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Distorted-wave-approximation calculations are reported for the excitation of the b °S} and B '3} states of
H, by electron impact. A discrete-basis-set method is used to obtain the electron-molecule continuum wave
functions. Differential and integrated cross sections are presented from near threshold up to 60-eV electron
impact energy. Comparison is made with other theoretical results and experimental data.

I. INTRODUCTION

Electronic excitation of molecules by low-energy
electron impact is an important process in gas
laser systems and other weakly ionized plasmas.
Ab initio theoretical methods are clearly of in-
terest, but the development of accurate methods
has been slow primarily owing to the difficulty of
calculating wave functions for the highly non-
spherical electron-molecule interaction potential.
Most calculations to date for electronic excitation
have made use of some form of the Born approxi-
mation, which is reliable only at high impact en-
ergies and small scattering angles. Calculations
for inelastic electron scattering from light atoms
have recently been reviewed by Bransden and
McDowell.! These calculations indicate that dis-
torted-wave methods have considerable utility in
the intermediate energy region extending from the
ionization threshold up to several hundred eV.
Distorted-wave methods are much easier to apply
than close-coupling methods and thus seem well
suited to the study of electronically inelastic elec-
tron-molecule scattering.

In this study of the excitation of the first singlet
and triplet excited states of H, by low-energy elec-
tron impact, we use a distorted-wave prescription
first applied to e”-H, scattering by Rescigno,
McCurdy, McKoy, and Bender.? As shown by
Rescigno, McCurdy, and McKoy,3 this prescrip-
tion is equivalent to the “first-order many-body
theory” (FOMBT) of Taylor and coworkers.! A
simplifying feature of this model is that both the
incoming and outgoing distorted-wave functions
are calculated in the field of the target ground
state. Thomas et al.’ have applied the FOMBT
to the excitation of several excited states of He.
Their results are generally in good agreement
with experiment for spin-allowed transitions, while
for spin-forbidden transitions the FOMBT often
overestimates the total cross section by a factor
of 3 or 4, although the general shape of the dif-
ferential cross section may be reproduced.

In a recent paper we presented a discrete-basis-
set method for calculating electron-molecule con-
tinuum functions.® The method is a development of
the T-matrix approach to electron- molecule scat-
tering introduced by Rescigno, McCurdy, and
McKoy.” In this work we use this method to cal-
culate distorted-wave functions in the static-ex-
change approximation. Our technique allows us to
treat spin-allowed excitation processes where the
transition potential has long-range moments.

The theory of angular distributions of collision
products*expressed in terms of the angular mo-
mentum j, transferred during the collision has
been discussed by Fano and Dill.? In this repre-
sentation the differential cross section is given
by an incoherent sum of contributiorls corre-
sponding to different magnitudes of j,. As pointed
out recently by Siegel, Dill, and Dehmer,® use of
the j; representation simplifies the averaging with
respect to target rotational quantum numbers in
electron-molecule scattering. This simplification
is especially valuable in the treatment of electron
impact excitation of spin-allowed electronic tran-
sitions since this process may be dominated by
high-angular-momentum scattering. In this case
a single-center expansion of the scattering ampli-
tude in terms of j, converges much more rapidly
than the usual expansion in terms of the incident-
electron angular momentum. In this work we also
make use of the fact that in the j; representation
the Born approximation to the scattering ampli-
tude for electronic excitation can be evaluated in
closed form when the target molecular orbitals
are expanded in terms of Cartesian Gaussian func-
tions. The derivation of expressions for a linear
target molecule is outlined in the Appendix.

Excitation of the B !} state of H, is of par-
ticular interest as a test of theory because ab-
solute experimental data has recently been ob-
tained by Srivastava and Jensen.!” The integrated
cross sections for excitation of this state and
several triplet states of H, have been calculcated
in the two-state close-coupling approximation by
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Chung and Lin.,!' Their results for the B 12} state
are about a factor of two larger than the experi-
mental data of Srivastava and Jensen.!® Qur dif-
ferential cross sections for excitation of the
B ’2; are in good qualitative agreement with the
experimental data. However, our integrated cross
section agrees with the results of Chung and Lin,!!
Our results for the dissociative b 3% state are
in good agreement with the distorted-wave results
of Rescigno et al.? as expected, and we have ob-
tained results for impact energies up to 60 eV.
Our peak integrated cross section for this state
is about a factor of three larger than Chung and
Lin’s two-state close-coupling result“; however,
near threshold our results are in good agreement
with Corrigan’s dissociation data.'? The appli-
cability of the distorted-wave approximation—
which does not account for resonance effects—
in the threshold region is discussed in Section IV,
At impact energies of 40-eV and above, our dif-
ferential cross sections for the b ®Z ] state are in
qualitative agreement with the angular distribution
data of Trajmar et al,!?

