CaltechAUTHORS
  A Caltech Library Service

Theoretical study of intramolecular vibrational relaxation of acetylenic CH vibration for v=1 and 2 in large polyatomic molecules (CX3)3YCCH, where X=H or D and Y=C or Si

Stuchebrukhov, A. A. and Marcus, R. A. (1993) Theoretical study of intramolecular vibrational relaxation of acetylenic CH vibration for v=1 and 2 in large polyatomic molecules (CX3)3YCCH, where X=H or D and Y=C or Si. Journal of Chemical Physics, 98 (8). pp. 6044-6061. ISSN 0021-9606. http://resolver.caltech.edu/CaltechAUTHORS:STUjcp93a

[img]
Preview
PDF - Published Version
See Usage Policy.

2174Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:STUjcp93a

Abstract

Quantum calculations are reported for the intramolecular vibrational energy redistribution and absorption spectra of the first two excited states of the acetylenic CH stretch vibration in the polyatomic molecules (CX3)3YCCH, where X=H or D and Y=C or Si. Using approximate potential energy surfaces, comparison is made with the corresponding recent experimental spectra. It is found that a model of intramolecular vibrational relaxation based on the assumption of sequential off-resonance transitions via third and fourth order vibrational couplings (as opposed to direct high order couplings) is in agreement with experimental results on spectral linewidths. In a semiclassical limit this type of relaxation corresponds to a dynamic tunneling in phase space. It is shown that the local density of resonances of third and fourth order, rather than the total density of states, plays a central role for the relaxation. It is found that in the Si molecule an accidental absence of appropriate resonances results in a bottleneck in the initial stages of relaxation. As a result, an almost complete localization of the initially prepared excitation occurs. It is shown that an increase of the mass alone of the central atom from C to Si cannot explain the observed difference in the C and Si molecules. The spectral linewidths were calculated with the Golden Rule formula after prediagonalization of the relevant vibrational states which are coupled in the molecule to the CH vibration, directly or indirectly. For the spectral calculations, in addition to the direct diagonalization, a modified recursive residue generation method was used, allowing one to avoid diagonalization of the transformed Lanczos Hamiltonian. With this method up to 30 000 coupled states could be analyzed on a computer with relatively small memory. The efficiency of C programming language for the problem is discussed.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1063/1.464843DOIUNSPECIFIED
http://link.aip.org/link/?JCPSA6/98/6044/1PublisherUNSPECIFIED
Additional Information:Copyright © 1993 American Institute of Physics. Received 27 November 1992; accepted 8 January 1993. We wish to thank Professors F. Scoles and K. Lehmann of Princeton University for many helpful and encouraging discussions and for providing us with their experimental results prior to publication, Professor R.E. Wyatt of the University of Texas at Austin for helpful remarks on the manuscript, and Dr. W.H. Green of Exxon Research and Engineering Co. for providing codes of SPECTRO. The assistance of Mr. Aseem Mehta of this Institute in writing software for Fig. 1 is appreciated. We are pleased to acknowledge the financial support of the National Science Foundation. This work is supported in part by the Caltech-JPL CRAY Supercomputing Project. Arthur Amos Noyes Laboratory of Chemical Physics Contribution No. 8752.
Funders:
Funding AgencyGrant Number
National Science FoundationUNSPECIFIED
Caltech-JPL CRAY Supercomputing ProjectUNSPECIFIED
Subject Keywords:INTERATOMIC FORCES, VIBRATIONAL STATES, RELAXATION, QUANTUM MECHANICS, ABSORPTION SPECTRA, EXCITED STATES, ACETYLENE, POLYATOMIC MOLECULES, DEUTERIUM COMPOUNDS, HYDROCARBONS, SILICON COMPLEXES, POTENTIAL ENERGY SURFACES, LINE WIDTHS, HAMILTONIANS
Other Numbering System:
Other Numbering System NameOther Numbering System ID
Arthur Amos Noyes Laboratory of Chemical Physics8752
Record Number:CaltechAUTHORS:STUjcp93a
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:STUjcp93a
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:12356
Collection:CaltechAUTHORS
Deposited By: Archive Administrator
Deposited On:13 Nov 2008 00:22
Last Modified:26 Dec 2012 10:30

Repository Staff Only: item control page