Manipulation and the Causal Markov
Condition

Daniel Hausman and James Woodwardt

This paper explores the relationship between a manipulability conception of causation
and the causal Markov condition (CM). We argue that violations of CM also violate
widely shared expectations—implicit in the manipulability conception—having to do
with the absence of spontaneous correlations. They also violate expectations concerning
the connection between independence or dependence relationships in the presence and
absence of interventions.

1. Introduction. The causal Markov condition (CM) relates probability
distributions to the causal structures that generate them. Given the direct
causal relationships among the variables in some set V and an associated
probability distribution P over V, CM says that conditional on its parents
(its direct causes in V) every variable is independent of every other var-
iable, except its effects. Writing pa, for the parents of X, and “X, L
X,/pa” for “X; and X, are probabilistically independent conditional on
pa;”:

CM. For all X, X, i # jin V, if X, does not cause X, then X, L
X.Ipa,.

CM is a generalization of familiar screening off conditions. CM implies
that the full set of common causes screens off joint effects from one
another, that direct causes screen off effects from distal causes, and that
variables that are not related as cause and effect or as effects of a common
cause are probabilistically independent.

CM may fail if the variable set V is not acyclic or omits common causes,
if variables are not distinct in the right way, if variables are too coarse
grained, if the probability distribution P is a mixture of distinct distri-
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butions resulting from different causal structures, or if the population in
which P holds is selected by conditioning on a common effect of variables
in V, or is biased or unrepresentative in some other way. In what follows,
we assume that none of these “defeating” conditions obtain.

Given the absence of these defeating conditions, what reasons are there
to suppose that CM holds? When causal relationships are pseudo-inde-
terministic and the “error terms” are probabilistically independent of one
another and of the other causal variables in the equations in which they
appear, CM must hold. (Pseudo-indeterminism holds when the underlying
causal relationships are deterministic, but for each variable X, in V, some
direct causes of X, the combined effect of which is represented by an
additive error term U/, are omitted from V.) However, this observation
says nothing about whether CM holds in indeterministic contexts, and at
least one prominent critic, Nancy Cartwright, maintains that CM is fre-
quently violated under indeterminism. Moreover, the rationale for the
independence assumptions described above is that variables are proba-
bilistically independent if they are not related as cause and effect or as
effects of a common cause, which is itself an implication of CM. Those
who question CM are likely to question these assumptions. Finally, one
would like some insight into whether any widely recognized features of
causation make CM especially natural.

In this essay we argue for an intimate connection between a manipu-
lability conception of causation and CM. We focus on this connection
because, first, manipulation is crucial to our conception of causation and
to the contrast between causation and mere correlation. When X and Y
are correlated and X does not cause Y, one expects that when one ma-
nipulates X, the correlation will break down. By contrast, if X causes Y,
one expects that for some range of values of X, if one is able to manipulate
those values, one can thereby control the value of Y. Second, both graph-
ical and equational representations of causal relationships assumed as
background to CM are often given a interventionist interpretation. For
example, theorists take the presence of an arrow directed from X to YV
(indicating that X is a direct cause of Y) to mean that if X were to be
appropriately manipulated while all other variables in the graph were held
fixed, the value of Y would change (Glymour 1997 and Woodward 2003).
Are there any reasons to expect CM to hold when “cause” is given such
a manipulability interpretation?

2. Interventions, Modularity, and Causation. Some philosophers have at-
tempted to use the connection between causation and manipulation to
provide a reductive analysis of causation. We think this is a hopeless
undertaking, because causal notions are required to explain what an in-
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tervention is. Nonetheless, the connection between causation and manip-
ulation can be genuinely illuminating.

