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A CONTINUOUS MOVEMENT VERSION OF THE BANACH–TARSKI

PARADOX: A SOLUTION TO DE GROOT’S PROBLEM

TREVOR M. WILSON

Abstract. In 1924 Banach and Tarski demonstrated the existence of a paradoxical decomposition of

the 3-ball B , i.e., a piecewise isometry from B onto two copies of B . This article answers a question

of de Groot from 1958 by showing that there is a paradoxical decomposition of B in which the pieces

move continuously while remaining disjoint to yield two copies of B . More generally, we show that if

n ≥ 2, any two bounded sets in Rn that are equidecomposable with proper isometries are continuously

equidecomposable in this sense.

§1. Equidecomposability and the Banach–Tarski paradox. Fix a group G of
isometries of Rn and define the following relation—which is easily seen to be an
equivalence relation—on subsets of Rn.

Definition 1.1. A,B ⊆ Rn are G-equidecomposable (written A ∼G B) if there
are finite partitions {Ai} and {Bi} ofA andB respectively, and elements gi ∈ G , so
that for all i we have giAi = Bi . If the group G is the full isometry group of R

n, or
if it is clear from context which group is intended, we will simply say that A and B
are equidecomposable and write A ∼ B .

Occasionally G-equidecomposability is called piecewise G-congruence. It is a
much weaker condition than congruence. In particular, we have the following
classical results.

Theorem 1.2 (Banach–Tarski paradox). There is a partition of the 3-ball B into
two sets, each of which is equidecomposable with B .

Theorem 1.3 (Banach–Tarski paradox, strong form). If n ≥ 3, then any two
bounded subsets of Rn with nonempty interior are equidecomposable.

Formodern proofs of these theorems, and other facts about equidecomposability,
see, e.g., [4], [6].

§2. Continuous equidecomposability. One possible strengthening of equidecom-
posability is the following.

Definition 2.1. A,B ⊆ Rn are continuously G-equidecomposable (written
A ≈G B) if there are finite partitions {Ai} and {Bi} of A and B respectively,
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and a family of G-paths {ã i}, so that for all i we have ã i0 = e, ã
i
1Ai = Bi , and

ã itAi ∩ ã
j
t Aj = ∅ for all t ∈ [0, 1] and all j 6= i . Again, if G is the full isometry

group, or is clear from context, we will omit it from the notation.

In contrast, the standardnotion of equidecomposability inDefinition 1.1—which
we will call “discrete equidecomposability”—is equivalent to only requiring the ã i

to be defined at t = 1. Intuitively, in a continuous decomposition the motion can
be realized physically by moving the pieces in time rather than transporting them
instantaneously to their destinations.
Before proceeding we should justify our notation with the following observation.

Proposition 2.2. ≈ is an equivalence relation.

Proof. The trivial partition and trivial path witness A ≈ A. If {Ai}, {Bi}, and
{ã i} witness A ≈ B , then the same partitions and the paths {ã i1−t(ã

i
1)

−1} witness

B ≈ A. If additionally {B ′
j}, {Cj} and {ä

j} witness B ≈ C , then the partitions

{Ai ∩ (ã i1)
−1B ′

j}i,j and {Cj ∩ ä
j
1Bi}i,j and the paths {ã

i .(äjã i1)}i,j witness A ≈ C ,
where “.” denotes concatenation of paths. a

Continuously equidecomposable sets are discretely equidecomposable, and we
will shortly see that under some broad conditions the converse is true.

§3. A type semigroup for bounded sets. To avoid the explicit construction of
complicated decompositions, wewill develop a notion of addition of sets that allows
us to combine decompositions of smaller sets into a decomposition of a larger set.
We want this addition to be well-defined on continuous equidecomposability classes
(≈-classes.)
We will restrict our attention to the ideal B of bounded subsets of Rn, which is
closed under equidecomposability, and additionally require

n ≥ 2, R2 ⊆ G,(1)

where by the latter condition we mean that G contains all translations in the first
two dimensions—an example to keep in mind is the group of proper isometries
of Rn. These conditions have a dual purpose: to allow us to define addition of
≈-classes, and to show that≈-classes are the same as∼-classes, i.e., that continuous
equidecomposability is no stronger than discrete equidecomposability for bounded
sets. We will also assume the Axiom of Choice, which, along with boundedness, is
required for the Banach–Tarski paradox anyway.
In the semigroup of discrete equidecomposability types (see, e.g., [4], [6],) the
sum of two bounded sets may be defined as the union of disjoint translates. Since
it is not a priori apparent that this operation is well-defined on continuous equide-
composability classes, we will further restrict the choice of translates. Writing [A]
for {A′ ∈ B : A′ ≈ A}, define addition by

[A] + [B] = [(A+ u) ∪ (B + v)],(2)

where u, v ∈ R2 ⊆ G are chosen so thatA+ u lies strictly to the left of B + v in the
first coordinate, i.e.,

p1(v − u) > p1(a − b) for all a ∈ A and b ∈ B,(3)

where p1 is the first coordinate projection.
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Proposition 3.1. The operation (2) is well-defined, associative, and commutative.

