
Proceedings of the 34th 
Conference on Decision & Control 
New Orleans, LA - December 1995 WA05 11 :40 

DYNAMIC INVERSION AND POLAR DECOMPOSITION OF 
MATRICES 

Neil H. Getz- and Jerrold E. Marsdent 

ABSTRACT 

Usznq the recently zntroduced concept of a "dynamzc 
znverse" of a map, along wzth zts assoczated analog 
compvtatzonal pnradzgm. we construct contznuous-tame 
iionlzneor dynamzcal systems whzch produce both regu- 
lor and generalazed znverses of ttme-varyzng and $xed 
matrzccs, as well as polar decomposataons. 

1. Introduction 

111 [I] (we t,his proceedings) we introduced a technique 
in which a dynamical system is used to generate an 
approximation to the solution 6'* ( t )  of a nonlinear vec- 
tor equation of the form F ( 0 , t )  = 0. As we saw in 
Example 4.1 of [1], one may also pose the inverse of 
a time-varying matrix as a solution to an equation of 
the form F ( r ,  t j  = 0. Square roots and other matrix 
functions may be posed similarly. Motivated by this 
realization, in this paper' we will furt.her investigate 
the use of dynamic inversion to construct dynamical 
systems that perform matrix inversion as well as polar 
decomposition. 

Dynamical methods of matrix inversion have ap- 
peared in the neural network literature [4, 51. We will 
sho-cv in Section 3.1 that these neural Iietwork meth- 
ods may be regarded as a special case of dynamic 
inversion. A decomposition related to polar decom- 
position has also appeared in Helmke and Moore [6], 
though, as the authors point out, their method does 
not guarantee the positive definiteness of the symmet,- 
ric compoiicrit of t.he polar decomposition. The ap- 
proaches of [4, 5, 61 are gradient methods and produce 
exact results asymptotically. In this paper, using dy- 
mmic inversion we will derive a system that produces 
i8iit: desired inverse and polar decomposition products 
AI. any preassigned time t l  > 0. 

In Example 4.1 of [l] we examined the applica- 
t im of dynamic inversion to the problem of inverting 
tiine-varying matrices where we assumed that a good 
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approximation existed for the inverse of the time- 
varying matrix at an initial time. In Section 2 we 
will show some further applications of time-varying 
matrix inversion. Motivated by the desire to obtain 
such initial inverses dynamically, in Section 3 we will 
consider the problem of inverting fixed matrices. By 
using a matrix homotopy from the identity we will 
recruit the results of Section 2 to produce exact inver- 
sion of positive definite fixed matrices in finite time. 
In Section 4 we will construct a dynamic inverter 
which produces the polar decomposition of a time- 
varying matrix. In Section 5 we revisit the problem of 
fixed matrix inversion and show how, combining ho- 
motopy with dynamic polar decomposition, we may 
dynamically produce the polar decomposition prod- 
ucts as well as the inverse of any fixed matrix in finite 
time without requiring an initial guess at the inverse. 

2. Inverting Time-Varying Matrices 

We summarize the results of Example 4.1 of [l] in the 
following theorem. 

Theorem 2.1 Let A(t)  E G L ( n ,  R), where G L ( n ,  R) 
is the group of n x n real nonsingular matrices, be C1 
in t ,  with A ( t ) ,  A( t ) - l ,  and A ( t )  uniformly bounded 
in t for albt 2 0.  There exists an r > 0 such that the 
following holds: Let G[w, TI t] be a dynamic inverse 
(see Definition 2.1 of (11) of F(l ' , t )  = A ( t ) r  - I for 
all r such that r - r, is in a,., and for all t E R+. 
Let r(t) E Rnxn  be the solution to 

r = -,uG[A(t)r - I ,  T ,  t ]  - r A ( t ) r  (1) 

with Ilr(0) - I ' , ( O ) l l  5 r < CO. There exists a fi  > 0 
and a t > 0 such that for all p > f i ,  Ilr(t) -r*(t)[/2 5 

for all t 2 0.  In particular limt+m r = A ( t ) - l .  
0 

Example 2.2 Consider an n-dimensional mechani- 
cal system modeled by the implicit second order dif- 
ferential equation 

M(4J)b'+ N ( q ,  4)  = 0. (2) 

Assume that the matrix M ( q )  is positive definite and 
symmetric for all q .  It is often convenient., to express 
such systems in an explicit form, with ;j alone on the 
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left side of a second order ordinary differential equa- 
tion. We will invert M ( q )  dynamically. 