The connection is not simple. It is not true that X causes Y if and only
if every intervention on X results in some change in Y. Consider threshold
effects: even though X causes Y, an intervention that changes the value
of X from x to x* may be “too small” to bring about a change in the
value of Y. In addition, X may have causal effects on Y along different
paths, which exactly cancel. In such failures of “faithfulness” (Spirtes,
Glymour, and Scheines 2000), no intervention on X will change the value
of Y, even though X is, in the terminology of Hitchcock 2001 and Wood-
ward 2003, a contributing cause of Y. Moreover, some interventions on
X may be outside the “domain of invariance” of the relationship between
X and Y (see below). Finally, if X is an indeterministic cause of Y, then
interventions on X may fail to change the value of Y, although, unless
one faces one of the other difficulties just described, interventions on X
should change Y’s probability distribution.

There is nevertheless a plausible sufficient condition which for reasons
that emerge shortly, we call MOD#*: If some intervention with respect to
X, changes the probability distribution of some other variable X, then X;
causes X, MOD* is obviously not an analysis of causation. MOD* states
only a sufficient condition, and it relies on the notion of an intervention
which will be given an explicitly causal characterization.

Before turning to this characterization, we need to make our framework
more explicit and take account of some complications. When causation
is deterministic, a system of causal relationships may be represented by
a set of equations of the form: X, = f(pa,, U') for each variable X; in the
variable set V; pa, are the parents of X, and U/ represents the action of
causes of X, omitted from V. Within this framework, if the value of X is
“set” by an intervention and the equation system correctly predicts
whether (and how) the values of all other variables change, then the
equation system is “causally correct”: it correctly describes the quanti-
tative causal relationship between X, and all the other variables. When
an equation system is causally correct, one may derive the outcome of
an intervention with respect to X, by replacing the equation in which X;
is a dependent variable with a new equation specifying the value to which
X, was set and leaving all the other equations alone. Obviously, this pro-
cedure will work reliably only if interventions that disrupt the relations
between X; and its parents do not alter other causal relationships in the
system and the equations that govern them. In other words, equations
not containing the variable X; as a dependent variable should be invari-
ant—Ileft unchanged—under interventions that set the value of X,

In earlier work (1999), we said that a set of equations meeting this
invariance condition was “modular.” The idea is if a set of equations is
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causally correct, separate equations should represent distinct causal mech-
anisms or “modules,” and if these are distinct it should be possible to
interfere with each separately without disrupting the others. Modularity
fits with a manipulability conception of causation: If an equation in which
X, is the dependent variable changes whenever there is an intervention
with respect to X, then according to a manipulability view of causation
there is a causal relationship between X, and X, and the equation system
fails to specify it correctly.

However, there is a complication: as noted above, causal relations are
not invariant to every intervention. Consider a simple spring whose re-
storing force F for displacement Y is

F=—kY (for 0<Y<y¥. (1)

(1) describes the spring’s behavior if it is not stretched too far. If ¥>
»*, the restoring force no longer increases proportionally to the displace-
ment. (1) is invariant to only some interventions with respect to Y. Suppose
that one replaces (1) with

F=—kY for 0<Y<y*
F=—g(Y) fory*<Y<y**
F=0 for Y>p** (1)

y** is the point when the spring breaks. Even if (1') correctly predicts the
restoring force for springs that have not previously been stretched beyond
y*, stretching the spring beyond y* will distort it in such a way that (1')
will no longer correctly describe the restoring force for extensions less
than y*. Moreover, once Y > y** F = 0 for all subsequent extensions.
One might try to accommodate this fact by writing down a yet more
complicated set of equations (1”) incorporating information about the
previous history of the spring. However, even with such temporal qual-
ifying clauses, (1”) will still not provide correct predictions regarding all
interventions—for example, (1) will break down under manipulations of
the extension under extreme heat. In systems such as the spring, we know
of no causal equations that are invariant under all interventions.
Accordingly, we cannot accept Nancy Cartwright’s proposal (in her
criticism of Hausman and Woodward 1999) that the modularity require-
ment be built into the characterization of an intervention (Cartwright,
2002). She suggests that a manipulation of X, should not count as a bona-
fide intervention on X; unless it leaves undisturbed a/l causal relationships
in the system of interest, except of course the relationship between X, and
its parents. Cartwright is worried by the possibility that a putative inter-
vention on X, (like an extension that breaks the spring) may disrupt the
connection between X, and its effects. If there is no change in an effect
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X, of X; under such a disrupting intervention, one might mistakenly con-
clude that X, does not cause X,