Proof. The sum [A] + [B] is independent of the choice of u and v: if u ′ and v′

also satisfy (3) then (A+ u) ∪ (B + v) ≈ (A + u ′) ∪ (A+ b′) by translating A+ u
and B + v along line segments. Now we will show that [A] + [B] is independent of
the choices of representatives of [A] and [B]. Suppose A ≈ A′ is witnessed by the
pieces {Ai} and {A′

i} and paths {α
i}, and B ≈ B ′ is witnessed by the pieces {Bi}

and {B ′
i } and paths {â

i}. Since A and B are bounded and the time interval [0, 1] is
compact we may choose u and v so that

p1(v − u) > p1(a − b) for all i, j, t, a ∈ αit (Ai ), b ∈ â
j
t (Bj).

Then the decomposition [A]+[B] = [A′]+[B ′] is witnessed by the pieces {Ai+u}∪
{Bj + v} and {A′

i + u} ∪ {B ′
j + v} and the paths {ôuα

iô−u} ∪ {ôvâjô−v}, where ô
denotes translation in the first coordinate. Therefore the operation is well-defined.
Associativity is trivial. For commutativity, choose r > diam(A ∪ B); then

[A] + [B] = [A ∪ (B + r)] = [A ∪ (B − r)] = [B] + [A]

is witnessed by ã1 = 0 and ã2t = re
iðt − r, where R2 ⊆ G is considered as C . a

§4. Extricability. Next we consider a property of pairs of sets A,B ∈ B that
makes the condition (3) unnecessary, so that in defining [A] + [B] we can safely
choose u, v = 0 in (2).

Definition 4.1. A pair of disjoint sets A,B ∈ B is extricable if [A] + [B] =
[A∪B]. More generally, a finite family of pairwise disjoint setsAi ∈ B is extricable
if

∑

i [Ai ] = [
⋃

i Ai ].

Intuitively, sets are extricable if they can be physically separated from each other
with a finite number of cuts. Note that if {Ai} is extricable and A

′
i ⊆ Ai for all i ,

then the same G-paths extricate {A′
i}. We are interested in sets that are small

enough that their subsets are always extricable:

Definition 4.2. Let the class E ⊆ B consist of bounded sets A such that any
two disjoint subsets of A are extricable, or equivalently (by induction,) such that
any finite, pairwise disjoint family of subsets of A is extricable.

In fact, we will show that E =B , but first we need some lemmas.

Lemma 4.3. E is closed under subsets and under unions of extricable families.

Proof. Closure under subsets is obvious. If the sets Ai ∈ E form an extricable
family, then given finitely many pairwise disjoint Bj ⊆

⋃

i Ai , we have
[

⋃

j

Bj

]

=
∑

i

[

⋃

j

(Ai ∩ Bj)

]

=
∑

i,j

[Ai ∩ Bj ] =
∑

j

[

⋃

i

(Ai ∩ Bj)

]

=
∑

j

[Bj ]

and {Bj} is extricable. a

Lemma 4.4. There is a partition {S1, S2} of R such that the algebraic differences
∆Si = Si − Si are codense in R.

Proof. Define K =
⋃

n∈N
1
3nZ and H = K +

1
2Z. Use the Axiom of Choice

to select coset representatives {rα} for R/H , and define S1 =
⋃

α(rα + K) and

S2 = S1+
1
2 . For all a, b ∈ Si , if a− b ∈ H then a − b ∈ K , so ∆Si is disjoint from

the dense set H \K = K + 1
2 . a
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Theorem 4.5. E = B .