II. THEORY

In the Born-Oppenheimer approximation, the
electronic part of the electron-molecule scattering
wave function satisfies the fixed-nuclei Schro-
dinger equation

(=5V2 4 Vige = 28 (RE, Xy, . ., %) =0, (1)

where

n
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for a diatomic molecule. The incident-electron
momentum is denoted by k,; the parametric de-
pendence of the elctronic wave function on the
internuclear separation is denoted by R= IRA -Rg|;
X, ;(i, =1 to N denote the combined space and
spin coordinates of the scattered and target elec-
trons, space coordinates alone are denoted by
T,T;; N is the number of target electrons; and Z,,
Zpg are the nuclear charges. Except as noted, we
use atomic units throughout. The scattering wave
function has the asymptotic form

‘I’io"’eno.r)(o(s)‘l’o&u- .. Xy
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n
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as ¥ —~», where ®,, ®, are the initial, final target
wave functions; xo(js), Xa(S) are the initial, final
spin wave functions of the scattered electron; and

%ki:%k%— (En "E0)9 (4)

where E(, E, are the initial, final target-state en-
ergies. The body-framed fixed nuclei scattering
amplitude is related to the electronic portion of the
transition matrix according to

fe (0= 0; R, 7)== 21Xk, n | T [k, 0) ()

where I;,, =7.

In the prescription for inelastic scattering pro-
posed by Rescigno et al.,? the scattering is treated
in a form of the distorted-wave (DW) approxima-
tion derived from the two-potential formula!?;
the initial target state is the Hartree-Fock ground
state; and the final target state is treated in the
random-phase approximation (RPA).!> A notable
feature of this formulation is that both the initial
and final distorted-wave functions are calculated
in the static-exchange potential of the ground
state,

In the present calculation we follow the prescrip-
tion of Rescigno et al.® except that the final target
state is treated in the single-channel Tamm-Dan-
coff approximation (TDA).!* The single-channel
TDA is equivalent to an independent-electron pic-
ture in which the excited orbital is an eigenfunction
of the V¥~! potential.’® In our formulation the elec-
tronic portion of the transition matrix element in-
volves matrix elements of the form

<Emn|T01|E0!0>:<$n¢('k‘;)Iz"'(l)uz»b(io))a, (6)

where ZIJ,(;:)), zb(,;;) are the initial, final Hartree- Fock
(static-exchange) continuum spin-orbitals satisfying
outgoing-wave, incoming-wave boundary condi-
tions; ¢, is the Hartree- Fock occupied spin orbi-
tal; and ¢, is a spin orbital of the V¥~! potential
formed by removing an electron from the target
orbital @. The antisymmetrized matrix element

is defined as

(ij |o|RLY, =i |v |kl - (Gj |v|1R) )

where
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To treat the target orientation dependence of the
scattering analytically, itis convenient to expand the
initial and final continuum space orbitals in the
partial-wave series:

+) 2 172 2+ = -y
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m
This leads to a single-center expansion of the

electronic portion of the transition matrix of the
form
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Similarly, the fixed nuclei scattering amplitude
in the body-fixed frame has the expansion
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(recalling that 2,=#). We now relate the body-
fixed-frame scattering amplitude to the scattering
amplitude in the laboratory frame, denoted by
primed coordinates and defined with 2’ axis in the
direction of incident momentum. Using the proper-
ties of spherical harmonics and introducing the
rotational harmonics defined by Edmonds,!” we ob-
tain
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where R’ specifies target orientation and inter-
nuclear separation, and 7’ denotes the scattering
angles in the laboratory frame. Following Temkin
et al.,'® we express the laboratory-frame scatter-
ing amplitude in terms of fixed-nuclei dynamical
coefficients:

fin—0;R, )= D
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Comparing Eqgs. (12) and (13), and using Egs. (5),
(10), and (11), we obtain
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To account for the motion of the target nuclei
we use the adiabatic nuclei approximation'®

fko(nunjn h OU()].();;")
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where ©;, 5., 01, 5, are the final and initial target
nuclear wave functions. This approximation is

valid when the speed of the scattered electron is
fast compared to the motion of the target nuclei.

As a further simplification we neglect the depen-
dence of the fixed-nuclei scattering amplitude on
internuclear separation. The electronic part of
the transition matrix is then calculated only at the
equilibrium internuclear separation and the prob-
ability for transitions between initial and final
vibrational states is given by the Franck-Condon
factor

2
qu"%:ldeR"’ SRR, (16)

where £, ggo are the initial and final target vibra-
tional wave functions.

Finally, we neglect the dependence of the scat-
tering amplitude on final vibrational quantum
numbers., A single electronic transition matrix
element is calculated with outgoing electron en-
ergy determined by the vertical transition energy
from the v=0 ground state to the final vibrational
level with the largest Franck-Condon factor. As-
suming the target rotational levels are essentially
degenerate, we obtain the rotationally averaged
cross section by averaging the fixed-nuclei cross
section with respect to orientation. Averaging
over initial and summing over final spin states
then leads to the following expression for the dif-
ferential cross section for exciting a vibrational
level of an electronically excited target state:

do _L Ry =
d—‘ﬁ; (nu,, 0U0)~— 3 (ZS + 1) ko q‘,"vo 87T2

< [ at|pym—oi 32, an

where Sis 0 or 1 for the excitation of a singlet
state or triplet state, respectively, from a singlet
ground state. To obtain the differential cross
section summed over final vibrational level the
factor k,_g,,Y, is replaced by Z)l,"k‘,'l oo”

To carry out the averaging with respect to target
orientation we use two different methods depending
on the transition involved. For singlet-triplet
transitions the single-center expansion of the scat-
tering amplitude converges rapidly. In this case a
convenient expression for the differential cross
section is obtained by substituting Eq. (13) directly
into Eq. (17). Carrying out the angular integration
we obtain

do
aQ’

k
(nv, = Ovg) = S5=% qy,0, D AL PL(6"), (18)
0 L
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1
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PY ST
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X (LI, = p'+m! —m’ |\, - u’).
(19)
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The symbol (1,l,mm, |2;m,) denotes a Clebsch-
Gordan coefficient; P,(6’) is a Legendre poly-
nomial. The transition potential for singlet-singlet
transitions generally has long-range moments
which lead to scattering by high-angular- momen-
tum electrons. In this case the single-center ex-
pansion for the scattering given in Eq. (13) con-
verges slowly and evaluation of the coherent sum
in Eq. (19) is computationally inefficient.