But the proper response is not to build modularity into the definition
of an intervention. Doing so trivializes the connection between invariance
under interventions and causal correctness (since the notion of an inter-
vention builds in reference to the correct set of causal relationships) and
consequently prevents one from using the notion of invariance under
interventions (or the behavior of X; under interventions on X)) to provide
any independent purchase on what it is for an equation linking X; to X,
to be causally correct. Moreover, as examples like (1)—(1") above illustrate,
what most people would regard as interventions with respect to actual
causal systems are invariant only to some range of interventions. Finally,
the proposal requires that the notion of an intervention be relativized to
a specific set of functional relationships: the same manipulation of ¥ may
be an intervention with respect to (1) but not with respect to (1'). The
proper response to Cartwright’s worry that a manipulation that destroys
the connection between X, and its effects will lead to mistaken causal
conclusions is to recognize that causal relationships have “domains of
invariance”—ranges of interventions over which they continue to hold,
even though they do not hold universally. Modularity should be under-
stood as claiming that for each X, there will be some range of interventions
(interventions that are of the “right kind” and not “too big”) that disrupt
only the relationship between X, and its direct causes and no others in
the system of interest. We take this to be a substantive claim concerning
the nature of causation, which is grounded in a manipulability view.

So far we have been talking only about deterministic causal relation-
ships. When causation is indeterministic, we shall assume that for each
X,inV, P(X)) = g(pa,, U'), again where g, is some function and U} a set
of omitted causes that bears no causal relations to any other variables in
V apart from those that result from its causal relation to X,. That is, when
causation is indeterministic, the probability distribution of X is determined
by the values of its parents and U;. We will return to the status of this
“determinism of probabilities” assumption below. Within this indeter-
ministic framework there is a natural analogue to the modularity con-
dition: a system of equations of the form P(X;) = g,(pa,, U') will be
modular if for each variable X,, there exists a range of interventions that
disrupt only the equation linking X; to its parents and U/—i.e., only the
function g—while leaving all of the other equations in the system—all of
the other functions g; for i # j—undisturbed.

We are now ready to provide a more precise characterization of an
intervention with respect to both deterministic and indeterministic rela-
tions. Let Z, be a particular direct cause of X that is omitted from V—
that is, Z, is one of the omitted variables whose combined effect is sum-
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marized by U/. Let U, represent the combined effect of all remaining
variables in U except for Z,. Then Z, will constitute an (arrow-breaking)
intervention with respect to the variable set V if and only if it meets
following conditions:

1. Z, causes X.

2. Z,is not caused by any of the Xs, or other Zs.

3. Z.does not cause any of the Us (nor, as (2) implies, any of the other
Zs) and has no causes in common with any of the Us or other Zs.

4. For all X, for j # i, if Z, or any cause of Z, causes X, then it does
so only via a path passing through X.

5. If X, is deterministically caused, then for some range of values of
Z, 1, it Z, = zF e z*, then X, = x¥, regardless of the values of
any of the Xs, Us, or Zs. If X; is indeterministically caused, then
for some range of values of Z, z¥, if Z, = z*¥ € z¥ P(X,) = P*
regardless of the values of any of the Xs, Us, or Zs. We shall say
that z¥ consists of the “on” values of Z.. For other values of Z, X,

or P(X,) is a function of pa, and other omitted causes, the effect of
which is summarized by U..

