SIAM J. APPL. MATH. @© Society for Industrial and Applied Mathematics
Vol. 35, No. 1, July 1978 0036-1399/78/3501-0015 $01.00/0

PROOF OF SOME ASYMPTOTIC RESULTS FOR A MODEL
EQUATION FOR LOW REYNOLDS NUMBER FLOW*

D. S. COHEN,t A. FOKASt AND P. A. LAGERSTROMT

Abstract. A two-point boundary value problem in the interval [g, 0], € >0 is studied. The problem
contains additional parameters @« =0, 8 =0, 0= U <0, k =real. It was originally proposed by Lagerstrom
as a model for viscous flow at low Reynolds numbers. A related initial value problem is transformed into an
integral equation which is shown to have a unique solution by a pincer method. The integral representation
is used for a simple proof of the existence of a solution of the boundary value problem for & >0; for « =0
an explicit construction shows that no solution exists unless k>1. A special method is used to show
uniqueness. For ¢ | 0, k=1, various results had previously been obtained by the method of matched
asymptotic expansions. Examples of these results are verified rigorously using the integral representation.
For k <1, the problem is shown not to be a layer-type problem, a fact previously demonstrated explicitly for
k =0. If k is an integer =0 the intuitive understanding of the problem is aided by regarding it as spherically
symmetric in k +1 dimensions. In the present study, however, k may be any real number, even negative.

1. Introduction. Basic problem and its asymptotic solutions.
Formulation of problem and discussion of previous research. The following
problem was introduced by one of the authors (Lagerstrom (1961))
d’u kdu  du _(du\?
1.1 L (-—) =0,
(1.1a) dx*  x dx audx A dx 0

(1.1b,¢) u=0 atx=¢>0, u=U=0 atx=o00.

The purpose was to provide an analytically relatively simple model to illustrate the
ideas and techniques used by Saul Kaplun in his asymptotic treatment of flow past a
solid at low Reynolds numbers (corresponding to & small)."

The intuitive thinking about (1.1) will be aided if one gives it the following,
admittedly somewhat unrealistic physical interpretation. We regard x as a radial
coordinate in (k + 1)-dimensional space and u as temperature. Equation (1.1a) is then
an equation for time-independent temperature-distribution in an infinite medium.
The first two terms are Laplace’s operator, the last two represent nonlinear
autonomous heat sources (not occurring in any known actual physical problem!). The
temperature is zero on the sphere x = ¢ and U at large distances. Using this intuitive
interpretation, Lagerstrom (1961) applied Kaplun’s ideas to construct asymptotic
solutions for two (k=1) and three (k =2) dimensions, for 8 =0 and B8 =1.> The
intuitive reasoning indicated that for one dimension (k =0) the problem is not
singular. This was verified by the construction of an exact solution for this case. If
a >0, or B>0 one may make their values unity (even simultaneously) by a scale
transformation in u and x. However since 8 = 0 is an interesting case and a = 0 occurs
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! Knowledge of fluid dynamics will not be necessary for reading this paper even though we shall use
terms from that subject, such as “Stokes equation,” “Oseen equation,” etc. For thdse familiar with the
corresponding problems in fluid dynamics such terms will help to establish the connection; others may
simply regard them as distinctive names.

2 Asymptotic results were also obtained for & very large. This problem however, does not correspond
to flow at large Reynolds numbers, and will not be discussed in the present paper.
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in an auxiliary equation (the Stokes equation), we shall consider arbitrary nonnegative
values of @ and B. We shall assume £ >0 and, since this does not introduce any
mathematical complications, let k be any real number. For a >0, (1.1) has a unique
solution. Singular asymptotic techniques may, however, be used only if k =1. For
a =0, (1.1a) may be solved explicitly. The boundary value problem then has a
solution (which is unique) only if kK > 1. A corresponding initial-value problem may be
solved explicitly for any value of k. Thus k =1 is an important limiting case.

The original report (Lagerstrom (1961)) was (and is) not easily available. The
asymptotic ideas are briefly discussed in Lagerstrom’s induction to Part I of the
posthumous edition of Kaplun’s collected works (1967). Some previously obtained
results are given in Cole’s book (1968), for the case 8 = 0. The asymptotic analysis was
carried further by Bush (1971), Lagerstrom-Casten (1972), and Lagerstrom (1976).

Ideas for a rigorous discussion of (1.1) were given, in rather sketchy form, by Cole
(1968). He assumed B =0 and utilized an invariance group of (1.1a), which is
destroyed when B > 0. Hsiao (1973) gave a rigorous discussion of the existence of a
solution of (1.1) for 8 =0, k =1, and ¢ | 0. He proved the validity of some asymptotic
results found earlier. In particular he gave the general form of the part of the
asymptotic expansion which neglects transcendentally small terms (such terms will not
be discussed here). Recently MacGillivray (1977) has obtained rigorous results for
k=2, B=1. In the present paper there are few restrictions on the values of the
parameters. The restrictions are mainly necessitated by the fact that (1.1) must have a
solution. The integral equation introduced in § 2 is similar to that used by Cole (1968);
however, the group invariance of (1.1a) used by Cole is known only for 8 =0 and our
use of the integral equation is quite different from that of Cole’s. Our methods differ
radically from those used by Hsiao and MacGillivray and may possibly be more
powerful. However, Hsiao’s method, restricted to k=1 and 8 =0, may have the
advantage of being applicable to the “real” problem, i.e., to the problem in fluid
dynamics for which (1.1) is a model.

Review of some simple asymptotic results.
1) Outer Solution. The first principal limit for k =1 is £} 0, x fixed. This gives
the first term of the outer expansion

(1.2) fo="U.