Siegel, Dill, and Dehmer® have pointed out that
it is advantageous to transform to the so-called j,
basis in which components of the scattering ampli-
tude are classified by the angular momentum trans-
ferred during the collision,

Je=1-1. (20)

The single-center expansion of the scattering am-
plitude is then of the form

foy 0+ O3 R, 7")
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where

Bl .(n—0;ky, R, 7")

m‘m

+1 A - -
_2_]L._f dR’D“’);(R’)f,,o(n-—O;R',')").

mgm
(22)

The z component of j’, in the lab frame is given by
m,, and in the body-fixed frame by m}. Substitu-
tion of Eq. (21) into Eq. (17) leads to an incokevent
sum for the differential cross section

1
%, Qv g PR 2 +1

d
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For a linear molecule 7} is determined by the
electronic transition. The sum over j; and #2; in
Eq. (23) converges rapidly even when the transi-
tion potential has long-range moments. Substitu-
tion of Eq. (13) into Eq. (22) yields an expression
for the j,- basis expansion coefficients in terms of
the fixed-nuclei dynamical coefficients:

m,m,(ﬂ')— Z (- H™ [ rrm—y (4 lomtlhmt)

X QL =m',m|jym)Y;, @). (24)

For sufficiently high angular momenta exchange
effects become small and the projectile is scat-
tered mostly at small angles by the long-range
moments of the transition potential. In this range
the fixed-nuclei dynamical coefficients are ade-

quately represented by the first Born approxima-
tion (BA). The number of dynamical coefficients
needed to converge the right-hand side of Eq. (24)
can therefore be significantly reduced by re-
writing Eq. (24) as follows:

(BA) JoL
By, @) =B @)+ ABEL @), (25)
where
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The symbol L denotes a set of indices (1'mm’)
such that, for larger values of any index, @;;«p,

(BA)
® A1 mm

If the target electronic orbitals are expanded in
terms of Cartesian Gaussian functions, the BA
Js-basis expansion coefficients Bf,,"(,ff) @') can be
expressed in closed form for a general polyatomic
molecule, The derivation of formulas valid for a
linear molecule is outlined in the Appendix.

To obtain a representation of the continuum-
space orbital, we use a method discussed pre-
viously® based on the discrete-basis-set 7-
matrix method introduced by Rescigno, McCurdy,
and McKoy.” In this approach the scattering poten-
tial is approximated by its projection onto a sub-
space of square-integrable functions

vt=2 laxalulex 4. - (27)
a
For potentials of this form the Lippmann-
Schwinger equation for the 7' matrix

T=U+UG; T, (28)

where Gj is the free-particle Green’s function for
the outgoing-wave boundary condition, reduces to
a finite matrix equation with solution

T'=(1-U'Gy)"U*. (29)

It is convenient to work with the K matrix which
satisfies the Lippmann-Schwinger equation

K=U+UG!K, (30)
where G{ is the principal-value part of G;. The
K-matrix solution

Ki=(1-UtcH Ut (31)

corresponds to the wave function
z/)l:lm:(pklm_*_chtd)klm’ (32)

where @, =7,(k7)Y;, () and j,(k7) is a spherical
Bessel function. The wave function ¥}, satisfies
the Schrdédinger equation
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(-V2+ U - B, =0. , (33)
Introducing the single-center expansion

Win(r) =28 1, Vi), (34)
the asymptotic behavior of z[),',,m is given by

Phtm = Z (J1 ®&7)3y;

~ 9y (k)R m |K ¥ [RIm)) Y0, (7) (35)

as 7 —~ =, where y,;-(k7) is an irregular spherical
Bessel function. To obtain a numerical representa-
tion of ¥}, we substitute the identity

K 'pm=U% (36)

into Eq. (33) and make use of the single-center
expansion Eq. (34). This leads to a set of un-
coupled differential equations for the radial func-
tions g{,l,,, of the form

GRS VI

( dr 72 )"'g:x'm(k,”)

== 7Yy | K [RIm)y . (37)

A technique for solving this equation subject to the
boundary conditions:

lim 7g {p (R, 7) =0 (38)
r-0
and

ghimB, 7)1 Byy —y,,(kl'letlklm) (39)

as ¥ —~, is given in Ref. 6. Traveling-wave
boundary-condition wave functions are obtained
from the standing-wave solution by the transforma-
tion?