Let r = TT E R n X n  be an estimator for M - l .  
Suppose we know M-' ( q ( 0 ) )  approximately. If our 
approximation is :sufficiently close to the true value of 
M-'(q(O)),  then !setting r(0) to  that approximation, 
and letting 1-1 > 0 be sufficiently large allows us to 
apply Theorem 2 1. Then system 

(3) 

provides an exponentially convergent estimate of q for 
all t .  A 

3. Inversion of Fixed Matrices 

In this section we consider two methods for the dy- 
namic inversion of fixed matrices. In Section 5, re- 
lying on the methods of Section 4, we will consider 
another approach to the same problem. 

Fixed matrices may be inverted in a manner sim- 
ilar to the inversion of time-varying matrices as de- 
scribed in the last section. Let r denote the estimator 
for the inverse of a fixed matrix M ,  with r, = M-' 
the solution for F ( r )  = 0 where 

q r )  := M r  - I .  (4) 

In the case of fixeld matrix inversion the estimator for 
i; is zero. AS a consequence, if r is sufficiently close 
to rt, then we can let Gl(w, r )  := r .  w and use the 
dynamic inverter 

r = - , q M r  - I ) .  (5) 

Again, we must (choose r(0) close enough to r,(O) 
because G[w, r] f,ails to be a dynamic inverse when r 
is singular. Chooising r(0) sufficiently close to F,(O) 
assures us that,  a s  r flows to r, = M - ' ,  r will not 
pass through the set of singular matrices. 

3.1 A Comment op Gradient Methods 
As shown in the last section, the dynamic inverse r . w  
is not our only choice of a dynamic inverse G(w, r, t )  
which is linear in w. It is easily verified that G[w] = 
M T  . w, w E is also a dynamic inverse for 
F ( r )  := M r  - I ,  and that for this choice of dynamic 
inverse we do not need to worry about the dynamic 
inverse becoming singular. It is valid globally and 
leads to the dynamic inverter 

r = + M T ( M r  - I ) .  (6) 

If M is injective, with M E Rmxn,  m 2 n, then 
the equilibrium solution r, of (6) is the left inverse 
( M T M ) - l M T  of M .  If instead we were to choose 
F ( r )  := r M  - I and G[w] := W .  M T .  and if M E 

, m 5 n, is surjective, then the solution r, RWmX" 

would be the right inverse M T ( M M T ) - l  of M .  The 
dynamic inverter (6) is the standard least squares 
gradient flow (see [6], Section 1.6) for the function 
CD : R" -+ R ;  r c) @(r) where 

(7) 

It is also the neural-network fixed matrix inverter of 
Wang [5]. Of course other gradient schemes may have 
the same solution though they may start from gradi- 
ents of functions other than i l lMr-I I l ;  (See, for in- 
stance [4]). In general, artificial neural networks are 
constructed so as to dynamically solve for the mini- 
mum of an energy function having a unique (at least 
locally) minimum, i.e. they realize gradient flows. 

3.2 Dynamic Matrix Inversion in Finite Time 
The dynamic matrix inverters (5) and (6) above have 
the potential disadvantage of producing an exact in- 
verse only asymptotically as t + co. To correct this 
we now consider another method. If we could create 
a time-varying matrix H ( t )  that is invertible by in- 
spection at  t = 0, and that equals M at some known 
t > 0, say t = 1, then perhaps we could use the lech- 
nique of Section 2 to invert H ( t ) .  Then the solution 
of the dynamic inverter at time t = 1 would be M - l .  
We require, of course, that, H ( t )  remain in GL(n, R)  
as t goes from 0 to 1. One ideal candidate for the 
initial value of the time varying matrix is the identity 
matrix I ,  since it is its own inverse. 