2) Inner Solution. Since (1.2) does not give an approximation valid at near x = ¢
one introduces an inner variable

(1.3) £=xe7!
and, go, the first term of the inner solution satisfies the Stokes equation
d’go kdgo dgo\?
1.4 —+—<—=+ (—:‘) =
(1.4) dz* % dx B dx 0

and the inner boundary condition, go=0 at x =¢, X =1. The solution w of (1.4)
satisfying the initial conditions

(1.5a,b) w=A, —=B atx=1,
dax
is
B=0k=1:
(1.6a) w=BIni+A;



LOW REYNOLDS NUMBER FLOW 189

B=0;k#1:
Bi' ™" B
. = +A-——
(1.6b) w=TT% A -
B=1;k=1:
(1.6¢) w=A+In(Blnx+1);
B=1;,k#1:
~1—k A
(1.6d) w=A+mBX _F1-k=B

1-k

(The solutions for 8 =0 are trivial; those for 8 =1 are obtained using the simple
observation that if w satisfies (1.4) with 8 =1 then e" satisfies (1.4) with 8 =0.) For
k =1 the boundary conditions g(1)=0, go(c0)= U #0 can never be satisfied. For
k =1 this corresponds to the Stokes paradox (see result 6) below).

3) Nonlinearity of the general Stokes equation. Contrary to what used to be stated
in the hydrodynamical literature, the Stokes equation is not obtained by linearizing
around u =0 but by a limit process applied to the full equation. For 8 =0 (cor-
responding to incompressible flow) it is linear by accident but for 8 = 1 (corresponding
to compressible flow) it is nonlinear.

4) Oseen equation. The outer expansion starts, for k =1,

(1.7a) u~fotCil(e)fi+- -+, L(e)=0(1),
(1.7b) fo=U.

Thus f; obeys an Oseen equation which may be obtained by linearizing around the
value at infinity. If we assume U =1, the Oseén equation is

&Pf kdfs | dfi
(1.8) dx? +x dx * dx

Thus the Oseen equation is by nature linear. For 8 = 0 it contains the Stokes equation
(the inner limit of (1.1a) is the same as that of (1.8).) This is, however, not the case for
B=1. Thus for 8 =0 and k>1, (1.8) has a solution which is uniformly valid to a
certain order, that is, one may solve a two-point boundary value problem using (1.8)
and satisfy the condition at x = ¢ to a certain order (or even exactly; however, (1.8) is
only approximate). For k=1 this corresponds to the Lamb solution in fluid
mechanics. Again this is accidental; for 8 =1 the statement just made is no longer
true. One may of course satisfy the boundary condition at x = ¢ using (1.8) but the
result is not a valid approximation for 8 = 1.

The solution of (1.8) which vanishes at infinity is within a multiplicative constant
the exponential integral

0.

(1.9) Ei.(x)= Jm s * e ds.

5) Special case k =0. In this case the problem is not a singular perturbation
problem. This is obvious from the intuitive interpretation. In fact the exact solution
fora=1,B=0is

(1.10) u=Utanh[Ej(x—s).
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For @ =1, B =1 one finds, putting p = du/dx, that either p =0 which corresponds to
U=0,u=0o0r

(1.11) p=Ae“+(1—u).

Since p tends to zero as u -0 (this will follow from the results of §§ 2 and 3) the
constant of integration is

(1.12) A=eY(U-1).

Thus in principle the problem is solvable by quadrature and inversion of a function. In
the special case U = 1 one finds explicitly

(1.13) u=1-e %9,

Note that x and ¢ occur only in the combination (x — ¢). This is due to the invariance
of the equations under the group x - x + a and shows the nonsingular behavior of the
solution. The special dependence of (1.10) on U is due to invariance under the group
x—ax, u->a 'x. A corresponding group for the case 8 =1 is not known.

6) Note on the dependence on k. We shall consider all real values of k including
negative values. For kK =1 and integer, intuitive reasoning tells us that the problem is
singular and that fo= U. Since the “cooling power” of the “sphere” x = ¢ decreases
with increasing integer k, it is reasonable to assume that the same is true for any value
k =1, so that fo= U. For k <1 an intuitive interpretation is difficult except for the case
k =0 discussed above. From (1.6) one sees that for k =1 the boundary condition at
infinity cannot be satisfied by a solution of (1.4). However, for kK =1 matching with
fo=U is still possible,” whereas for k <1 such a matching is not possible. It is
therefore natural to assume that the problem is not singular for k <1 (or at least that
the asymptotic techniques used for k =1 are not valid for kK <1) and that the outer
limit is not equal to U. It will however be shown that boundary-value problem (1.1)
has a solution for any value k if @ > 0. In fact, it will be shown that if M* is the exact
value of (du/dx )., the exact order of M* is ¢ * for k <1, and is £ " for k >1. The
case k=1 is an important limiting case and the order of M* is ¢ 'v(e) where
V(€)= df|ln € |—1.

7) First term in inner expansion. This term will be denoted by go(¥). It must vanish
at £ =1 and match with f, = 1. Denoting dgo/dx at £ = 1 by My= eM, one finds

B=0;k=1:

(1.14a) go=Moln%, My=|lne| =v(e);
B=0,k>1:
_ _Mo ~1—k> o g
(1.14b) go—(l L), Mo=k-1s
B=1,k=1:
(1.14¢) go=In[1+M,ln x], Mo=(e—1)v(e);
B=1;k>1:
(1.14d) go=tn[e =22 81K], No=(e= 1)k 1)

3 This is, in essence, Kaplun’s resolution of the Stokes paradox.
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Thus for k >1, go satisfies the boundary condition at infinity. However, if one
rewrites (1.1a) in X variables and treats it as a regular perturbation problem, some
higher order term will tend to infinity with X. For k =2 it occurs in the second term;
this is known as Whitehead’s paradox. As k increases the infinity will occur in
higher-order terms. The “paradox’ is thus delayed. It will, however, always occur
sooner or later; it is resolved by matching.