=2 (% KT Y (40)
It is convenient to express the electronic portion

of the transition matrix in terms of a nonlocal
transition potential

=U5 +Us, (41)
where UJ, is the direct (local) part and US is the

exchange (nonlocal) part. In singlet-to-triplet-
state excitation processes, only the exchange part
contributes. The transition potential is defined by
the equation

(gl n | Toy [gl'm” ;0)=( 0§ P | Vo [ U4t o). (42)

Substituting Eq. (40) in Eq. (42) and using the ap-
proximate continuum wave functions discussed
above leads to

(Rylm,n| Ty [gl'm”, 0)= Z A=Kyl

x <¢k l"mi lwkol"'m’
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where K}, =(klm |K*|kl’m). To calculate

(W am | Uno l%oz ) we use the single-center expan-
sion method discussed in previous work.%’?! The
method involves single-center expansions for the
Coulomb interaction

e —Z ).+1P(” 7, (44)
the target orbitals
$o(F)= 23 9%, (VY n, (), (45)
=
and the continuum orbitals. For spin-allowed

transitions, we calculate the multipole moments
of the direct transition potential

w(f)=2 2 Vi Yam, (F), (46)
where
¢, s (2220 a1
X (s8?, = m 4, m, | Am,)(s5*00 |10)
r} | - »
x (037557 Fmy) @D
and

ri
q) S ’l
sma| g2 +1
>
1 r
=51 f ar' oL, (G gy (X1
0 .

PR j; dar’ ,',:2¢'§:ma (7')$:'m"(7")7" -r =1 . (48)

These and the following expressions for U
assume an axially symmetric target; N, is the
occupation number of the subshell @. Matrix ele-
ments of the direct transition potential are given
by the expansion

<d)l:nlm |U:o lztbzol'm’)

2l +1\1/2
=2<zz'+1) 2

S8’ 3N amy

(SX00 | s0) (sAmm, |s'm")

f arr?, 4 Ism(km V)Vlmh(y)g :’ s'm’ (k(], 7') -

(49)

The matrix element of the exchange transition
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potential has an expression of the form
<Zl):"lm l U:z I¢£011m1>

—_ J . . .
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X t e . t
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where

R (¢1, ¢z; ¢3, ¢4)
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III. CALCULATIONS AND RESULTS

For the wave function for the ground state of H,,
we carried out a self-consistent-field (SCF) cal-
culation at an internuclear spacing of 1,4006 a.u.
The SCF basis consists of a (10s5p,) set of primi-
tive Gaussians on each nuclear center contracted
to (7s5p,). The Huzinaga exponents and contraction
coefficients for this basis set are given in Ref. 6.
The b 3%, and B 'Z; states of H, have the elec-
tronic configuration ¢,0,, where G, is the ap-
propriate 0, eigenfunction of the V¥~ potential.
We solved for thse orbitals in a basis of Cartesian
Gaussian functions using the computer codes
developed by Goddard and coworkers.?? We used
the same basis set for the diagonalization of the
V¥1 potential as for the SCF calculation. The
vertical excitation energies for the b 3% and
B 1% states of H, in this basis set are 9.70 and
12.51 eV, respectively, from the v=0 ground-
state vibrational level to the excited-state poten-
tial curve. These values agree well with the cor-
responding transition energies of 10.14 and 12.48
eV obtained by using the potential-energy curves
of Kolos and Wolniewicz.?> We used the latter
values to determine the energy of the outgoing
electron via Eq. (4) for the electronic transition
matrix element.

Our prescription for computing the distorted-
wave matrix element (zp,ﬁn,m|U,m Izpﬁo,«m) involves
single-center expansions for the continuum wave-
functions, the target orbitals, and the direct
transition potential. We obtain convergence of the
distorted-wave matrix elements to three signifi-
cant figures by including 2’ <11 in the single-center
expansion [Eq. (36)] of ¥f;,,, s<11 in the expan-
sion [Eq. (44)] of ¢,, and A <11 in the expansion
[Eq. (45)] of US,. The radial one- and two-elec-
tron integrals occurring in Eqs. (46), (48), and
(49) are evaluated by Simpson’s Rule quadrature.

FLIFLET AND VINCENT McKOY

” JJnr ’, . Q! .
A( ’m;l ’m 9simﬂ’smaah)
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(51)
and
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Our technique for computing numerical repre-
sentations of the continuum radial orbitals g,
occurring in the single-center expansion of zl),f,m
is described in Ref. 6. The Gaussian basis sets
used to construct U? are given in Ref. 21 [Table
IB for 0-symmetry scattering (m =0), and Table
ID for m-symmetry scattering (m=1)].

These basis sets have been tested for elastic
e -H, scattering in the static-exchange approxi-
mation and yield cross sections accurate to within
a few percent for the impact energies con-
sidered here. We estimate that matrix elements
calculcated by means of the approximate wave
functions ¥i;,, may be in error by as much as 10%
owing to lack of convergence of the scattering
basis sets. In this approach the Born part of the
distorted-wave matrix element is treated exactly
[since the kinetic-energy operator is not approxi-
mated in Eq. (33)], hence errors in our results
due to basis set effects should decrease with in-
creasing impact energy and partial-wave index.

Our approach to converging the single-center
expansion of the electronic transition matrix ele-
ment is to calculate in the distorted-wave approxi-
mation the partial-wave transition matrix ele-
ments up to where the Born approximation is
valid, i.e.,

Vit | Uno [95tm) = (Pagml Uno [ Onem) . (B3)
Contributions from higher partial-wave matrix
elements are then included in the Born approxi-
mation. In this calculation we included the matrix
elements for /,1’ <6, m=0,1 in the distorted-wave
approximation. For higher partial waves, Born
and distorted-wave matrix elements agree to
within 1%, For excitation of the b 3%, state (which
occurs only via the exchange interaction) we
also included Born matrix elements of U for
1,I'’<5, m=2. The contribution from these
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matrix elements to the b %, cross section is less
than 5%, hence higher partial-wave matrix ele-
ments have been neglected. The differential cross
section for excitation of the b 3%}, state was ob-
tained by using Eqs. (18) and (19). We calculated
differential cross section for excitation of the

B 13, state using the j;-basis representation ac-
cording to Eq. (23). Convergence of this expan-
sion to within 1% was obtained by including j; < 3
and m;<3, For a T— X transition m;=0. The
contribution from high-angular-momentum scat-
tering was included by the prescription given in
Eqgs. (25) and (26).