Proof. Let A ∈ B . Using the sets Si ⊆ R, i = 1, 2 from above, define Sij =
Si × Sj ×Rn−2 and let Aij = A ∩ Sij . Choose r > diamA; then {Aij} is extricable
by linearly translating Aij by ir in the second dimension and then by (2i + j)r in
the first, as shown schematically in Figure 1 below. Now by Lemma 4.3 it suffices
to show Aij ∈ E . In fact, for any i and j there is a single path ã in R2 ⊆ G that
can separate any disjoint pair B,C ⊆ Aij , defined as follows. Let {ak} → 0 and
{bk} → 0 be sequences in R \ ∆Si and R \ ∆Sj respectively, and define a sequence
{vk} in R

2 ⊆ G by

v0 = (r, b0), v2k+1 = (ak , bk), v2k+2 = (ak , bk+1).

Then let ã linearly interpolate between vk+1 and vk during the time interval 2
−k−1 ≤

t ≤ 2−k , and define ã(0) = 0 (Fig. 2.) For all t > 0 we have ãt /∈ ∆Si × ∆Sj , so
ãt(Aij ) ∩ Aij = ∅. Therefore ãt(C ) ∩ B = ∅ for all t, and moreover ã1(C ) =
C + (r, b0, 0, . . . , 0) lies strictly to the right of B , so ã extricates {B,C}. a

A

A11 ∪ A12
6

A21 ∪ A22
6

-

A11

-

A12

-

A21

-

A22

Figure 1. {Aij} is extricable.

-

6 -
ã

v0v1

v2v3

Figure 2. The path ã .

Immediately we have the following:

Corollary 4.6. If n ≥ 2, any finite partition of a bounded subset ofRn is extricable
by translations.

§5. Acontinuous paradox. Wehave shown thatunder the conditions (1), bounded
sets may be continuously separated into pieces. If the group G is path-connected,
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as is the group of proper isometries, congruences of these pieces may be realized
continuously. Thus we have the following result.

Theorem 5.1. If n ≥ 2 and G is a path-connected group of isometries of Rn con-
taining all translations in two dimensions, then any twoG-equidecomposable bounded
subsets A and B of Rn are continuouslyG-equidecomposable.

Proof. Suppose that A and B are discretely equidecomposable using the parti-
tions {Ai} and {Bi} and isometries {gi}. Choosing a path from e to gi in G gives
Ai ≈ Bi , so we have [A] =

∑

i [Ai ] =
∑

i [Bi ] = [B]. a

Consequently, we obtain a continuous version of the strong form of the Banach–
Tarski paradox:

Corollary 5.2. If n ≥ 3 then any two bounded subsets of Rn with nonempty
interior are continuously equidecomposable using proper isometries.

Proof. Simply note that the proof of the Banach-Tarski paradox (see, e.g., [4],
[6],) uses only the group of proper isometries, which satisfies the conditions of the
theorem. a

In particular, the 3-ball has a continuous paradoxical decomposition, solving a
question of de Groot posed in [1, p. 25] and again by Wagon [6, pp. 32, 232]. In the
latter, the question appears in a slightly different form:

Question 5.3 (De Groot’s question). Let B , B1, and B2 be pairwise disjoint unit
balls in R3. Can B be partitioned into sets A1, . . . , Am , Am+1, . . . , Am+n such that
for each i = 1, . . . , m + n and t ∈ [0, 1] there is an isometry ó it satisfying:

1. ó i0 is the identity; ó
i
1(Ai ), i = 1, . . . , n partitions B1; ó

i
1(Ai ), i = n + 1, . . . ,

n +m partitions B2.
2. For each i , the isometries ó it depend continuously on t.
3. For each t ∈ [0, 1], the sets ó it (Ai ), i = 1, . . . , m + n are pairwise disjoint.

Corollary 5.4. De Groot’s question has an affirmative answer.

Proof. By Corollary 5.2, there is a continuous decomposition B ≈ B1 ∪ B2
witnessed by pieces Ci and paths ã i for i ≤ n. Set m = n and define Ai =
Ci ∩ (ã i1)

−1B1, An+i = Ci ∩ (ã i1)
−1B2, and ó i = ón+i = ã i for all i ≤ n. a

In a slightly different vein, we may apply the theorem to Laczkovich’s solution [5]
of Tarski’s circle-squaring problem: that a circle (including interior) is equidecom-
posable in R2 with a square of equal area. In fact, Laczkovich’s result uses only
translations, so Theorem 5.1 immediately yields the following.

Corollary 5.5. A circle is continuously equidecomposable by translations with a

square of equal area.

§6. Necessity of conditions for theorem 5.1. In the real line, continuous equide-
composability is much stronger than discrete equidecomposabilty because it pre-
serves order type.