8) First two terms of outer expansion. By matching with go(X) one finds the second
term of (1.7a). The results are (Ex(x) is defined by (1.9))

B=0,k=1:

(1.152) fot CLER=1-vEB),  vle)=lnel
B=0,k>1:

(1.15b) fo+ CLL@©fi= 1= (k= De* B,
B=1,k=1:

1150 for G/ = 1= v Ei),
B=1,k>1:

1150 for G =1-CEEEED g

The above results are those of Lagerstrom (1961), trivially generalized to nonin-
teger k, with the exception of (1.11)~(1.13) which were found recently by Fokas.
Asymptotic results to higher order are given in the references cited above.

Historical note. Kaplun’s original discoveries were published in 1957; see
Kaplun-Lagerstrom (1957) and Kaplun (1957), reprinted in Kaplun (1967). Possibly,
because these publications were in rather brief and condensed form, or possibly
because of the novelty and of the ideas used they were mostly ignored or not
understood.* It was therefore felt that a rigorous analysis might help to persuade the
doubters. The original work on the present paper was done a considerable time ago by
D. S. Cohen and P. A. Lagerstrom. A preliminary draft was written early in 1967 and
even referred to as a forthcoming publication. For various reasons, the authors were
side-tracked by other problems. Also, while the uniqueness of a corresponding initial
value problem was easily proved, only the asymptotic uniqueness of the boundary
value problem was proved. Although the authors were more interested in construction
based on intuitive arguments than in rigorous proofs they eventually decided to live up
to their promise of a publication. A third author, A. Fokas, was enlisted and made
several important contributions, in particular, regarding the uniqueness of the boun-
dary value problem for any £ >0 (see § 3).

Outline of the paper. In § 2 an initial value problem is studied: The boundary
condition at infinity is replaced by the condition du/dx =M at x =¢. The problem
may then be recast in the form of an integral equation, very similar to the integral

4 An important exception is the paper by Proudman—Pearson (1957). Basing their analysis on a short
partial account of Kaplun’s ideas published in Lagerstrom-Cole (1955, p. 873fF) and their independent
analysis of the problem, Proudman and Pearson (1957) discussed the low-Reynolds number problem,
discovering some significant features of the three-dimensional case. These features were shown to have
their analogue in the model problem (1.1). A discussion of this is given in various references, the most
complete is found in Lagerstrom—~Casten (1972).
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equation which Weyl (1942) derived from the Blasius equation. The method of
solution is also similar to that of Weyl (“pincer movement”). Starting with uo =0 and
applying the integral operator repeatedly one finds one increasing and one decreasing
sequence of functions, each of which converge to the same function # which is thus a
fixed point of the integral operator and a solution of the initial value problem. In § 3
the existence and uniqueness of the solution of boundary value problems is proved.
For the Blasius equation, which has a simple group, the initial value problem can
easily be related to the boundary value problem. A corresponding group exists for
B =0, see Cole (1968, p. 611), but has not been found for the more interesting case
B =1. Thus in the latter case we have to abandom Weyl’s method and prove the
following: As M varies, M =0, the value of u(%) can be any number in [0, o). The
problem is then, does it assume the value u(c0) = U only once? One of the authors (A.
Fokas) proved that du/oM exists and is positive for x >¢ even at x =00. Thus the
condition u(o0)= U is achieved only for a specific value of M. This proves the
uniqueness of the original boundary value problem, for any £ > 0. Finally, in § 4, the
validity of the asymptotic formulas given above (which were derived by nonrigorous
singular perturbation techniques) will be established rigorously.

Notation and terminology. The general notations of singular perturbation tech-
niques (such as domain of validity, overlap, etc.) are explained in Lagerstrom—Casten.
We shall, however, use slight changes of notation: The symbol ““ «” will be replaced
by “ < ”,

(1.16a) {(e)<n(e), or n(s)>{(s)®lifg§=0,
(1.16b) L(€)=n(e), 0rn(e)2{(e)<:>1i11g]§l<oo,
(1.16¢) {()=n(e) and n(e)={l(e) S (&

The last definition means that (¢ ) and n(e) are of the same order. One may also write
n=0(), or {=0(n). However, the notation of (1.16c) brings out the fact that
“being of the same order as” is a symmetric relation; it is actually an equivalence
relation.

2. The initial-value problem. In (1.1) we replace the boundary condition at
infinity by an additional initial value. The problem is then

d*u kdu du du\?
) ——t=—tau—+p|—) =
(2.12) dx2+x dx au dx B(dx) 0,

v

(2.1b, c) u(e)=0, (iiﬁ) —M=0.

dx x=g

We shall show that a unique solution exists for a, 8, =0, € >0, k =real number.
Rewriting (2.1a) as

(c*u'Y + (au +Bu)x*u")=0,
and using an integrating factor one finds

(2.2a) x*u' exp [aU (x)+Bu(x)] = M,
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where

(2.2b) Ux)= J u(t)de.
Thus, for M >0,

(2.3a) XxZe > u'(x)>0,
(2.3b) x>¢e > u(x)>0.

An equivalent integral equation. It follows from the above that one may now
rewrite (2.1) as’

(2.4) u="Tlu],

where the integral operator T is defined by

(2.52) T[f]= e"MJ'xs—" exp [~ Bf(s)—aF(s)] ds,

(2.5b) F(s)= J £t) di.
Given two continuous functions f(x), g(x) defined for x =Z¢ we shall use the
following notation:
(2.6a) f(x0) < g(x0) means strict inequality for x = xo,
(2.6b) f<g means f(x)= g(x) for all x and f(x)< g(x) for x in some finite interval.
Thus, provided the integrals exist and M >0,
(2.72) T(f]>0,
(2.7b) f<g = TIgl<TI[f]

Pincer movement. Following Weyl (1942) we show that (2.4) has a unique
solution by using a pincer movement. We define

2.8) uo=0, uy+1="T[u,].