In general, the summation over final vibrational
states includes both discrete and continuum
states. The b 3% state is dissociative; hence all
its vibrational states lie in the continuum. To ob-
tain Franck-Condon factors for the transition
X '3, ~b%%,, we computed continuum vibrational
wave functions for the b 32; state using the poten-
tial curves of Kolos and Wolniewicz?® and ap-
proximated the ground-state vibrational level of
the X 'Z; state by a harmonic-oscillator wave
function. Our calculated Franck-Condon factors
are in good agreement with the factors calculated
by Rescigno ef al.? For the X 'Z, —B'Z; transi-
tion we use the Franck-Condon factors calculated
by Ca.rtwright.24 Adequate convergence of the sum
over v, was obtained by including only the Franck-
Condon factors for transitions to discrete vibra-
tional levels.
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FIG. 1. Differential cross sections for excitation of
the 32,}‘ state at indicated electron impact energies; :
DW results of this work; —+—+ —: DW-RPA result
from Ref. 2; — — — —: Born-Ochkur-Rudge results
from Ref. 13; solid dots: relative experimental data
from Ref. 13 normalized to our results.

Our differential cross section results (summed
over final vibrational states) for excitation of the
b 33! electronic state are given in Table I for im-
pact energies from 12 to 60 eV. Six of these cross
sections are shown in Fig. 1 by solid curves; the
dashed curves show the Born-Ochkur-Rudge re-

TABLE I. Differential cross section for excitation of the 32} state in units of 10-1¢ cm?/sr.

Impact energy

(eV) 12 15 20 25 30 40 50 60
Scattering
angle (deg) 10792 (10%) (10-?) (10-2) (10-%) (10-%) (10-3)  (10-3)
0 0.412 4.66 5.57 3.86 2.80 14.4  9.39 3.63
10 0.454 4.66 5.61 3.92 2.86 14.7  9.40 3.98
20 0.577 4.66 - 5.69 4.03 2.96 15.3  9.26 4.70
30 0.779 4.59 5.68 4.05 2.98 15.2  8.60 5.16
40 1.06 4.44 5.43 3.85 2.81 13.8 17.31 4.90
50 1.43  4.22 4.95 3.42 244 11.2  5.67 4.02
60 1.92  4.03 4.32 2.86 1.98 8.44 4.17 2.91
70 2.54 3.99 3.74 2.33 1.54 6.20 3.12 1.96
80 3.31  4.25 3.37 1.96 1.24 4.93 2.54 1.35
90 4.25 4.88 3.33 1.80 1.09 4.49 2.23 1.03
100 5.33 5.88 3.60 1.83 1.06 4.46  2.00 0.891
110 6.51 7.18 4.0 1.97 1.09 4.42 1.74 0.832
120 7.73 8.63 4.71 213 1.11 4.13  1.45 0.772
130 8.90  1.01 5.29 2.27 1.11 3.59 1.18 0.677
140 9.98 11.4 5.78  2.3¢ 1.08 2.94 0.945 0.571
150 10.9 12.5 6.15 2.37 1.04 2.36 0.795 0.515
160 11.6  13.4 6.39 2.36 0.990 1.96 0.728  0.543
170 12.0 13.8 6.53 2.34 0.958 1.75 0.718  0.621
180 12.1 14.0 6.57 2.33 0.947 1.69 0.722  0.661

2The numbers in each column are to be multiplied by the factors in this row.
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TABLE II. Integrated cross sections for excitation of the b3Z} state in units of 10-17cm?.

Impact

energy (eV) DW 2 DW-RPA P cce BRY Experiment ©
11 3.50 3.3f 4.6+1.4
12 6.25 43f 6.2+1.9
13 7.85 8.20 2.19 4.47
15 8.30 8.89 2.80 4.18
16 8.03 8.44 2.84 3.88
18 6.81 7.0f 2.7f
20 5.78 5.49 2.53 2.69
22 4.53 2.3f
25 3.16 1.82 1.70
30 1.95 1.26 1.10
40 0.817 0.622 0.525
50 0.402 0.287
60 0.237 oarf

2 Results of this work.
b Results from Ref. 1.

¢ Two-~state close-coupling results from Ref. 11.

d Born-Rudge results from Ref. 25.
€ Experimental data from Ref. 12.
f Estimated by interpolation.

sults of Trajmar et al.!?; the dash-dot-dash curve
at 15 eV is the DW-RPA result of Rescigno et al.,?
and the solid dots are the experimental results ob-
tained by Trajmar ef al.!® normalized to our re-
sults at 40° for 50 and 60 eV and to the Born-
Ochkur-Rudge results for 25 and 40 eV. Our in-
tegrated cross section results for excitation of the
b33, state from 11 to 60 eV are given in Table I
together with the DW-RPA results of Rescigno

et al,, the two-state close-coupling results of
Chung and Lin,!® and Lee.?® Below 11.8 eV the
dissociation of H, by electron impact procedes
purely by excitation of the b 33}, state; hence we
have included Corrigan’s experimental dissocia-
tion data at 11 and 12 eV impact energy in Table
IL'2 These theoretical results are shown in Fig.
2, and Corrigan’s dissociation data are shown up
to 25 eV impact energy. Between 11.8 and 15.4
eV Corrigan’s data essentially reflect the sum of
all triplet-state excitation cross sections. Above
15.4 eV the reaction e+ H, =~ H; +2¢~ also con-
tributes, Corrigan’s estimated experimental un-
certainty is +30%.12 We estimate the uncertainty
in our results for the b33 state due to numerical
roundoff errors and the use of a discrete-basis-
set representation of the distorted-wave potential
at +10% for total cross section and + 20% for the
differential cross section.

