CaltechAUTHORS
  A Caltech Library Service

Inhibition of function in Xenopus oocytes of the inwardly rectifying G-protein-activated atrial K channel (GIRK1) by overexpression of a membrane-attached form of the C-terminal tail

Dascal, Nathan and Doupnik, Craig A. and Ivanina, Tatiana and Bausch, Suzanne and Wang, Weizhen and Lin, Catherine and Garvey, Justine and Chavkin, Charles and Lester, Henry A. and Davidson, Norman (1995) Inhibition of function in Xenopus oocytes of the inwardly rectifying G-protein-activated atrial K channel (GIRK1) by overexpression of a membrane-attached form of the C-terminal tail. Proceedings of the National Academy of Sciences of the United States of America, 92 (15). pp. 6758-6762. ISSN 0027-8424. http://resolver.caltech.edu/CaltechAUTHORS:DASpnas95

[img]
Preview
PDF - Published Version
See Usage Policy.

1917Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:DASpnas95

Abstract

Coexpression in Xenopus oocytes of the inwardly rectifying guanine nucleotide binding (G)-protein-gated K channel GIRK1 with a myristoylated modification of the (putative) cytosolic C-terminal tail [GIRK1 aa 183-501 fused in-frame to aa 1-15 of p60src and denoted src+ (183-501)] leads to a high degree of inhibition of the inward G-protein-gated K+ current. The nonmyristoylated segment, src- (183-501), is not active. Although some interference with assembly is not precluded, the evidence indicates that the main mechanism of inhibition is interference with functional activation of the channel by G proteins. In part, the tail functions as a blocking particle similar to a "Shaker ball"; it may also function by competing for the available supply of free G beta gamma liberated by hormone activation of a seven-helix receptor. The non-G-protein-gated weak inward rectifier ROMK1 is less effectively inhibited, and a Shaker K channel was not inhibited. Immunological assays show the presence of a high concentration of src+ (183-501) in the plasma membrane and the absence of any membrane forms for the nonmyristoylated segment.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1073/pnas.92.15.6758DOIUNSPECIFIED
http://www.pnas.org/content/92/15/6758PublisherUNSPECIFIED
Additional Information:© 1995 by the National Academy of Sciences. Contributed by Norman Davidson, April 7, 1995. We thank B. Henkle for oocyte preparations and Dr. T.A. Patterson for assistance in the affinity purification of the anti-GIRK1 antibodies. C.A.D. has been supported by an American Heart Association fellowship. S.B. is supported by a National Research Service Award training grant. Support by research grants from the National Institute of Mental Health, the National Institute of General Medical Sciences, the National Institute on Drug Abuse, the U.S.-Israel Binational Science Foundation, and the International Human Frontier Scientific Programme is also gratefully acknowledged. The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.
Funders:
Funding AgencyGrant Number
American Heart AssociationUNSPECIFIED
National Research ServiceUNSPECIFIED
National Institute of Mental HealthUNSPECIFIED
National Institute of General Medical SciencesUNSPECIFIED
National Institute on Drug AbuseUNSPECIFIED
U.S.-Israel Binational Science FoundationUNSPECIFIED
International Human Frontier Scientific ProgrammeUNSPECIFIED
Subject Keywords:POTASSIUM CHANNEL; EXPRESSION; CLONING; PEPTIDE
Record Number:CaltechAUTHORS:DASpnas95
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:DASpnas95
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:12188
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:13 Nov 2008 04:29
Last Modified:14 Nov 2014 19:20

Repository Staff Only: item control page