If M=0, then u,=uo 0, all n. Hence we assume M >0. Then by (2.7), u; >0,
0 <u,<u;, from which une finds by an easy induction proof

(29) U< Uz <" U <Upi+1* * " U3<< U7,

Note that the functions u,, are defined and finite for all ¢ =x =0 and belong to C.
Obviously the sequences (u2;) and (u2;4+1) converge pointwise to functions uy and uy
respectively, with ui(x)=un(x). To show the existence of a solution of (2.1), or
equivalently a fixed point of the operator T, one needs to show strict equality

(210) u;(x)= un(X).

First a few preliminary remarks. It is often convenient to use £ =xe '; the
variable £ also occurs in the asymptotic analysis. Strictly speaking, corresponding to a

5 As will be seen in § 4, this integral equation (or integral representation of u in terms of itself) will not
only serve to solve the initial value problem; crude estimmates of u, based directly on (1.1) can give more
useful estimates of u with the aid of (2.4).



194 D. S. COHEN, A. FOKAS AND P. A. LAGERSTROM

function f(x, ¢ ) one should use different notation when % is used, e.g., (X, ) = f(x, ).
We shall, however, use f instead of g when there is no danger of ambiguity. The
operator (2.5a) may then be written

x

(2.11a) T[f]=MI sk exp[-—Bf(s)—aeJ f(t)dt] ds,

1 1
where

~ _ if)
(2.11b) M—eM—(df -
The formulas for u; are
1 1-k S1-k
_ kX TE =X -1

(2.12a) uy=eM T % M =% k#1,
(2.12b) ur=eM(nx—Ine)=MIn%, k=1

To prove (2.10) we need the following
LEMMA 2.1. Ifa =0, B=0, M =0, € >0 then

|ty — Um+1|>0  asm >0,

Proof. If @ =8 =0 then u, =u,, for m=1, where u; is given by (2.12). In fact,
existence of a solution for the boundary value problem for k >1 follows from (2.12).
We may then assume a + 8 >0 and make a positive scale transformation of u such
that

(@) ea+pB=2.

This scale transformation may change the values of M and of ¢} this is irrelevant since
they are arbitrary positive numbers.
FromO0=u=v = e “—e " =v—u we derive a useful estimate

®) [t ()= () <Mj 5™ [eaf |t (1) thm—1 (1) d;}
+B|um(S)—um_1(s)l} ds.

We shall give various upper bounds for |u, —u, ;| for various ranges of k, and
prove them by induction. In all cases the estimates are directly verified for n =1, by
use of (2.12); hence in the induction proof we need only consider the step from #n to
n+1.

Fork <1,

(zM)m (f)(l—k)m (.f)2m
(1-k)m!

Integrating the induction hypothesis one finds

(C) |um—um_1|§

s (ZM)mS(l—k)m s2m+1
d j m(t)— Um—1(2)| dt = - = .
Applying the integral operator T to (c) gives
M(zM)mi(l-k)(M‘Fl) I:J,f 1[ ) Sm+1 m] ]
1 — Um| < ~lea® ——+ .
) ltter = tun| (1-k)m! L s « 2m+1 Bs™ | ds
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Il? t,flis estimate it is essential that, since k <1, in the integral ﬁ s' (- - ) ds the factor
s " takes on its largest value at the upper limit. Since

x 2m+1 ~2m+1 ~2
1( s eax "
—\ Ex + Bs ) ds =T -_—
L S\E4 %, 1R em+1y Pom
f2m+2 £2m+2

+
e e —

and ega + B =2, the induction is complete.

Fork=1,
. i2m
) |ty — thm—1| = (2M)™ In £ —.
m!
Integrating the induction hypothesis one finds:
ln S s2m+1
m ()= Um—1(2) dt =M
@ [l 0= s-1(0) e = A B2

Substituting (f) and (g) into (b) and evaluating the log term at the upper limit (where it
assumes its largest value) we get:

B M(2M) In £ I [ ot ]
lum+1 uml m+ 1 dS
MQM)™ In 25D
= m! m+1
This completes the induction.
Fork>1,

Q@M)™ i
— < i
(h) ‘um um—ll-— k_1 m!'

Integrating the induction hypothesis one finds:
(ZM)M S2m+1
k=1m!2m+1

substituting (h) and (e) into (b) and evaluating 1/ s*7! at the lower limit where it takes
its largest value we get

o _MQeM)T j [eas2m+1 Zm]
= S |, S omr s RS S
_MQeMy" 287
“k-1Dm! m+1°

® [ ()=t (1) e 5

This completes the induction and the proof of Lemma 2.1.
THEOREM 2.1. The initial value problem has a unique solution u.
Proof. Lemma 2.1 proves (2.10). Hence the pincer closes. More explicitly, writing

m—1

) Um = L (Ujr1—u)

j=0

and letting m - o0 one sees that from (c), (¢) and (h) in the proof of the Lemma that
the series ¥ |u;+1— u;| is majorized by an exponential series of some power of x. Thus,
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as m - 0, the series (j) is absolutely convergent to a function 4 which is analytic in x.

Furthermore this solution is unique. If & is a solution then 0= uo,<i. Hence
T[#]<ui=T[uo]. As above one then proves u,,, <@ <uUsn,+1. Since the pincer closes
it follows that # =lim u,, and hence # is identical with the solution found by a pincer
movement.