This characterization is not as complicated as it may look. 2 and 3 require
that an intervention be exogenous—it is not caused by any of the other
variables in the system and does not have causes in common with any of
those other variables. 4 says that if an intervention on X, causes some
second variable X, it does so only through its influence on X; and not in
some other way. 5 says that an intervention acts as a “switch.” When the
intervention on X, has an “off” value, the value of X,, or in the indeter-
ministic case, P(X,) is determined entirely by its parents and the omitted
causes whose action is represented by U,. When the intervention on X; is
“on,” the value of X; (or, in the indeterministic case, P(X;)) is determined
entirely by the value of the intervention, and the other causes of X; have
no influence on it. In other words, an intervention on X, “breaks” all
arrows directed into X, except for the arrow coming from the intervention
variable.

Let P _,,(X;) denote the probability distribution of X; if the value of
X, were “set” by an intervention Z; and similarly P, _.(X;) denotes
P(X;) when there is no intervention with respect to X,. The generalization
of modularity, which we call MOD* can then be expressed as follows:

MOD*. Forall X;and X;in V (i # j)if B, _,,(X}) # Bz _. (X)) then
X, causes X,

MOD* formulates a sufficient condition for causation in terms of the
results of manipulations. It is also closely linked to CM. Suppose that X;
and X are correlated under an intervention on X,. Given the definition
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of an intervention, the correlation cannot be due to (i) some common
cause of X; and X or to (ii) X, causing X;. MOD* assumes the only other
possibility is (iii) X; causes X,. Thus the principle that correlations don’t
arise spontaneously but always have a causal explanation (at least when
interventions are involved) is already implicit in MOD* and in a manip-
ulationist account of causation.

Of course, experiments, especially with a small number of subjects, often
show correlations between the values of X; produced by interventions and
the values of X; owing to accident or chance rather than because X, causes
X, But in such cases, one ordinarily expects that the association will
disappear if the experiment is performed repeatedly with a large number
of subjects.

What about the possibility that X; and X; remain dependent, although
causally unrelated, no matter how one repeats the experiment? One re-
sponse is to hold that if the relationship between X, and X, looks as though
it is causal in the sense that correlations under interventions between X,
and X, hold in (what seem to be) representative large populations, then
this is all that is required for it to be causal. Alternatively, one may regard
doubt at this point about whether X, causes X, as Cartesian or hyper-
bolic—as uninteresting as skepticism about the existence of the external
world. Another response is more methodological: whether or not what is
envisioned is logically possible, our experience is that inferences based on
MOD* when the dependencies in question hold systematically in repre-
sentative populations are highly reliable. Furthermore, if one rejects such
inferences, one loses the possibility of learning anything about causal
relationships from experiments—it is not as though there is some other
competing principle one might employ instead. So one should accept
MOD*.

3. From the Manipulability Conception to CM. One way of thinking about
the connection between the manipulability conception and CM is to think
of MOD* as describing what would happen in situations in which there
are causal connections and intervention variables are “on” and CM as
addressing what would happen in situations in which the same causal
connections hold but intervention variables are “off.” It is part of ordinary
thinking about causation that there will be a systematic connection be-
tween these two sorts of situations. When people do experiments, they
do them with the expectation that they will learn not just about how the
causal agents they manipulate behave in experimental contexts, but how
they behave more generally, in other contexts as well.

This connecting assumption can be expressed as follows: conditioning
on the parents of a variable simulates the effect of an intervention on
that variable in the sense that if X; and X, are dependent conditional on
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pa,, then X; and X, will be dependent under an intervention on X,. This
is the second premise in the argument in Section 4 below. We call it
“Indication” since it claims that conditional dependence “indicates” the
result of an intervention. In effect, Indication takes the idea that corre-
lations do not arise spontaneously when interventions are “on,” an idea
which we found to be implicit in MOD#*, and extends it to situations in
which interventions are “off.” CM is an implication of the conjunction
of MOD* and Indication.

4. The Argument. Here is the basic outline of our argument for CM:

Py —on(X;) = B _. (X)) (this is the contrapositive of MOD*).

