressions for ClO and BrO:

Table 3. Column-integrated (from 0 to 80 km) ozone abundance calculated by our photochemical model for various concentrations of Cl$_x$ and Br$_x$ in steady state. The units for ozone, Cl$_x$ and Br$_x$ abundances are cm-atm (1 cm-atm = 2.6 \(\times 10^{19}\) molecules cm$^{-2}$), ppbv and pptv, respectively. For cases marked by an asterisk we assume that photolysis of XONO$_2$ proceeds by the path XONO$_2$ → XO + NO$_2$ (or O + XONO), where X = Br or Cl. For all other cases, photolysis of XONO$_2$ proceeds by the path given in Table 1. Runs C$_1$, C$_2$, D$_1$ and D$_2$ show the sensitivity of the results for ΔO_3 to the uncertainties in the rate coefficients for reactions 2(Br + HO$_2$) and J_x(BrO + hv). For runs C$_1$ and C$_2$, k_5 was set equal to 4×10^{-11} and 5×10^{-12} cm3 s$^{-1}$, respectively, in runs D$_1$ and D$_2$, J_x was set equal to 3×10^{-2} and 3×10^{-3} s$^{-1}$.

<table>
<thead>
<tr>
<th>Cl$_x$(ppbv)</th>
<th>2.3</th>
<th>8.2</th>
<th>$\Delta O_3/O_3 = \frac{B}{A} - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br$_x$(pptv)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>A$_1$ 0.327</td>
<td>B$_1$ 0.268</td>
<td>-18.0%</td>
</tr>
<tr>
<td>10</td>
<td>A$_2$ 0.323</td>
<td>B$_2$ 0.262</td>
<td>-18.9%</td>
</tr>
<tr>
<td>20</td>
<td>A$_3$ 0.319</td>
<td>B$_3$ 0.256</td>
<td>-19.7%</td>
</tr>
<tr>
<td>30</td>
<td>A$_4$ 0.315</td>
<td>B$_4$ 0.251</td>
<td>-20.6%</td>
</tr>
<tr>
<td>80</td>
<td>A$_5$ 0.294</td>
<td>B$_5$ —</td>
<td>—</td>
</tr>
<tr>
<td>0</td>
<td>A$_1^*$ 0.333</td>
<td>B$_1^*$ 0.283</td>
<td>-15.0%</td>
</tr>
<tr>
<td>20</td>
<td>A$_3^*$ 0.326</td>
<td>B$_3^*$ 0.269</td>
<td>-17.5%</td>
</tr>
<tr>
<td>20</td>
<td>C$_1$ 0.321</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>C$_2$ 0.318</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>D$_1$ 0.321</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>D$_2$ 0.319</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
\[
\frac{[\text{Cl}]}{[\text{Cl}_2]} \approx \left\{ 1 + \frac{k_{26}k_{21}[\text{CH}_4][\text{NO}]}{k_{26}k_{15}[\text{OH}][\text{O}_3]} \right\}^{-1} + \frac{k_{19}[\text{M}][\text{NO}_2]}{J_{10}},
\]
\[
\frac{[\text{Br}]}{[\text{Br}_x]} \approx \left\{ 1 + \frac{k_{2}[\text{HO}_2] (J_2 + k_{1}[\text{NO}])}{k_1k_3[\text{OH}][\text{O}_3]} \right\}^{-1} + \frac{k_{11}[\text{M}][\text{NO}_2]}{J_1}.
\]