Example 3.1 Let M be a fixed matrix in RnX". We 
wish to dynamically determine the inverse of M .  Let 

~ ( t )  = h(t ,  I ,  Mj = (1  - t ) ~  + t ~ .  (8) 

In the space of n x n matrices, t t-+ H(t) describes 
a t-parameterized line segment of matrices from the 
identity to M = H(1). From the last section we 
know how to dynamically invert a time-varying ma- 
trix given that we have an approximation of its in- 
verse at time t = 0. In the present case the inverse 
at time t = 0 is just the identity I. We may invert 
H ( t )  by letting G[w, r, t] := r w and substituting 
H ( t )  for A ( t ) ,  and a(t) = M -  I for A(t) in (1). This 
gives 

r = - p r  ( H ( t ) r  - I )  - r ( M  - i)r. (9) 

If r(0) = I ,  then r(1) = M - l .  That is, of course, i f  
H ( t )  remains nonsingular as t goes from 0 to l! 

A 

Remark 3.2 The scheme of Example 3.1 requires 
that there is no X E [0,1] for which h(X, I ,  M )  is sin- 
gular. In other words, the curve t C )  H ( t )  must never 
leave a connected open subset of GL(n,R).  Recall 
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that there are two connected open subsets which com- 
prise G L ( n , R ) ;  GL+(n)  = { M  E RnX"ldet(M) > 0) 
and G L - ( n )  = { M  E RnX"1det(M) < 0). These two 
sets are disjoint and are separated by the codimension- 
1 manifold of singular n x n matrices. A 

In the following lemma we give specifies sufficient 
conditions on M for h(A, I ,  M )  to avoid singularity 
as X goes from 0 to 1. 

Lemma 3.3 If  M E GL(n ,  Iw) has no ezgenvalues in 
(-m,O), then for each A E [0,1], h ( X , I , M )  zs in 
GL( 72, R).  0 
Note. If M is a positive definite symmetric matrix, 
then the assumptions of Lemma 3.3 hold. 

Proof: Suppose that h(X, I ,  M )  E (1 - X ) I  + AM is 
singular for some x E [0,1]. The identity I is non- 
singular as is M by assumption, so $ {0,1}. Thus 
there exists a non-zero v E IR" such that 

((1 - X)I + XM) v = 0. (10) 

Since 1 # 0 we can divide (10) by -A to obtain 

But X can only satisfy (11) if v(X) := (1 - 1 ) / X  is 
an eigenvalue of M .  As X ranges over ( O , l ) ,  .(A) 
ranges over (-m,O). But by assumption M has no 
eigenvalues in ( - c o , O ] .  Hence no such X exists in 

0 

inverse of M at any 
fixed time tl  > 0 by a slight modification of the ho- 
motopy. We summarize our results of this section in 
the following theorem. 

Theorem 3.4 For a n y  fixed positive definite M E 
GL(n ,R) ,  and any tl > 0 ,  the solution T ( t )  of the 
dynamic inverter 

( 0 , l )  and h(X, I ,  M )  is nonsingular on [0,1]. 

We may obtain the exact 

with r(0) = I ,  satisfies r(tl) = M - l .  0 
Example 3.5 Let L E RmXn with m 5 n be surjec- 
tive. The right inverse of L in the Euclidean metric 
on Rn is given by x = LT(LLT)- l .  To obtain the 
right inverse we may apply Theorem 3.4 replacing M 
by LLT.  Then LT(LLT) - l  = L T r ( l ) .  When L is in- 
jective, the left inverse (LTL)- lLT may be obtained 

n 
By appealing to the polar decomposition in Sec- 

tion 5 below, we will show that we may, at  the cost 
of a slight increase in complexity, use dynamic inver- 
sion to produce an exact inverse of any invertible M ,  
irrespective of its spectrum, by any fixed time tl 2 0. 

by substituting L T L  for M in Theorem 3.4. 