2. v X, in V distinct from X, if P, _, (X)) = B, _, (X)), then X, L
X,/pa; (this is the contrapositive of the condition that we called
“Indication” above).

3. If X, does not cause X, then X, L X,/pa, (CM) (from 1 and 2).

1. For all X; and X; in V (i # j) such that X; does not cause X,

We assume that 1 is relatively uncontroversial and that those who, like
Cartwright, reject CM ought to oppose 2 instead. What then can be said
on behalf of 2?

Suppose that the full set of parents of X, are held fixed (that is, con-
ditioned on) and assume that U/ (the combined effect of the omitted causes
for X;) has no causal connections to any variables in V apart from those
that follow from its being a direct cause of X,. Then U/ behaves like an
intervention (in the sense we have defined) on X, Fixing pa, U/ is an
exogenous source of variation in X, that counts as an intervention Thus,

4. If B, _oq(X) = Pz _o(X)), then X; L Ulpa,.

If one also assumes
5. If X; L Ulpa, then X, L X./pa,.

one may derive 2. Under determinism or pseudo-indeterminism, 5 is triv-
ial. Since X; is a deterministic function of pa; and U/, if X, and U/ are
independent conditional on pa, it follows that X, and X; are independent
conditional on pa,. Under indeterminism 5 is more controversial. We think
that those who, like Cartwright, reject 2 are more likely to object to 5
rather than 4.

Here is a heuristic argument that (5) should hold under indeterminism:
By hypothesis, there are two sources of variation for X, (or P(X))): pa,
and U/. If one conditions on pa, one removes it as a source of variation.
The only remaining source of variation in X; (or P(X))) is U/. So the only
way a correlation could arise between X, and X, (conditional on pa,) is if
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U] is correlated with X, (conditional on pa,). Thus if U/ L X /pa,, it should
be the case that X, L X /pa,

This heuristic argument rests on the assumption that a correlation be-
tween X; and X, will not arise “spontaneously”—that is, in the absence
of some varying cause of X; that is itself correlated with X. In the in-
deterministic case, where the values of X, and X are not determined by
their causes, this “no spontaneous correlation” assumption rules out the
possibility that the variation in the values of these two variables for a
fixed value of pa; is coordinated, even though interventions on X, are
independent of X

As an illustration, suppose there are two samples of radioactive ma-
terial, S, and S,. By bombarding S, with neutrons (C), one can increase
the probability that the atoms in S, decay, but aside from this, decay in
both samples is an entirely random process that depends only on the
characteristics of the material in S, and S,. Suppose that (C) can take
one of two values—on or off—indexed by a random variable ¥ and that
one can control P(W)—that is, one can introduce or remove the neutron
source. Let P(X,/pa,) and P(X,/pa,) be the probabilities for decay of an
individual atom in S, and S, respectively, conditional on the characteristics
of those atoms, which are summarized by pa, and pa,. 5 claims that if
the random variable W is independent of X, conditional on pa,, then X,
will be independent of X, conditional on pa,. This condition would fail
if, as we vary P(W), W remains independent of X, conditional on pa,
(behavior that, given that W behaves like an intervention with respect to
X,, we would ordinarily take to show that X; does not cause X,) but it
is also true that X, is not independent of X, conditional on pa,. If 5 fails
in this way, the condition that we called determinism of probabilities will
also fail—the joint distribution P(X,, X,) will depend not just on the
probability of X, conditional on the full set of its causes (P(X,/pa,, W)),
the probability of X, conditional on the full set of its causes P(X,/pa,)
and the probability of each set of these causes. Instead there will be an
additional dependence in the joint distribution, reflecting the correlation
between X, and X,, that is not derivable from the probabilities just de-
scribed (and which indeed seems to come from thin air).

These remarks do not show that violations of (5) are impossible or that
they are ruled out by an uncontroversial part of “our concept” of cau-
sation. Someone who accepts MOD* yet is convinced that violations of
CM are possible has the option of denying (5) and the Indication condition
(2). Nonetheless our discussion identifies just what those who reject CM
are committed to denying and highlights commonplace expectations about
causal relationships that are violated when CM fails to hold.