3. The boundary-value problem. Existence and uniqueness of a solution of (1.1)
will be shown for @« >0, or « =0 and k> 1. Explicit construction (see (1.12) and
(1.13)) shows that if @« =0, k =1, the solution cannot take on a finite value at infinity.

Existence follows if one can show that by varying M in the initial-value problem
one can make u(o0) be any nonnegative number. To prove uniqueness one must show
that u(c0) assumes each value only for one value of M. This will follow from a proof of
the intuitively plausible assumption that the derivative of u(c0) with respect to M is
positive, even at x = 0.

LEMMA 3.1. Assume M =0, € >0, ora =0 and k>1, B =0. Then there exists a
number C, independent of x, such that u(x)< C for e =x = 0.

Proof. Let X be a fixed value of x, ¥ > ¢. Define # = u(x) and a function f(x) by

f=0, EsSx

f=

A

x,

<X.

i
=

b

Then f<u and hence

u(x)= T[u]<T[f]=£kMJ s *ds +£kMJ_ § K RETARETD gg
(a) € X

[s o]

X
< ekMJ s¥ds+e"M| sFe PR g — [+ .
£

X

Since * is fixed the integral I is a fixed number. The improper integral I, exists under
the assumptions of the lemma. Thus I; + I, is a finite number independent of x which
may be taken as the constant C of the lemma.

That the restriction of @ and k cannot be removed by a finer estimate follows
from (1.14) and the uniqueness of the initial-value problem. If « =0, k=1 then
u(00)= o0,

LEMMA 3.2. For fixed e >0, k, «a =0, B =0, one may choose an M such that u ()
is greater than any given constant.

Proof. Take a fixed value x =X >¢ and assume there is a constant C such that
u(x)<C, all M. Then

u(x)<CcC, ESX=X

Hence
x

T[Clx=z= ekMJ' s *exp [~ [aC(s—&)—BC]] ds > u(x).

€

Since € >0 one may increase M such that T[C],-z becomes greater than C. This
contradicts the assumption u(x¥)<C. A fortiori, the value of u(%0) may be made
arbitrarily large.
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LemMA 3.3. The function u(x)=u(x; M, e, a, B) is continuous and differentiable
in M in the interval £ = x < 0. Furthermore, if

__ ou

(3.1) U_W

then v’ exists in the same interval.

Proof. The lemma follows from the uniqueness of the initial-value problem; see
for instance Hartman (1964, p. 944f).

In order to extend Lemma 3.3 to x = o0 we need to show that v(x) is nonnegative
and bounded.

LEMMA 3.4. v(x)>0 in (g, ).

Proof. Define

3.2) upr(x) = the unique solution of the
’ initial-value problem for u(x) with u'(g)= M,

and consider it as a given function. It is then the solution of the linear initial-value
problem in u,

(3.3a) u”+<i—c+,8u§w>u'+au}uu =0,

(3.3b,¢) u=0, u'=M atx =e.

This function will be compared with v which is the solution of the linear problem
(3.4a) v"+(§+auM+2,6u}w>v'+au}uv =0,

(3.4b,¢) v=0, v'=1 atx=e.

Comparing (3.3a) and (3.4a) one sees that the coefficients of u and v are the same, the
coefficient of u' is

k ,
(@) g2=;+BuM,

and that of v' is

(®) g1= g2+ aun + Bum.

A straightforward calculation gives

© gi+lgf=g£+1g§+l(auM+Bu5u)2+a(EuM+ui4)-
2 2 2 X

Since uar(e)=0, upr(x)>0 for x > ¢, upr(x)>0 and since v >0 at least in some open
interval with ¢ as a left endpoint one concludes from (c) and Theorem 20 of Protter-
Weinberger (1967, pp. 45-46) that v can have at most one zero in any closed finite
interval [&, x¢]. Since v(e)= 0 the lemma follows.

LEMMA 3.5. v(x)= up(00)/M in e = x <0,

Proof. Differentiating the integral equation (2.4) with respect to M one finds

(.5) v(x)= u—l}l\%— € kMJx s @V (s)+Bo(x)) e *Im B gg,
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where

V)= [ v ds,  Un)=[ u(oyt
Since v(x)=0, a, B8 =0 and ups(x)= uar(co) the lemma follows.

Discussion. The bound on v as given in the lemma is not defined for M =0. If
M =0 then

(3.6a) u=0,
and
(3.6b) o(x)=skj s~ ds,

Thus for M =0 and k=1, v(0)=00. However, we shall only need the fact that
u(co, M) is continuous from the right in M at M = 0. This will be proved later (Lemma
3.8). To illustrate the situation consider the explicit formula (1.10) for the case kK =0,
a=1, B=0. In this case M =U?/2, u(00)=U =v2M, v(0)=1/U =1/v2M. At
M =0, v =00, but limysou (00, M)=0=u(c0, 0).

LEMMA 3.6. If >0, or a =0 and k> 1, and M >0 the limit v(00) = lim, 0 (x)
exists and is finite. Furthermore,

_ dupg (0)

3.7 v(0) M

Proof. By Lemmas 3.4 and 3.5

(a) 0= V(s)é%s—:-g—),

and for s =so>¢

(b) Unt(8) = ups(s0)(s — €).

Using the estimates (a) and (b) one sees from (3.5) that the improper integral (x = 00),
defining v(o0), exists under the assumptions of the lemma. This integral is uniformly
convergent in M which proves (3.7).

LEmMA 3.7. v(00)>0.