4. Polar Decomposition for 
Timevarying Matrices 

.In this section we will show how dynamic inversion 
may be used to perform polar decomposition and in- 
version of a time-varying matrix. We will assume that 
A ( t )  E GL(n,Iw), and that A(t) ,  A(t) ,  and A(t)-' are 
bounded for t E [0, m). 

Consider the polar decomposition [7] of a fixed 
matrix M E GL(n,R) ,  M = PU where U is in the 
space of R x a real orthogonal matrices O(n,  R), and 
P is the symmetric positive definite square root of 
M M T .  Regarding M as a linear operator Rn + R", 
the polar decomposition expresses the action of M on 
a vector as a rotation (possibly with a reflection) fol- 
lowed by a scaling along the eigenvectors of M M T .  
If M E G L ( n , R ) ,  then P and U are unique. Ma- 
trices of the form M M T ,  where M is nonsingular, 
have only positive real eigenvalues. Thus A(t)A(t)T 
is positive definite. For any t ,  the unique positive def- 
inite solution r, to rA( t )A( t )Tr  - I = 0 is P( t ) - ' .  
Now having P(t)- ' ,  from A(t)  = P(t )u( t )  we get 
U ( t )  = P ( t ) - l A ( t ) ,  P( t )2  = A(t)A(t)T,  and P ( t )  = 

Since P ( t )  is a symmetric n x n matrix, it is pa- 
rameterized by s(n)  := n(n + 1)/2 elements. We will 
construct the dynamic inverter that produces P-l ( t )  , 
which is also positive definite and symmetric, in the 
space EX"("). Choose an ordered basis ,L? = {/3z}iEs(n) 
for the n x n real-valued symmetric matrices S(n,  Iw). 
For any z E R"(") there corresponds a unique matrix 
zm E S(n,Iw) where the correspondence is through 
the expansion of xm in the ordered basis p, 

P ( t ) - l A ( t ) A ( t ) T .  

zm = zip; E S(n,R). (13) 
G s ( n )  

Conversely, for any X E S(n,R),  let Xv denote the 
vector of the expansion coefficients of 

x = xipi (14) 
i€s(.) 

in the basis /3 so that Xv = x. Then 

( X V ) ,  = xm = x. (15) 

Let F : IW"(") x Iw+ 4 IRS("); (x, t )  I+ F ( z ,  t )  be 
defined by 

F ( z , t )  := (zmA(t)xm - I )" .  (16) 

where A( t )  := A(t)A(t)T.  Let x* be a solution of 
F ( z , t )  = 0. Then x: is a symmetric square root of 

Nothing in the form of F ( x ,  t )  enforces the posztive 
definzteness of the solution z y ( t ) .  For instance, for 
each solution x:(t), - z y ( t )  is also a solution. Each 



solution f I-+ x , ( t )  is, however, isolated as long as 
D l F ( z , ,  t )  is nonsingular. We will show below that 
the nonsingularity of A(t)  implies the nonsingular- 
ity of D1F(x , , t ) .  Thus if z(0) is sufficiently close 
to (P(O)-l)', then z ( t )  -+ (P(O)-l)' exponentially. 
Therefore, we can ,and will enforce the positive defi- 
niteness of x(t)" b y  choice of initial conditions. 

4.1 The Lyapunov Map 
We will use a linear dynamic inverse for F ( x ,  t )  based 
upon the matrix inverse of DlF(z. , t) .  We will esti- 
mate this matrix inverse using dynamic inversion. It 
is not immediately obvious, however, that DlF(z , ,  t )  
is invertible. In this subsection we will consider the 
invertibility of DlF(x , , t ) .  

