Introduction
This paper presents an approximate solution to the flow of a cohesionless granular material in a conical hopper. This is a problem which has received considerable attention in the past though much of the work was directed toward developing an empirical relation of the mass flow rate from experimental data (for example [1, 2]). In the early 1960's Jenike and Johanson [23] applied the basic principles of plasticity to study the behavior of bulk solids; the material was treated as a perfectly plastic solid which yields according to the Mohr-Coulomb condition. Jenike [3] solved the equilibrium equations in a hopper with a "radial stress field;" that is to say the mean stress in the material was assumed to vary linearly with the radial distance from the apex of the hopper. However, no unique velocity field can be derived from such a quasi-static analysis; the addition of inertia is necessary in order to obtain a unique velocity field. Unfortunately, the resulting nonlinear equations of motion are considerably more difficult to solve.

Brown [4] studied the problem using an energy approach. He assumed that the material would flow when the total kinetic and potential energies are at a minimum. From this, he derived an expression for the mass flow rate. Savage [5] used a perturbation scheme based on the wall friction angle to solve the problem of flow in a hopper. Up to the order presented, the velocity and stress field are weak functions of the angular position θ (see Fig. 1). Brennen and Pearce [6] solved the problem for a two-dimensional hopper. They used a perturbation scheme based on the angular position θ, introduced modified boundary conditions at the upper and lower discharge surfaces and found that the free surface at the hopper exit did not coincide precisely with the cylindrical surface at the exit radius. It took the shape of an arch which spanned the outlet. The resulting theoretical mass flow rates were in good agreement with the experiments for hoppers with half angles up to 40°. Davidson and Nedderman [7] obtained analytical expressions of the velocity and stress distribution in a
hopper. Their solution assumed that the shear stress was equal to zero
and that the body force was in the radial direction. This solution then
gave an upper limit to the flow rate. Sullivan [8] solved the same
problem in his unpublished thesis. Williams [9] derived the upper and
lower limits of the flow rate by solving the flow equations on the center
line and along the hopper wall, respectively. This solution contains
some assumptions which are quite severe.

Another quantity which is important in the design of hoppers is the
stress which the material exerts on the hopper wall. It is widely known
that the wall stress pattern when the material is flowing is very dif-
ferent from the one which exists when the material is at rest in the
hopper. This is usually attributed to a switch from the active stress
field in the static material to a passive one in the flowing material.
Walker [10] presented an approximate analysis of the stress on the
hopper wall by considering the force balance on a volume of material.
Similar work was done by Walters [11]. Jenike and Johanson [12-15]
presented a fairly complete analysis of the bin loads. They clearly
defined the different stress fields which exist in the hopper during
the filling and the flowing periods. Recently, Cowin [17] analyzed
the wall stresses in a vertical bin and concluded that the Janssen formula
gave only the lower limits of the possible wall stress values.

An approximate solution for conical hoppers which is based on a
perturbation scheme is presented in this paper and comparison is
made with experiments.

The Equations of Flow

The geometry of the problem is presented in Fig. 1. A spherical
coordinate system is used to represent the axisymmetric flow field.
The unknowns are the velocity components u and v in the r and \( \theta \)
direction, respectively, the normal stresses \( \sigma_r, \sigma_\theta, \sigma_\phi \) in the r, \( \theta, \phi \) directions and the shear stress \( \tau_{r\theta} \). Compressive stresses were
taken to be positive.

The material is assumed to have a constant density during the flow;
it void ratio is therefore constant at the critical value when yielding
initially occurs during startup. This incompressibility condition is
supported by Jenike [3] and Jenike and Shield [18].

The continuity equation is written as

\[
\frac{\partial u}{\partial r} + \frac{1}{r} \frac{\partial vr}{\partial \theta} + \frac{1}{r} \frac{\partial v}{\partial \phi} = 0
\]

(1)

The equations of motion in spherical coordinates are

\[
\frac{\partial \sigma_r}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{1}{r} \left[ \sigma_r - \sigma_{\theta} + \sigma_{\phi} \cot \theta \right] + \gamma \cos \theta = -\rho \left[ \frac{\partial u}{\partial r} + \frac{\partial vr}{\partial \theta} + \frac{\partial v}{\partial \phi} \right]
\]

\[
+ \gamma \sin \theta = -\rho \left[ \frac{\partial u}{\partial r} + \frac{\partial vr}{\partial \theta} + \frac{\partial v}{\partial \phi} \right] + \frac{u^2}{r}
\]