5. Cartwright’s Chemical Factory. Nancy Cartwright (e.g., 2002) asks us
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to imagine a chemical factory that produces two chemicals 4 and B by
an indeterministic process P. P is a common cause of the production of
A and B and the only such cause, aside from the possibility of interventions
that influence the production of the chemicals directly. In particular, the
production of 4 does not cause the production of B or vice-versa. Let X
and Y be indicator variables taking the values 0 or 1 depending on whether
A and B are or are not produced. Assume the state of P can also be
represented by an indicator variable C. As Cartwright describes the case,
P(X/C) = P(Y/C) = 0.8 but P(X/C.Y) = 1, in violation of CM.

Let Z, and Z, be intervention variables with respect to X and Y. In
the expanded variable set including Z, and Z,, pa, = {C, Z }, and
pa, = {C, Z,}. Suppose Z, = on. One possibility is that X and Y remain
dependent under this intervention. If so, it will be extremely tempting to
conclude that X causes Y in accord with MOD* but contrary to Cart-
wright’s description of the example. If X causes Y, there is of course no
violation of CM.

Although Cartwright (2002) criticizes MOD*, we think she requires it
if her example is to be even a prima facie counterexample to CM. Only
by adopting MOD#* and a corresponding interventionist interpretation of
causation can one tell a consistent story about her example. Accordingly,
in what follows, we will assume in accord with MOD* that when Z_ =
on, X and Y are independent conditional on C. However, when Z =
off, X and Y are dependent conditional on C.

Under this construal, MOD* holds but Indication (premise 2) fails, as
of course does CM. Although the distribution of Y is the same when the
intervention variable for X is on as when it is off (since, by hypothesis,
X and Y are no longer correlated when the intervention is “on”), it is not
true that X L Y/C. Moreover, of the two premises—4 and 5—that jointly
imply Indication, it is, as suggested above, 5 that fails rather than 4.
Construing U/ as an intervention variable, U, is independent of Y, con-
ditional on C for both the on and off values of U], as 4 requires, but 5
is violated.

What is odd about the example is not that certain variables are inde-
pendent or conditionally independent for some values and not for others.
There is nothing perplexing about this. Instead what is odd is that con-
ditional independence relations hold or fail to hold for the same values
of variables depending on /iow those values are produced. When the values
of X and Y are caused by C, and the intervention variables Z, and Z,
are “off,” X and Y are conditionally dependent. When X and Y have
those very same values but those values are instead caused by the “on”
values of Z_or Z, X and Y are conditionally independent. There is no
systematic connection between the conditional independence relations that
hold when interventions are on and the relations that hold when inter-
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ventions are off. This violates standard expectations, described in Section
3, about the connection between the behavior of causes in experimental
and nonexperimental situations.

6. Conclusion. In her discussions of CM, Cartwright claims not just that
violations of CM are logically possible but that such violations “are to
all appearances widespread” even in the macroscopic, non-quantum-
mechanical realm. (Her discussion makes it clear that the violations she
imagines are over and above any that may be due to the defeating con-
ditions described in Section 1 above.) This is a surprising claim. The
chemical factory is imaginary and Cartwright has not produced any real-
life macroscopic examples in which CM fails. This suggests (we do not
claim that it conclusively establishes) that violations of CM violate widely
shared expectations about the relationship between causes, interventions,
and probabilities. In this essay we have suggested what some of these
expectations are. People do not expect spontaneous correlations, and
they do expect that there will be systematic relationships between
(in)dependence relationships when intervention variables are off and when
they are on, so that they can use each kind of information to learn about
the other.! As in the case of MOD¥*, these expectations may not be logically
inviolable but they seem to be highly reliable in actual application, and
they seem to be required if one is able to learn about causal relationships
from nonexperimental evidence in the absence of detailed background
information.
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