Let F ' ( X ,  t )  := F ( X V ,  t ) .  Then Differentiating 

F ' ( X , t )  = X A ( t ) X  - I (17) 

The representation of LA(t)X(Y) on matrices Y ex- 
pressed as vectors 'Y" E R"(") in a basis ,B of S(n ,R)  
is D l F ( X , t )  . Y" .  Thus the matrix D l F ( X , t )  is in- 
vertible if and only if L,qt)x is an invertible map. We 
will refer to a map of the form 

L&f : X h+ LMX := X M  + M X  (19) 

as a Lyapunov map due to its relation to the Lya- 
punov equation X M + M X  = Q which arises in the 
study of the stabilit,y of linear control systems. It may 
be easily verified that a Lyapunov map is linear in X .  
The map LM is invertible if no two eigenvalues of M 
add up to zero (see Callier and Desoer [8], page 138). 

Now note that A(t)zI = z I A ( t )  = P( t )  which is 
positive definite and symmetric. Therefore L A ( t ) f y ( Y )  
is nonsingular. It follows then that D1F(z, , t )  IS in- 
vertible. By the continuity of D1F(x , t )  in x it also 
follows that DIF(a: , t )  remains invertible for all z in 
a sufficiently small neighborhood of 2,. 

4.2 Dynamic Polar Decomposition 
The estimator for .DlF(z,,t)-' will be denoted r E 
Rs(n)Xs((n), so that D1F(z, , t)- '  = r,. Using r ,  we 
may define a dynaimic inverse for F ( z , t ) .  Let G : 
RIw"(") x IRS(n)xs((n) + RS(("); ( t u , F )  G( tu , r )  be 
defined by 

This makes G(w, r') a dynamic inverse for F ( z ,  t )  = 
(zmA(t)zn' - I ) ' .  

For an estimate of k* we first differentiate F ( 2 ,  I t )  = 
0, 

D 1 F ( x * , t ) i ,  + D2F(x*,t) = 0 

x, = - D ~ F ( ~ , , ~ ) - ~ D ~ F ( ~ , , ~ )  = - r a 2 q z + , t ) .  

(21) 

and solve for x, , 

(22) 

Note that D2F(z , , t )  = (xFA(t)x?)'. Now, substi- 
tuting x and r for x* and r, we obtain 

qz, r, t )  := -r ( ~ A ( t ) + m )  ' . (23) 

To obtain r,  let FY : EtS((") x IRs(")xs((") x R+ -+ 
Rs(n)xs(n); ( x , r , t )  I+ P ( z ,  r,t) be defined by 

F Y ( ~ ,  r, t )  := D ~ F ( ~ ,  t)r - I .  (24) 

A linear dynamic inverse for FY (z, I', t )  is GY : (tu, r )  ++ 

G'[w, r] defined by 

G Y [ ~ ,  r] := r . w. (25) 

F-qz* ,r* , t )  = o (26) 

For an estimator for f*, we differentiate 

with respect to  t ,  solve for r*, and substitute z and 
r for x* and r, respectively to get 

E Y ( ~ ,  r, t )  := -r - D ~ F ( ~ ,  t )  . r. (' ) / I . = E ( r J , t )  (27) 

Combining the E's, F's,  and G's from (23)' (16), 
(20), (27), (24), and (25), we obtain the dynamic in- 
verter 

z(0) M (P(O)-')" and r(0) x DIF((P(0)-l)V,t)-l. 
(29) 

Combining the results above with the dynamic in- 
version theorem, Theorem 3.1 of [I] gives the follow- 
ing theorem. 

Theorem 4.1 Let A(t)  be in  GL(n,R) for all t E 
R+. Let the polar decomposition of A( t )  be A ( t )  = 
P(t )U( t )  with P ( t )  E S(n ,R)  the positive definite 
symmetric square root ofA(t) := A(t)A(t)T and U ( t )  E 
o ( ~ , R >  for all t E R+. Let x be in  IR$("), and let r 
be in  Rs((")xs(("). Let ( z ( t ) ,  r(t)) denote the solution 
of the dynamic inverter (28) where F ( x , t )  is given 
by (16). Then there exists a ji such that if p > ji, and 
(z(o), ~ ( 0 ) )  is sufficiently close to ( (P(o)- ' ) ' ,  DlF((P(O)-') '  
then 
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Figure 1: The error loglo(llz(t)mA(-t)z(t)m - 

1. A ( t )  ( ~ ( t ) ) ~  exponentially converges to P ( t ) ,  

2. ( ~ ( t ) ) ~ A ( t )  exponentially converges to U ( t ) ,  and 

3. A( t )  ( (~ ( t ) ) " ) '  exponentially converges to A(t)-' 
0 

An example of the polar decomposition of a 2 x 2 
matrix will illustrate our results. 