(2)

in the radial direction and

\[
\frac{\partial \sigma_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\theta\phi}}{\partial \theta} + \frac{1}{r} \left[ (\sigma_r - \sigma_{\theta}) \cot \theta + 3 \sigma_{\phi} \right] - \gamma \sin \theta = -\rho \left[ \frac{\partial u}{\partial r} + \frac{\partial vr}{\partial \theta} + \frac{\partial v}{\partial \phi} \right] + \frac{u^2}{r}
\]

(3)

in the tangential direction.

Two constitutive relations of the material are needed. They are the
yield condition and the isotropy condition.

As Jenike [3] has pointed out, the development of a yield function
is a major difficulty in the study of bulk solids. Attempts have been
made to adapt the Tresca and von Mises yield functions used in metal
plasticity into the study of bulk solids. Since the strength of the
material depends strongly on the hydrostatic stress, such an adapta-
tion must include the first stress invariant into the yield function.
Drucker and Prager [19] used this approach and showed the analogy between
their yield function and the Mohr-Coulomb yield condition. However,
their results did not truly represent the behavior of the material itself.
Jenike and Shield [18] proposed a yield function based on the
Mohr-Coulomb yield conditions. The strain-hardening behavior of
the material is taken care of by varying the size of the yield envelop
itself. The Mohr-Coulomb yield condition is written as

\[
\left( \frac{\sigma_r - \sigma_{\theta}}{2} \right)^2 + \sigma_{r\phi}^2 = \left( \frac{\sigma_r + \sigma_{\theta}}{2} \right) \sin^2 \phi
\]

(4)

The condition of isotropy is used in the sense that the principal
directions of stress and strain rates coincide. It should be mentioned
that this condition is not universally accepted as has been discussed
by Drescher [20] and Mandl and Fernandez Luque [21]. The isotropy
condition is written as

\[
\sigma_r - \sigma_{\theta} = \frac{\partial u \partial r - \partial vr \partial \theta}{r \partial \theta} - \frac{u}{r}
\]

\[
\sigma_{r\phi} = \frac{1}{2} \left( \frac{\partial u}{\partial r} + \frac{\partial vr}{\partial \theta} \right)
\]

(5)

Analytical Solution

Using the stress expressions given by Sokolovskii [22], the stresses
are written in terms of the mean stress \( \sigma \) and the stress angle \( \psi \).
Thus

\[
\sigma_r = \sigma(1 + \sin \varphi \cos 2\psi)
\]

\[
\sigma_{r\phi} = \sigma(1 - \sin \varphi \cos 2\psi)
\]

\[
\sigma_{\theta\phi} = \sigma \sin \varphi \sin 2\psi.
\]

(6)

Since the flow is axisymmetric the stress in the \( \alpha \) direction is a
principal stress; for a converging flow field, it is equal to the major
principal stress. Thus \( \sigma_r = \sigma(1 + \sin \varphi) \).

Using a perturbation technique based on the angular position \( \theta \),
the dependent variables \( \sigma, \psi, u, v \) are written as

\[
\sigma = \sigma_0 + \sigma_2 \left( \frac{\theta}{\theta} \right)^2 + O(\theta^4)
\]

\[
\psi = \frac{\pi}{2} + \gamma_1 \left( \frac{\theta}{\theta} \right) + \gamma_3 \left( \frac{\theta}{\theta} \right)^3 + O(\theta^5)
\]

\[
u = u_0 + u_2 \left( \frac{\theta}{\theta} \right)^2 + O(\theta^4)
\]

\[
v = u_1 \left( \frac{\theta}{\theta} \right) + u_3 \left( \frac{\theta}{\theta} \right)^3 + O(\theta^5)
\]

(7)

Note that when \( \theta = 0, \psi = \pi/2 \) which means that the stress field is
in the passive state. The different powers of \( \theta \) in the expansion
are prescribed by the symmetry of the flow field.

Substituting these expansions into the equations of flow, the dif-
ferent expansion sequences are obtained.

