CaltechAUTHORS
  A Caltech Library Service

A parametrized three-dimensional model for MEMS thermal shear-stress sensors

Lin, Qiao and Xu, Yong and Jiang, Fukang and Tai, Yu-Chong and Ho, Chih-Ming (2005) A parametrized three-dimensional model for MEMS thermal shear-stress sensors. Journal of Microelectromechanical Systems, 14 (3). pp. 625-633. ISSN 1057-7157. http://resolver.caltech.edu/CaltechAUTHORS:LINjms05

[img]
Preview
PDF
See Usage Policy.

709Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:LINjms05

Abstract

This paper presents an accurate and efficient model of MEMS thermal shear-stress sensors featuring a thin-film hotwire on a vacuum-isolated dielectric diaphragm. We consider three-dimensional (3-D) heat transfer in sensors operating in constant-temperature mode, and describe sensor response with a functional relationship between dimensionless forms of hotwire power and shear stress. This relationship is parametrized by the diaphragm aspect ratio and two additional dimensionless parameters that represent heat conduction in the hotwire and diaphragm. Closed-form correlations are obtained to represent this relationship, yielding a MEMS sensor model that is highly efficient while retaining the accuracy of three-dimensional heat transfer analysis. The model is compared with experimental data, and the agreement in the total and net hotwire power, the latter being a small second-order quantity induced by the applied shear stress, is respectively within 0.5% and 11% when uncertainties in sensor geometry and material properties are taken into account. The model is then used to elucidate thermal boundary layer characteristics for MEMS sensors, and in particular, quantitatively show that the relatively thick thermal boundary layer renders classical shear-stress sensor theory invalid for MEMS sensors operating in air. The model is also used to systematically study the effects of geometry and material properties on MEMS sensor behavior, yielding insights useful as practical design guidelines.


Item Type:Article
Additional Information:“© 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” Manuscript received March 15, 2004; revised June 24, 2004. Posted online: 2005-06-06. Subject Editor S. M. Spearing.
Subject Keywords:boundary layers; diaphragms; heat conduction; micromechanical devices; microsensors
Record Number:CaltechAUTHORS:LINjms05
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:LINjms05
Alternative URL:http://dx.doi.org/10.1109/JMEMS.2005.844770
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:1280
Collection:CaltechAUTHORS
Deposited By: Archive Administrator
Deposited On:07 Jan 2006
Last Modified:26 Dec 2012 08:43

Repository Staff Only: item control page