Our distorted-wave differential cross sections
summed over final vibrational states for excita-
tion of the B 13} state are given in Table III for
impact energies from 15 to 60 eV, Conversion
factors equal to k,,g,,, /20 Gy , for obtaining the

cross sections for excitation of the v’ =2 vibra-
tional sublevel at each energy are also given in
Table III. Our differential cross sections for the
excitation X 12 ;(v=0)~BZ (v’ =2) are shown

in Fig. 3 and compared with the experimental data

INTEGRATED CROSS SECTION (1077 ¢cm?)

2.0r 2

ELECTRON IMPACT ENERGY (eV)

FIG. 2. Integrated cross section for excitation of the
b 3} state by electron impact; : DW results of
this work, calculated points are indicated by open cir-
cles; open squares: DW-RPA results from Ref. 2;
—ec—-—: two-state close-coupling results from Ref. 11;
— — — —: Born-Rudge results from Ref. 25;¢¢+«.:
experimental H, dissociation data from Ref. 12, error
bar shows estimated uncertainty.
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TABLE III.
cm?/sr.

.

Differential cross section for excitation of the B! =% state in units of 10-16

Impact energy

(eV) 15 20 25 30 40 50 60
Scattering
angle (deg) (10-3) (10-3) (10-3) (10-3) (10-3) (10-3) (10-3)
0 43.9 337 786 135 269 3950 5200
10 40.0 274 560 826 119 1270 1210
20 29.9 160 252 292 282 234 181
30 19.0 71.0 96.2 90.0 61.8 44.4 30.0
40 11.0 36.5 39.6 32.3 18.6 13.2 9.63
50 6.53 21.0 23.0 19.1 13.1 9.15 7.16
60 4.92 16.1 18.3 16.1 12.6 8.21 5.97
70 4.85 14.5 15.9 13.9 11.0 6.99 4.51
80 5.38 13.2 13.2 11.0 8.79 5.58 3.16
90 5.97 11.8 10.5 8.06 6.50 4.36 2.16
100 6.44 10.4 8.04 5.60 4.62 3.45 1.54
110 6.73 9.17 6.20 3.87 3.22 2.76 1.17
120 6.95 . 8.27 4.98 2.81 2.23 2.21 0.947
130 7.10 7.67 4.27 2.20 1.55 1.77 0.813
140 7.24 7.30 3.86 1.85 1.11 1.46 0.777
150 7.37 7.80 3.61 1.62 0.838 1.32 0.839
160 7.49 6.93 3.46 1.47 0.669 1.32 0.968
170 7.57 6.85 3.37 1.37 0.574 1.39 1.09
180 7.60 6.82 3.34 1.35 0.543 1.42 1.15
Conversion
factor ? 38.6 34.2 33.3 33.0 32.7 32.4 32.3

2 Conversion factor for obtaining cross sections for the excitation X! Z;(v =0) =B Z}(v =2)
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from DW entries in Tables III and IV.

of Srivastava and Jensen.!” The solid curves show
the distorted-wave approximation; the dashed
curves show the first Born approximation for our
choice of target wave functions. We assign the
same error estimates for the B !Z results as for
the b 32 -state results. Table IV gives our in-
tegrated cross section results for excitation of
the Bz} state. Table IV compares our distorted-
wave and Born results with the two-state close-
coupling, Born-Ochkur, and Born results of
Chung and Lin,!! and with the experimental data
of Srivastava and Jensen.!” The theoretical re-
sults and experimental data are shown in Fig. 4.

IV. DISCUSSION AND CONCLUSIONS

We have demonstrated the utility of our discrete-
basis-set method for obtaining electron-molecule
continuum wave functions which can then be used
in a distorted-wave-approximation calculation of
electronic excitation by electron impact. Particu-
lar advantages of this method for treatment of
inelastic scattering processes include: (a) the
truncated distorted-wave potential V?is ex-
panded entirely in a square-integrable basis set
and can be constructed by using standard molecu-

lar-bound-state computer codes, (b) the approxi-
mate continuum wave functions can be obtained at
arbitrary scattering energies, and (c) these wave-
functions satisfy the correct asymptotic scattering
boundary conditions. Property (c) allows the
treatment of scattering processes, such as the
X1%,—~ B 1'%, excitation process, where the transi-
tion potential has a long-range tail. Errors due
to truncation of the distorted-wave potential could
be investigated systematically by a generalization
to multichannel scattering of the variational cor-
rection formula previously applied to elastic scat-
tering.® In the present application we expect these
errors are small since the basis sets used in this
work give good results for elastic e™-H, scat-
tering in the static-exchange approximation.®
Available theoretical and experimental differen-
tial cross sections for the b 3T, state are limited,
As shown in Fig. 1 our results are in good agree-
ment with the DW-RPA results of Rescigno et al,
at 15-eV impact energy. The chief difference
between our results and the Born-Ochkur-Rudge
results of Trajmar et al.!® occurs at small scat-
tering angles where the latter drop off sharply,
unlike our calculated cross sections which are
roughly constant for scattering angles less than
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102 )
N 15eV