The order \( \theta^0 \) terms come from the continuity equation and the r
direction equations of motion; they are

\[
\frac{d\sigma_0}{dr} + \frac{2u_0 - 2u_2}{r} = 0
\]

and

\[
\mu_0 \frac{d\sigma_0}{dr} + (1 - \sin \varphi) \frac{d\sigma_0}{dr} - 4 \left[ 1 + \frac{\gamma_1}{\theta} \sin \varphi \right] \frac{\sigma_0 + \mu_0}{r} = 0
\]

The isotropy condition and the \( \theta \) direction equation of motion give
the order \( \theta^1 \) terms

\[
2 \gamma_1 \left[ \frac{d\sigma_0}{dr} - \frac{u_0 - \frac{1}{2} \sigma_0 v_1}{r \theta} \right] = 2 \mu_2 - \frac{u_1}{r} + \frac{d\sigma_0}{dr}
\]

and

\[
\mu_0 \frac{d\sigma_0}{dr} + \left( \frac{\theta}{\theta} \right) \frac{d\sigma_0}{dr} - \mu_0 \frac{d\sigma_0}{dr} + \frac{d\sigma_0}{dr} = 2 \gamma_2 \frac{\sigma_0 \sin \varphi \gamma_1}{r} + 6 \gamma_1 \frac{\sigma_0 \sin \varphi}{r} \left[ \frac{1}{r} \sin \varphi - 2 \sigma_0 \sin \varphi \gamma_1^2 \right] + \frac{2}{r \theta}
\]

(9)

The order \( \theta^2 \) terms in the continuity equation and the r
direction equation of motion give
\[
\frac{d^2 u_2}{dr^2} + 2\frac{u_2}{r} + 4\frac{u_2}{r^2} - \frac{u_2}{r^2} + \frac{d^2 u_2}{dr^2} - \frac{d^2 u_2}{dr^2} = \frac{\rho e^2}{2} + 2\gamma_1^2 \sin \varphi \frac{d\sigma_0}{dr}
\]
\[
+ (1 - \sin \varphi) \frac{d^2 u_2}{dr} - \frac{3 \sin \varphi}{2\sigma_0} \left( 2\sigma_0 \right) + \sigma_0 \left( \frac{2\gamma_1^3 - \frac{4}{3} \gamma_2^2 \gamma_3}{r^2} - \frac{\sigma_2 \sin \varphi}{r} \left( 4 + 2\gamma_1 \right) \right) + \frac{\sigma_0 \sin \varphi}{r} \left( \frac{6\gamma_1^2 - 2\gamma_1 \theta_{\omega} - \frac{2\gamma_3}{3} - \frac{4\gamma_2^2}{3} \theta_{\omega}}{\theta_{\omega}} \right) = 0
\]

These equations are solved subject to the following boundary conditions imposed by the geometry of the problem.

Along the hopper wall, \( \theta = \theta_{\omega} \), the stresses have to satisfy the yield condition

\[
\frac{\sigma_r}{\sigma_{\theta}} = -\tan \delta
\]

where \( \delta \) is the wall friction angle.

Using (1), the value of \( \psi \) along the wall is then determined by the equation

\[
\sin \varphi \sin 2\psi_{\omega} = -\tan \delta (1 - \sin \varphi \cos 2\psi_{\omega})
\]

The normal velocity along the wall should be equal to zero. Thus

\[
v = v_1 + v_3 + \ldots = 0.
\]

The discussion on the free surface condition will be delayed until later.

If only the terms of the expansion up to order \( \theta^2 \) only are retained, the expansions of \( v \) and \( \psi \) will only have one term. Thus

\[
v = v_1, \quad \psi = \psi_{\omega} = \frac{\pi}{2} + \gamma_1 \quad \text{on} \quad \theta = \theta_{\omega}.
\]

The equations are solved by simple integration, giving

\[
u_0 = U \left( \frac{r}{r_1} \right)^2
\]

and

\[
\sigma_0 = \frac{1}{\rho g r_1} \left( \omega - 1 \right) \left( 1 - \sin \varphi \right) \left( \frac{r}{r_1} \right)^2 - \frac{2F}{\omega + 4} \left( 1 - \sin \varphi \right) \left( \frac{r}{r_1} \right)^4 + A \left( \frac{r}{r_1} \right)\theta_{\omega}
\]

where \( U \) and \( A \) are the constants of integration, \( F = U^2 / g r_1 \) is a modified Froude number and

\[
\omega = \frac{4 \sin \varphi}{\left( 1 - \sin \varphi \right) \left( 1 + \gamma_{\omega} \right) \theta_{\omega}}
\]