Proof. In view of Lemma 3.4 we need only to prove that v(c0)# 0. Rewriting
(3.4a) as

k
(a) v”+(;+26u§w>v’+a(qu)'=0,
one finds by integration and using (3.4b, ¢),
(b) v'+I (ks +2Bup(s)]v'(s) ds = 1
Since up(x) is increasing with x and tends to a finite value as x - o0 it follows that
(©) up(0)=0,
and hence

() v'(00)=0.
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Assume now
(e) v(c0)=0.
Then from (b) and (d)
||

® 1—] [ks_1+23u§u(s)]v'(s)ds<(——+23M>v(00).
& €
Thus the impossibility of (e) follows from (f).
LeEMMA 3.8. u(o0, M) is continuous for M =0.
Proof. For M >0 continuity follows from differentiability. Since u(c0, 0)=0 we

need to prove
(a) lim u(c0, M)=0.
Mo

(This one-sided continuity is all which is needed for the next theorem.) Assume that
the limit in (a) is not zero but a constant C >0. Since M >0 implies v(0)>0 a
consequence of this is

(b) u(co, M)z C, allM>0.
If (b) holds there must be an X such that

C
© u(@®)=7.
Here ¥ might depend on M. However its least upper bound for 0 <M = const. cannot
be infinite since this would contradict (b). Its least upper bound is then a finite constant
% independent of &. Thus the function which is zero in ¢ =x = £ and is equal to C/2 for
X = x is smaller than u(x). We now replace i in formula (a) of the proof of Lemma 3.1
by C/2. Then M enters only as a multiplicative factor in the two integrals. Hence by
letting M |0 one may make u(x) uniformly bounded by any number >0. Lemma 3.8
is thus proved by contradiction.

Discussion. It follows that u(co, M) is continuous in M and monotonely increas-
ing, for M = 0. It has not been proved that the derivative with respect to M exists at
M =0. As shown in the discussion of lemma 3.5, v(c0, M) may actually tend to infinity
as M|0.

THEOREM 3.1.° If a >0, or a = 0 and k > 1, the boundary value problem (1.1) has
a unique solution.

Proof. Existence follows from the fact that u(co, M) is equal to 0 at M =0, can be
made arbitrarily large by varying M but is not infinite, and is continuous in M.

Uniqueness follows from the fact that v(c0)>0 for M >0. It must be noted that
M <0 can never give a nonnegative value of u at x = (cf. (2.4) and (2.5)) and that
u =0 is clearly the unique solution for u(0)=0.

4. Proof of some asymptotic results.

4.1. Introduction. Notation. Having established existence, uniqueness and
certain properties of the exact solution of the boundary-value problem (1.1) we shall
now prove rigorously various theorems about the asymptotic formulas of § 1, which
were obtained by singular-perturbation techniques. We shall restrict ourselves to

6 The authors are indebted to A. D. MacGillivray for pointing out that a proof given in an earlier draft
was incomplete.
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lower-order approximations. The problem is open-ended; one could in principle
prove the validity of approximations to any order. This would not involve any
essential new ideas for any partial approximation. Ideally, one should show that the
method used gives valid approximations to any order. A solution of this much deeper
problem will not be attempted here.

For @ =0, k>1, the solution can be given explicitly and for a =0, k=1, no
solution exists. Thus we shall assume a > 0. The case 8 > 0 is more complicated than
the case 8 =0. By a scale transformation one may make a« =1 and, if >0, B=1
simultaneously. For u(c0)= 0, the problem has the unique solution u =0. For simpli-
city we assume U =u(o0)=1; the ideas used below are the same for any strictly
positive value of u(c0). The values to be used are thus

4.1) a=1, B=0 or B=1, u(0)=1.

We shall first consider arbitrary real values of k, incidentally verifying that the
asymptotic techniques used for k =1 are not applicable for k <1. After this, only the
case k =1 will be considered.

The exact solution of (1.1) will be denoted by u*(x); it depends on the parameter
k and on the value of 8. We define

(4.2a) U*(x)=J u*(s) ds,
and
*
(4.2b, ¢) M* = (di) . M*=eM*,
dx x=g

The integral operator (2.5a) with M = M* will be denoted by T*. Thus
u*(x)=T*[u*]=e"M* J s % exp [~ Bu*(s)— U*(s)] ds
4.3) . ) ]
=M* j s *exp [—Bu*(s)-—s I u*(t) dt] ds.
1 1
For the inner solution we shall need an operator with @ = 0 (corresponding to the
Stokes equation). It will be denoted by T:

Tolf]=Tolf;M] = 5kMI sk e F® 4
(4.4a) . e

We define

T§[f]1=Tolf; M*]
and its fixed point by w™*:
(4.4b) w*=T¢[w*].

Thus w* is the solution of the Stokes equation (1.4) with

(dw*

(4.4c,d) pr:

)=A7I*, atx=1.
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The explicit formula for w* may be obtained directly by replacing A and B by 0
and M* respectively in (1.6). However the integral representation (4.4b) will be
useful.

4.2. Asymptotic formulas for all real values of k.
THEOREM 4.1.

(4.5a) k>1=>> sM*=0(),
(4.5b) k=1 eM*=0@()), v(e)=|ne|™,
(4.5¢) k<1 e"M*=0(Q).

Proof. Let x = O(1). Then u*(x)= O(1) and

(a) u*<1=> u*>T*1]=c"M* J s e Pt gs

=e"M*e P *[Er(e)— Ex(x)).
For k #1,
1-k _ _1-k

(b) 0< u*<T*[O]=ekM*[x—1—_—,%—]
Fork=1,

(©) 0<u*<eM*[In(x)—In (¢)].

Now let ¢ | 0. For k =1, Ex(¢) dominates the bracket in (a) and is O(¢ **") for
k>1 and O(|ln &]) for k =1. Thus (a) implies eM*=<1 and (b) implies eM*>1 for
k > 1. This proves (4.5a). Similarly, for k = 1, from (a) and (c)

eM*lng|<1, eMlnegl>=1
which proves (4.5b). Finally, if k <1
Ew(e)=0(Q)

so that (a) and (b) prove (4.5c).