Example 4.2 Let 

Dynamic inversion of A(t) using (28) was simulated 
over the interval t E [0, 81 using the adaptive stepsize 
Runge-Kutta integrator ode45 from Matlab, with the 
default tolerance of Initial conditions were set 
to be 

~(0) = ~ ~ ' ' ( 0 ) ~  + e,, T(0)  = D1F(z(O),t)-l  
(31) 

where e, = [-0.55,0.04, -2.48IT is an error that has 
been deliberately added to demonstrate the error tran- 
sient of the dynamic inverter. The value of p was set 
to 10. For more details of this example see [2]. 

Figure 1 shows loglo(Ilz(t)mA(t)z(t)m - Illm) in- 
dicating the extent to which zm, the estimator for 
P(t ) - l  fails to be the square root of A(t) = A(t)A(t)T.  

n 
Remark 4.3 It is interesting to note that P( t ) - ' ,  
besides being a solution to zmA(t)xm - I = 0 is also 
a solution to A(-t)(x")' - I  = 0 as well as (zm)'A(t) - 
I = 0. But A(t)(zm)'-l and (z") 'A(t)-I  are not, in 
general, symmetric even when A(t )  and zm are sym- 
metric. Though exponential convergence is still guar- 
anteed when using these forms, the flow of r is not 
confined to S(n ,  R).  Using these forms would increase 

the number of equations in the dynamic inverter by 
n(n - 1)/2 + n2 - ~ ( n ) ~  since, not only would the 
right hand side of the top equation of (28) no longer 

-be symmetric, but I' would be n2 x n2 rather than 
s(n) x st.). A 

5. Polar Decomposition and 
Inversion of Fixed Matrices 

In the dynamic inversion techniques of Sections 2 
and 4 we assumed that we had avaiiable an approx- 
imation of A-'(O) with which to set r(0) in the dy- 
namic inversion of A(t) . Thus we would need to invert 
at  least one fixed matrix, A(O), in order to start the 
dynamic inverter. Methods of fixed matrix inversion 
presented in Section 3 had the potential disadvantage 
of either producing exact inversion only asymptoti- 
cally as t + CO, or of only working on matrices with 
no eigenvalues in (-co,O) = 4. The question natu- 
rally arises then, how might we use dynamic inversion 
to invert any fixed matrix so that the exact inverse 
is available by a fixed time. In this section, by ap- 
pealing to both homotopy and polar decomposition, 
we give an answer to this question. 

Let M be in GL(n,R)  with P = PT > 0, U U T - I ,  
and M = PU. Helmke and Moore (see [6], pages 
150-152) have described a gradient flow (using the 
Riemannian metric on Rnxn)  for the function IIA - 
UPIL 

(32) 
U = UPMTU - M P  
P = -2P + MTU + U T M  

where P is meant to approximate P and U is meant 
to approximate U .  Asymptotically, this system pro- 
duces products P, and U, satisfying A - P,U, = 0 
for almost all initial conditions as t -+ 00. A diffi- 
culty with this approach, as the authors point out, 
is that positive definiteness of the approximator P is 
not guaranteed. The method we describe in this sec- 
tion provides polar decomposition of any nonsingular 
matrix in finite time, with the positiveness of P guar- 
anteed. It will be seen that our method does not rely 
upon a gradient structure. 