The quantities most critical for a better understanding of stratospheric bromine are summarized and critiqued in Table 4. For simplicity, we choose to evaluate all the relevant quantities at 20 km. We may note that ClO in the lower stratosphere is a minor chlorine species, whose concentration is controlled by NO, NO₂, k₂, and CH₄. A comparison between predicted and measured ClO concentrations below 25 km shows considerable disagreement (Anderson et al., 1977), with the measurements suggesting lower ClO concentrations, especially in winter. If the missing ClO has been converted into HCl, this would result in a net decrease in the catalytic destruction of O₃ in the lower stratosphere. However, if the missing ClO has been converted into ClONO₂ and if the photolysis products are Cl + NO₂ (Murcray et al.'s, 1978) upper limit measurement of ClONO₂ is for March, then cycle (VII) would operate in favor of cycle (III), and lead to a net destruction of O₃. The major uncertainty in the bromine chemistry is the absolute concentration of Br₂. The way in which the uncertainties in Table 4 affect δO₃ is, in most cases, explicitly given by the approximate expressions we derived earlier. We do, however, include in Table 3 the results of four runs (C₁, C₂, D₁, D₂) on the sensitivity of δO₃ to a range of values for k₂ and J₂. The results suggest that δO₃ does not vary by more than 50% over the considerable uncertainty range for k₂ and J₂, except in the unlikely event that k₂, J₂ and k₅ all happen to take on extreme values which would lower the [BrO] to [Br₂] ratio. We have also examined the sensitivity of the results to the choice of eddy diffusivity profile. A factor of 1.5 increase or decrease in values of eddy diffusivities leads to a 20% decrease and a 20% increase in δO₃, respectively. In addition to the uncertainties associated with the photochemistry in our model, there is the question of whether the one-dimensional model approach is really valid for modeling the lower stratosphere.

It is well known that dynamical processes play a major role in determining the distributions of ozone and other trace gases in the lower stratosphere. The one-dimensional model considers vertical transport only, whereas the motion field is more nearly horizontal. Quasi-horizontal motions transport trace gases poleward, where they will meet different conditions of temperature and the availability of solar ultraviolet radiation. These variations will play an important role in determining the species partitioning between the total inorganic chlorine and bromine reservoirs. The relative importance of either HCl or ClONO₂ (as chlorine reservoirs) on the destruction of ozone at high latitudes has already been mentioned. A detailed treatment of stratospheric-tropospheric exchange processes is also required, in order to accurately determine the lifetime, in the lower stratosphere, of substances which may deplete ozone. Indeed, the study of compositional changes in the lower stratosphere on ozone may require the use of a multi-dimensional dynamical model.

4. Conclusions

In the lower stratosphere (16–26 km) ozone can be efficiently removed by a mixed bromine-chlorine catalytic cycle [cycle (III)], with additional contributions from cycle (IV) and cycle (VII). All three cycles involve a synergistic coupling between radical species from different families. We have investigated the effect of bromine in the present atmosphere, and in an atmosphere perturbed by large concentrations of halogens derived from anthropogenic sources. In both cases, the results (summarized in Table 3) suggest that bromine is important for controlling stratospheric ozone at a few percent level, and should be included in photochemical models. The major uncertainties in the modeling of bromine chemistry are in the concentrations of ClO and Br₂ in the lower stratosphere and the rate coefficients for the key reactions k_{10a}, k₅ and J₂ (see Table 4). These uncertainties can be removed by...
suitable experimental work in the future. This work raises the possibility of large ozone depletions (20–30%) in the lower stratosphere, associated with the release of chlorofluoromethanes.

Acknowledgments. We thank A. L. Lazrus and W. A. Sedlacek for permission to use their data prior to publication. We benefited from discussions with W. B. DeMore, H. B. Singh, J. S. Chang, S. C. Liu, N. D. Sze, J. A. Logan, S. C. Wofsy, M. T. Molina and F. S. Rowland. We appreciate the constructive criticisms given by the referees, P. J. Crutzen and R. J. Cicerone in their reviews of this paper.

This research was supported by NASA Grant NSG 2229 to the California Institute of Technology and NASA Grant NSG 5163 Scope M to Columbia University; this also represents one phase of NASA sponsored research carried out at the Jet Propulsion Laboratory under Contract NAS 7-100.

REFERENCES

NAS, 1979: Chemical kinetic and photochemical data for use in

Watson, R. T., 1975: Chlorine, the chlorine oxides, and other halogen species. *CIAP Monogr.*, No. 1, Publ. DOT-TST-75-51, Dept. of Transportation, Climatic Impact Assessment Program (see Section 5.7.5).