Comments. For k>1, M* is of order £, independent of k, and in the limiting
case k =1 its order is v(e)e '. Comparison with (1.14) shows that these are exactly
the orders of M, = first approximation to M*, Since subsequent terms of the expan-
sion of M* have higher order, (4.5a) and (4.5b) thus agree with a result of singular
perturbation techniques.” The result (4.1c) indicates that the same techniques are not
applicable for k < 1. This was already verified for k =0 and will be confirmed by the
next theorem.

THEOREM 4.2. If € | 0 then u*(x)! 1 uniformly in maximal order domains
depending on k,

(4.6a) k>1l:x=n, n>e,
(4.6b) k=1l:x=n, [In 0™ >v(e),
(4.6¢) k<l:xz=n, n>1.

7 This is, however, a weak statement. Stronger statements about the values of M* — M, will be proved
later (Theorem 4.4).
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Proof. Define

(a) ;= rz 57 exp [-Bu*(s)— U*(s)] ds.

1

For k > 1. From (4.5a) one finds

o k k—1
M* g\k-1
—u*(n) = £ M < ¢ *J‘ -k 5 _ & n LJ_(__) )
(b) 1—u*(n)=e"M*I, eMﬂs ds k=1~ \y

Thus the domain of validity of 1 as an approximation to u* is at least as large as given
by (4.6a). However, it could not be any larger since u*(g)=0.
For k =1. Write

©) Iy =I;+I3, %fixed (¥ =o0(1)).
Then

@ e l-pur®)-U*E) | Cas<rt <jxs-1 as=mmZ.

Since the factor multiplying the first integral in (d) is O(1),

© I5 % linnl.
Furthermore

® Iy % 1.
Thus

IIn 0| >v(e) > eM*IT 0.

Since by (e) and (4.5b), eM*I} does not tend to zero if |In n|™* = v(e), the proof of
(4.6b) is complete.

For k<1. From (4.5c) one finds that ¢ “M*I » tends to zero only if the integral
itself tends to zero which is equivalent to n 1 o0 or n >1.

Comments. 1) The proof contains statements which actually are somewhat
stronger than the theorem itself. For instance, (b) gives an upper bound for the order
of 1—u*(n) for k>1 etc.

2) The theorem verifies asymptotic results previously obtained by nonrigorous
arguments in the literature cited. For instance, it had been assumed on intuitive
grounds that for k =1 the outer limit of u*(x) was unity. This statement appears here
in the form 7 —}{-1 > 1—-u*(m)~>0. Since u*(x) is monotone increasing with x to
u(0)=1 it follows that the same is true for n > 1. This is obvious anyway since n > 1
implies x - 0. The estimates of 1 —u*(n) for n <1 follow if one assumes that go(x), as
given by (1.14), is an approximation to #* valid to order unity in this order range.
Only (4.6¢) contains a new result. It was known from the explicit formulas for u* in
the case k = 0. It has now been shown for all k > 1. Thus the techniques used for k =1
are not applicable for k <1; it is questionable whether any form of matched asymp-
totic expansions can be used for the latter case.

LEMMA 4.1.

4.7 £<x <00 = u*(x)<w*(x).

Proof. The lemma is trivial for 8 = 0 since in that case w* = u¥ = T*[uo], uo=0.
For B =1 we note that at x =g, w* =u*, dw*/dx = du*/dx, d*w*/dx*=d*u*/dx>,
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d*w/dx*>du*/dx>. Hence there exists a maximal open interval (e, x;) on which
u*(x)<w*(x). Assume x;#00. Then, at x=x1, u*(x1)=w*(x;) and du™/dx=
dw*/dx. On the other hand,

(B5)  =efnmaitee,
and
* * d
(ﬂ‘—) =& M*x7“ e~ Ur(xy)< (—W)
dx ) x=x dx /) x=x,

This proves the lemma by contradiction.

4.3. Asymptotic formulas for k = 1.
THEOREM 4.3.

(4.8a) k>1andk #2 > w*(x)—u*(x)<e, xin[e, ],
(4.8b) k=2 w*@x)—u*(x)<e|llne|, xin[e, ],
k=12 w*x)—u*x)=<v(e), xin[e, %], £=0(Q1)

and

(4.8¢) w*(x)—u*(x)<1 whenx>1and v(e)<|lnx|™"
Proof.
(a) wH(x)—u*(x)=e*"M* J s K[ 7P _ oAU U g

X
—_ —u* — *
éskM*J s ke WO =TV

€

éJ‘ s [1—e V") gs

éakM*J s ¥ (1—e"") ds.

Fork>1and k #2,

(b) j sTH(1—e")= 0(e "),
Thus (4.8a) follows from (a), (b) and (4.5a).

Fork=2,

© J.xs"z(l—e_s)=0|1nel).

€

Thus (4.8b) follows from (a), (c) and (4.5a).
Fork=1,

d) rs—l(l—e_s)ds=lnx—lns—E1(e)+Il(x).
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Since for small values of ¢
(e) Ei(t)=—Int—y+0(t)
it follows that —In & — E1(e)= O(1). Similarly In (x)+ E1(x)=0(1) for x <1. Thus
x=12 wHEx)—u*(x)<v(e).

For x > 1, the term In x dominates in (d). This concludes the proof of (4.8c).
Comments. The complications for k =1 arise as usual from the fact that the

indefinite integral of s ', namely In x, is large in absolute value both for x large and x

small. The special estimate for k = 2 is consistent with singular perturbation theory. In

this case the first correction to go(¥) has a term of order ¢ and a term of order |In ¢|.
THEOREM 4.4,

4.9) ~_=1+0(1).