40eV

DIFFERENTIAL CROSS SECTION (10"®cm?/sr)

TN Liiaat YO TETIN
50 I(‘)O 150 200 50 100 150 200
SCATTERING ANGLE (deg)

FIG. 3. Differential cross sections for excitation of
the B!z}’ = 2) state at indicated electron impact ener-
gies. The solid curves show the DW results of this
work. The dashed curves show the Born results of this
work. The solid dots with error bars show the experi-
mental data of Ref. 10.

40°, Comparison of these results and the experi-
mental angular distribution results of Trajmar

et al '3 at 25 and 40 eV is inconclusive owing to
the large experimental error bars (shown in Fig.
1) and limited range of scattering angles. The
agreement both between the DW and Born-Ochkur-
Rudge results and between theory and experiment
is quite good at 50 and 60 eV,

ARNE W. FLIFLET AND
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FIG. 4. Integrated cross section for excitation of the
B!z} state by electron impact. : DW result of this
work; ----: Born result of this work; open squares:
two-state close-coupling results from Ref. 11; open tri-
angles: Born-Ochkur results from Ref. 11; open dia-
monds: Born results from Ref. 11; solid dots with error
bars: experimental data from Ref. 10.

The good agreement between our DW results for
the b3, state and the DW-RPA is an important
check on the numerical accuracy of these calcula-
tions as well as a verification of the validity of the
present choice for the transition potential. In con-
trast to our approach Rescigno ef al. expanded the
continuum wave functions in a set of Gaussian func-
tions. This representation, which does not lead to
the correct asymptotic form, seems to be adequate
for singlet-triplet excitations owing to the short-
range nature of the exchange interaction. Another
difference between their approach and ours is that
in their calculation the averaging over target
orientation was carried out numerically, whereas
in ours this averaging is treated analytically via
a single-center expansion of the scattering ampli-
tude.

TABLE IV. Integrated cross section for excitation of the B! Z!, state in units of 10-17cm?.

Impact
energy (eV) DW 2 Born1? cc® BO ¢ Born II © Experiment

15 1.05 3.60 14+0.4
20 3.09 5.23 1.9+0.6
25 4.12 5.64 4.31 5.31 6.66

30 4.46 5.69 2.0+0.6
40 4.93 5.43 2.3+0.7
50 4.84 5.06 4.71 5.14 5.55 2.8+0.8
60 4.49 4.70 1.9+0.6

2 Results of this work.
Y Born results of this work.

¢ Two-state close-coupling results from Ref. 11.

4 Born-Ochkur results from Ref. 11.
€ Results from Ref. 11.
f Experimental data from Ref. 10.
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Figure 2 shows that at 20 eV our DW integrated
cross section for the b 32 ] state is a factor of 2
larger than the two-state close-coupling results
of Chung and Lin.!! This difference reflects in
part the sensitivity of the exchange excitation pro-
cess to approximations in the scattering wave
function. Another part of this difference is due
to the use of different H, excited-state wave func-
tions, Chung and Lin!! use an SCF wave function
for the excited state, while in this work the ex-
cited o, orbital is calculated in the field of the
ground state o, orbital. Since the Born-Rudge
approximation uses plane-wave functions, the good
agreement of this approximation with the two-state
close-coupling result above 20 eV appears to be
fortuitous,

In order to compare with Corrigan’s data we
have obtained DW results down to 11-eV impact
energy. The distorted-wave model is generally
believed to break down in the near-threshold re-
gion because channel coupling and resonance ef-
fects are expected to be large. There is a reso-
nance in this cross section in the 10-eV region
due to the 2%, state of H;. However, experimental
data indicate that the peak contribution from this
resonance is about 1% 10™17 ¢m? or-about 20% of
the nonresonance contribution.?® Moreover, the
accuracy of the DW approximation near threshold
is of practical interest for electron- molecule
scattering since more accurate methods are cur-
rently not available for larger systems. Figure 2
shows that the DW results and Corrigan’s data in
fairly good agreement at 11 and 12 eV, where dis-
sociation occurs only via the b 32, However, it
would be premature to assess the reliability of the
DW method near threshold based on this agree-
ment,

At 30-eV impact energy and above, our DW dif-
ferential cross sections for excitation of the
B3 (v =2) state are in good qualitative agree-
ment with the data of Srivastava and Jensen.!

As shown in Fig. 3, the chief discrepancy occurs
at small scattering angles where the DW results
are about a factor of 2 larger than experiment.
Since the scattering is strongly forward peaked
this leads to about a factor-of -2 difference in the
integrated cross sections as shown in Fig. 4.
Srivastava and Jensen!® obtain the experimental
integrated cross section summed over v’ from
their data by applying the Franck-Condon princi-
ple. As a check on the consistency of their treat-
ment and ours, we note that the values they ob-
tain for o (v’ =2)/0(total) agree with the conversion
factors given in Table NI to within 10%.