Let A(t) := (1 - t ) I + t M M T  so that A(0) = I ,  
A(1) = M M T ,  and for all t E [0, 11, A(t )  is positive 
definite and symmetric. Let PA(t) denote the posi- 
tive definite symmetric square root of A( t ) .  Let the 
estimator of P i l ( t )  be zm E RnXn.  For this defini- 
tion of A(t) we have A(t) = M M T  - I .  Now we may 
apply the dynamic inverter of Section 4 in order to 
perform the polar decomposition of M .  By inspec- 
tion we see that z,(O) = I" and r,(O) = ;Iv. If we 
set T ( 0 )  = I' and r(0) = $ I " ,  then the dynamic 
inversion theorem, Theorem 3.1 of [l] and the results 
of the last section assure us that z(t)" 5 P ~ ( t ) - l  for 
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all t 2 0, and thus ~ ( 1 ) ~  = P*(l)-'. Consequently 

z ( l ) m  = P-1, M M T z ( 1 ) m  = P, 
z(1)mM = U, MT(z(l)m)2 = M - ' .  

(33) 

Note that A ( t )  = M M T  = 0 if and only if M is 
unitary, in which case M - ~  = M ~ .  

Combining the results of this section with the re- 
sults of the last section gives the following Theorem. 

Theorem 5.1 Let M be in GL(n,IW). Let the polar 
decomposatzon oJf M be M = PU wzth P E S(n ,R)  
the positave definite symmetric square root of M M T  
and U E O(n,JR). Let z be zn R"(n), and let r be 
in Rs(")x8(("). Let z(0) = I" and r(0) = $1. Let 
( z ( t ) ,  r ( t ) )  denote the solutzon of 

x = - ,uG(F(z , t ) ,  T )  + E ( z ,  r )  { 1; = --pGY[FY(r,  E ) ]  + EY(z,  r).  
(34) 

where 
A ( t )  = (1 - t ) I  + t M M T  
F ( x ,  t )  z m A ( t ) z m  - I 
G ( ~ ,  r )  = r . 
E ( z ,  r )  = - - r ( z m ( M M T  - I)P)" 
G Y [ ~ ,  r] = r . 
~ - y x , r , t )  = D I F ( z , t ) r  - I 
ET(+, 

(35) 

= -r ( @ F ( z ,  t,) \+E(z'r) . r  
Then for any 1-1 > 0 ,  M M T z ( l )  = P ,  z(1)M = U ,  

Remark 5.2 As in Theorem 3.4 we can force rm to 
equal P-' at any time t l  > 0 by substituting t / t l  for 
t in A ( t ) ,  and proceeding with the derivation of the 
dynamic inverter as above. Then A = $ ( M M T  - I )  
and zm(tl) = P-'. 

Example 5.3 PI digital computer simulation of a dy- 
namic inverter for the polar decomposition of a fixed 
2 x 2 matrix was performed. The integration was 
done in Matlab 1191 using ode45 an adaptive step size 
Runge-Kutta routine using the default tolerance of 

and Mz(1)' = AI-'. 0 

The matriix M was chosen randomly to be 

M = [  -24 - 3 1  -3 

The value of ,U was set to  10. 

Ill, was Ilz(l)m'A(l)z(l)m - Illm = 6.9575 x 
Final values of P ,  U ,  and A-' were 

The final value (t = 1) of the error [lx(t)"MMTz(t)"- 

5.2444 -5.5223 1 
-5.5223 23.5479 [ Or3473 -0.9377 ] 

-0.9377 -0.3473 U = x(1)mM = 

1 0.0323 -0.0323 
-0.2581 -0.0753 

6. Summary 

We have seen how the polar decomposition and in- 
version of time varying and fixed matrices may be 
accomplished by continuous-time dynamical systems. 
Our results are easily modified to provide solutions 
for time varying and fixed linear equations of the form 
A(t)z = b .  

Standard discrete matrix inversion routines do not 
take advantage of one's knowledge of A(t).  Dynamic 
inversion, on the other hand, by utilizing derivative 
estimation based upon such knowledge, may lead to  
increases in computational efficiency. We have also 
seen that dynamic inversion in the matrix context 
provides a useful and general conceptual framework 
through which to view other methods of dynamic 
computation such as neural networks. 
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