Proof. The functions w* and g, have three things in common: 1) they satisfy the
same equation, 2) their value at x = ¢ is zero, and 3) they match with u* in some
domain. This third condition follows for g, by construction and for w* from Theorem
4.3,

A consequence of the first two conditions is that go and w* have the forms given
by (1.6) with A =0 whereas B will have to be determined by matching. As may easily
be seen matching by requiring the outer limit of the inner solution to be unity gives the
same result as a more orthodox choice of the overlap domain. To fix the ideas, let
B =0 and k> 1. Putting A =0 in (1.6b) and assuming its outer limit to be equal to 1
gives (cf. (1.14b))

IimB=k—1.
Thus
lim M*=My=k—1

which proves the theorem for this special case. More generally, all functions given by
(1.6) are continuous in B which proves Theorem 4.4 for all special cases.
COROLLARY.

The domain of validity of the approximation go(X)
4.10) to order unity may be inferred from the domain of
validity of w* as given by Theorem 4.3.

Comments. A general principle for proving the validity of an inner expansion. It
seems worthwhile to extract the essentials of the proof of (4.10). The statements given
below may of course be generalized further.

Assume that we have a two-point boundary value problem for the interval [x;, x5]
and that there is a boundary layer at x;. Assume further that this problem has a unique
solution u*, at least for ¢ sufficiently small. Then u*(x,)= A* and (du™/dx);-, = B*
are determined, at least in principle (for instance B* may not be known exactly), and
the problem may be rephrased as an initial-value problem. Such problems are often
much easier to study than a boundary value problem. Let w* be the exact solution of
the boundary layer equation with the initial conditions w*(x;)= A*, (dw*/dx)y—x, =
B*, and go the boundary layer solution obtained by matching, giving a value By
for (dgo/dx)x=x,. Assume that one can prove that |u*—w*|=0(1) for a region in
which matching is possible. If the solution of the boundary layer equation depends
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continuously on one parameter B (=the derivative at x =x;) it then follows that
|u*—go|=0(1) for all x for which |u*—w*|=0(1).

In the present case the estimate of u* —w* depended on the fact that the initial
value problem for both functions could be rephrased as an integral equation. If
u*—w* can be evaluated by other methods, the principle announced above is not only
valid but also useful. Note that strictly speaking matching does not determine B = B,
but rather B = Bo+0(Bo). This fact was emphasized, and used, in Kaplun (1957, p.
597).

THEOREM 4.5.

(4.11) |u* (@)= w*(x)| = 0(1) > [u*(x)— golxe )| =0(1).

Proof. This statement is obvious and discussed in the comments given above. Thus
from Theorem 4.3 we know the validity to order unity of the inner approximation go.

The validity of the leading terms of the outer and inner expansions have now
been established. We shall give an example of how one may treat higher-order
approximations. For we take B =1 and k =1.

THEOREM 4.6. Fork =1, 8 =1,

@1 u*=[1= (= /e EEMI |
v(e)
for x fixed.®
Proofs.
(a) v(e) '(1—u*)= eM* on s texp [—u*(s)— U*(s)] ds.
v(e) Jx
Taking the limit as £ | 0 we find from (4.9) and, (1.14c¢)
eM*
(b) v(e)->(e—1).
Furthermore, from (4.6b) for x = O(1),
(c,d) u*(s)~>1, U*(s)~s.
Thus the limit of (a) is
@) (e - 1)[00 seas =L B ().
x e

This proves (4.12).

Comments. The values k=1 and B =1 were chosen for concreteness. The
method of proof works equally well for any k=1, 8 =0 or 8 =1, if one uses the first
two terms of the outer expansion as given by (1.14). We may rephrase Theorem 4.6 by
stating that the first two terms of the outer expansion are valid to order v(¢) in the
domain [n, ], n = O(1). By Kaplun’s extension theorem this domain may be enlar-
ged slightly; there is an o<1, such that the domain of validity to the same order is
[n, co] for any i >ny. It is known that there is a trade-off between order of validity
and domain of validity. If an approximation is valid to order {(¢) in a domain
[n(g), 1], then the domain of validity is sometimes extended (n replaced by n* <n) if

8 Note that the bracket represents the first two terms of the outer expansion as determined by matched
asymptotic expansions; see (1.15c).
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¢ is replaced by ¢*, ¢*>¢. This might be studied, for k> 1, with the aid of the
estimate of the order of 1—u*(n) given by (b) in the proof of Theorem 4.2; however,
it will not be discussed here. We shall also omit discussion of higher-order approxi-
mations; the general method given here should work for any partial sum of inner and
outer expansions. A fair sample of proofs for partial expansions is sufficient. After that
the interesting theorems would be those for expansions containing infinitely many
terms. We shall formulate one such problem.

Problem. Let k =1 and B =1 (similar statements for 8 = 0 are obvious). The inner
expansion need not be expressed as a partial sum. A neater form’ is to express it as a
sequence g%, g etc., where

(4.13a) g™ =In [1 +( ¥ Divi+1) In J'c'], D, = constant.
i=0

For instance,

(4.13b) g®=In[1+D®)In ),

(4.14a) D®=(e- 1)[(V+y)y2+y2(1—f—;—12 In 2)#].

Assume now that a function D®(¢) exists, to which the formal sum 2;0:0 D' s

asymptotic (it is of course not unique). Put

(4.14b) g(F)=1n[1+D(e)In £].
One may then pose the problem whether

4.15) v M u*—g (%)) »0, anym >0,
for

(4.16a) e<x=<g® anybin(0,1].

(As is well-known g does not represent the complete inner expansion; the term
u(du/dx)=eu(du/dx) has been neglected since & is transcendentally small with
respect to v(g).)
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