Figure 3 shows that the BA differential cross
section converges rapidly to the DW result with
increase in impact energy at small scattering

angles (<40°), while it significantly underesti-,
mates the cross section at large scattering angles,
The good agreement between our BA and DW in-
tegrated cross sections above 30 eV is due to the
small contribution to the total scattered flux from
large-angle scattering. Thus this excitation pro-
cess is dominated by the long-range dipole transi-
tion potential,

The difference between our BA integrated cross
section and the Born result of Chung and Lin!! in-
dicates the effect of using different final-target-
state approximate wave functions in the two cal-
culations. At 50-eV impact energy and above, this
difference is less than 10% of the integrated cross
section, and the DW and two-state close-coupling
results are in good agreement. The lack of con-
vergence of the theoretical and experimental in-
tegrated cross sections with increase in impact
energy is puzzling in light of the good agreement
between the various theoretical results by 50 eV.

" In this regard it would be of interest to extend the

experimental results to higher impact energy.
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APPENDIX

This appendix outlines the derivation of closed-
form expressions for the j;-basis coefficients
Bfn‘tff’(@) assuming the target orbitals are ex-
panded in terms of Cartesian Gaussians of the

form
BER (£)= Nypol6 — A (9 —a )iz — A Yre=alF=R12
(A1)

where N;,,, is a normalization coefficient. In this
case the scattering amplitude is given by a sum
of free-free Coulomb integrals of the form

F:(e—kl. Ty [J.?:?n:", (F?) IU Ie‘k ° ri[J,PnIz"n”u(.fz» .
(A2)

Evaluation of this integral in the body-fixed frame
leads to the general expression®’
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F:Nl'm'n t”m”n”A(a B ‘K_ ﬁ"q)
. . 'm'n’ 1”
X g=#1° Ry i; Cin
4I'h Iy
_qx _qy ~ Q.
XH'(Z(MB)“Z)H’(z(a+3>”2> ((a+3)”2)’
(A3a)
where
A(Ol, ﬁ’ IA-.—-].Bl q)
5/2
AT exp[ - (aB/a+B)|A- B|?]
x exp[- g%/4*"®] (A3D)
Cp=Clhmaclima
*i‘i+l+k[(a+B)(i+j+k)/224+j+k]-1’ (A3c¢)
i:i’ +i”’ j_:jl +jll, k:kl +kll, (Asd)
o '\ /m’\ /n’ ‘g
G =< ) (P A"
il ]" k’
X (Py=A)™ (P, A M (A3e)
1’ 1A
= A3f
17) Zl(l'—l')[’ ( )
R,=P=(eA+8B/(a+8), (A3g)
q=k' -k, (A3h)

and H; is an Hermite polynomial. To evaluate the
integral on the right-hand side of Eq. (22), we
transform the expression for F to the coordinates
of the laboratory frame. Calculation of the coeffi-
cients B} (2(Q) then essentially involves evalua-
tion of 1ntegra1

Fhm @) =20 [ e DY ROFG B, ()

To express F in the laboratory frame coordi-
nates, we first note that the product of Hermite
polynomials occurring in Eq. (A3a) may be ex-
panded in a finite series of spherical harmonics:

q ~
H,H;H, =Z fsms< 2(a + 3)172) Ysms(q) , (Aba)
sms
where
S<i+jt+hk=i+i" 4+ +j"+R"+R". (A5b)

Using Eq. (A5a) we can rewrite Eq. (A3a) in the
form

F= E 2 S Yy @e R (ABa)

"J"k 1 SMs

where

s:fnks :Nl’m’n’Nl"m"n' A(Ol, B, IA_ BI’Q)Cikasms

(A6Db)

transforms as a scalar under rotations. The factor
e B i5 alg0 a scalar, and hence

e~i Rp_g-it'" R} (A7)

(the primes indicate laboratory-frame coordinates).
From the properties of spherical harmonics under
rotations we have

Von () =25 D& (R)Y g @) (A8)
m

There is a one-to-one correspondence between the
target orlentatlon angles denoted by R’ and the
unit vector R; For a linear target molecule we
may set R’ R’ without loss of generality. The
expressmn for F in laboratory frame is then of the
form

F@,RY= 2, D S#ams@ Ry, (A%)
i'l'k' smg
Lk
where
d,sms(‘;l’ é')

= 2 D&, (RNY g (¢"Vexp[- i(qR)0 - B] .
(A9Db)

Similarly,

sm
mt.mt Z E S”k@l,':,m (q)

i3k
, Smg

(A102)

: :

where we define

&7 mi@) =1L [ akr DUP, Breemsi, ).
(A10p)
Introducing the single-center expansion
e = qm ; 5y (- aR,) Y4 @) Y (R")
(A11)
and using the relation

Yiy(R)=@L+1/4m!2DE Ry, (A12)

®°"s(G, B') can be written as follows:

@Sms(ql’ R = Z

LMm"

i[am@L + D] %, (- R,q)

X DS, (RNYDE (RNY e @)Y 14 @) .
(A13)
Substituting Eq. (A13) into Eq. (A10b) and applying
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the completeness properties of rotational and spherical harmonics, we obtain

2L+1

.is::lﬂst"‘t(q,) [(2s +1)(2j,+1)] 1/22 ;L %, +1(LsOm Ij,mf)(LZOOIJ,O)Y“,,,t(q ). (A14)

Expressions for the coefficients Bf,ft(,,}ff)(ﬂ’) follow directly .
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