Theorem 6.1. If A,B ⊆ R and A ≈ B by isometries, then A and B are order-
isomorphic.

Proof. If the decomposition is witnessed by {Ai}, {Bi}, and {ã
i}, then each ã it

is in the path-component of the identity and is therefore a translation. For all
t ∈ [0, 1] define the piecewise translation gt =

⋃

i ã
i
t |Ai . We have g1(A) = B , and
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g1 is strictly order-preserving: Fix x, y ∈ A with x < y and suppose x ∈ Ai and
y ∈ Aj . If i = j, then g1(x) = ã i1x < ã

i
1y = g1(y). Otherwise, since ã

i
tAi and ã

j
t Aj

are disjoint for all t, the continuous function gt(x)− gt(y) = ã itx− ã
j
t y is nonzero,

and since it is positive for t = 0 it is positive for t = 1 and g1(x) < g1(y). a

For example, {2−n}n∈N ∪ {0} 6≈ {2−n}n∈N ∪ {2} even though the two sets are
discretely equidecomposable, since only the former has a least element. The next
two examples show the necessity of assuming that G is path-connected, and of
allowing more pieces in the decomposition.

Example 6.2. Let n = 2 and let G be the full isometry group of R2. Choose
an infinite set A ⊆ R2 so that all distances in A are distinct and no three points

are collinear; e.g., consider R2 as C and let A = {e ið2
−n

: n ∈ N}. We claim that
A 6≈ gA if g is an improper isometry. Otherwise, some piece in the decomposition
must contain three points {ai}, which map to hai respectively for some isometry
h in the path-component of the identity. Then by uniqueness of distances we have
hai = gai for all i ≤ 3. However, the images of three non-collinear points uniquely
determine an isometry, so h = g is improper, a contradiction.

Example 6.3. Let S be the unit sphere in Rn and choose x ∈ Rn with |x| > 3.
Then S ∪ {x} and S ∪ {0} are discretly equidecomposable by translation using the
two pieces S and {x}. Conversely, since d (S, x) > diam(S ∪ {0}), no piece of a
decomposition can intersect both S and {x}, so if there are only two pieces, they
must be S and {x} themselves. However, if there is a continuous decomposition,
then without loss of generality it fixes S and connects 0 and x with a path in Rn \S,
which is impossible.

§7. Remarks.

Remark 7.1. A re-examination of Section 4 shows that Corollary 4.6 may be
strengthened to place a bound on the number of pieces. In extricating an n-
partition of a bounded set A, the only subdivision occurs when we take a common
refinement with the partition {Aij = A ∩ Sij}i,j=1,2 in Theorem 4.5, so each of the
original pieces is divided in four, and the partition may be extricated in 4n pieces.
Likewise, Theorem 5.1 can be strengthened to say that if the bounded sets A and B
are equidecomposable in n pieces, then they are continuously equidecomposable
in 16n pieces: each piece is divided in four to be extricated from A, and its image
under the decomposition is divided in four to be extricated from B . In fact, we
can do slightly better: without loss of generality one piece of the decomposition
remains fixed, so these two subdivisions coincide and it is divided in four only once.
Therefore A and B are continuously equidecomposable in 42(n− 1)+4 = 16n− 12
pieces.
In the special case of paradoxical decompositions of a ball we can do better still.
There is a discrete decomposition of a ball B with two copies B1 ∪ B2 using five
pieces, described in [6, p. 41]. By translating and rotatingB1 andB2, wemay assume
that each of them contains a piece whose total movement is a translation by some
element of the subgroup K ′ = K × K × Rn−2 of Rn, with K from Lemma 4.4;
then since the sets Sij are invariant under K ′, these two pieces are only subject to
one subdivision each. Moreover, another one of the pieces is a single point, which
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cannot be subdivided at all. Thus a continuous decompositionmay be accomplished
in 42 · 2 + 4 · 2 + 1 = 41 pieces.

Remark 7.2. Dougherty and Foreman [2] give a version of the Banach–Tarski
paradox using sets with the Baire property. However, the sets Si in Lemma 4.4
cannot have the Baire property, since otherwise one of them would be nonmeager
and by Pettis’s Theorem (see, e.g., [3]) its algebraic difference ∆Si would contain
a neighborhood of zero. Therefore our procedure for generating a continuous
decomposition from a discrete one does not preserve the Baire property in the
pieces, and the question of the existence of a continuous paradox using pieces with
the Baire property is left open.
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