Substituting these expressions for \( u_0 \) and \( \sigma_0 \) into equations (10) will give expressions for \( u_2 \) and \( \sigma_2 \) as follows:

\[
u_2 = -3\gamma_2 \theta_{\omega} U \left( \frac{r}{r_1} \right)^2
\]

and

\[
\frac{\sigma_2}{\rho g r_1} = \left[ \frac{\gamma_{\omega} (4 \theta_{\omega} + 3 \gamma_{\omega}) \sin \varphi}{\left( \omega - 1 \right) \left( 1 - \sin^2 \varphi \right) \theta_{\omega}} \right] \left( \frac{r}{r_1} \right)^2 + \frac{2 \gamma_{\omega} (\theta_{\omega} - 3 \gamma_{\omega}) F \sin \varphi}{\omega + 4} \left( 1 - \sin^2 \varphi \right) \theta_{\omega}\left( \frac{r}{r_1} \right)^4
\]

\[
+ A \gamma_{\omega} (\omega \theta_{\omega} + 3 \gamma_{\omega} + 3 \gamma_{\omega}) \sin \varphi \left( \frac{r}{r_1} \right)^4
\]

\[
+ A \gamma_{\omega} (\omega \theta_{\omega} + 3 \gamma_{\omega} + 3 \gamma_{\omega}) \sin \varphi \left( \frac{r}{r_1} \right)^4
\]

\[
+ A \gamma_{\omega} (\omega \theta_{\omega} + 3 \gamma_{\omega} + 3 \gamma_{\omega}) \sin \varphi \left( \frac{r}{r_1} \right)^4
\]

\[
 Boundary Condition on the Free Surface
\]

The analysis in this section is based on the work of Brennen and Pearce [6]. Along the free surfaces, the mean stress is equal to zero. This will give the condition on the expansion terms \( \sigma_0 \) and \( \sigma_2 \). If these free surfaces are taken to be the circumferential surfaces at the upper and lower radius, then

\[
\sigma \left|_{r_1} \right. = \sigma_0 \left|_{r_1} \right. + \sigma_2 \left|_{r_1} \right. \left( \frac{\theta_{\omega}}{\theta_{\omega}} \right) = 0
\]

which gives

\[
\sigma_0 \left|_{r_1} \right. = 0 \quad \text{and} \quad \sigma_2 \left|_{r_1} \right. = 0
\]

However, the expressions of \( \sigma_0 \) and \( \sigma_2 \) have only two unknown constants \( A \) and \( U \) which are to be evaluated from the boundary conditions. Therefore, these four conditions on \( \sigma_0 \) and \( \sigma_2 \) along the free surfaces overspecify the problem. This implies that the free surfaces do not coincide with the circumferential surfaces and that their geometries will be determined by the condition of zero stress.

Following Brennen and Pearce [6], we let the free surface \( I' \) and the circumferential lines be separated by a distance \( \epsilon(\theta) \). The geometry is then as shown in Fig. 2. Assuming \( \epsilon(\theta) \) to have a parabolic profile, we have

\[
\epsilon(\theta) = \epsilon \left[ 1 - \left( \frac{\theta}{\theta_{\omega}} \right)^2 \right]
\]

The zero stress condition along \( I' \) will be expanded in Taylor series from the stress along the circumferential line. Hence

\[
\sigma \left|_{r_1} \right. = \sigma_0 \left|_{r_1} \right. + \epsilon_1 \left[ 1 - \left( \frac{\theta}{\theta_{\omega}} \right)^2 \right] \frac{d\sigma_0}{dr} \left|_{r_1} \right. = 0
\]

Substituting the expansion (7) for \( \sigma \), we have

\[
\sigma_0 \left|_{r_1} \right. + \epsilon_1 \frac{d\sigma_0}{dr} \left|_{r_1} \right. = 0
\]

\[
\sigma_2 \left|_{r_1} \right. + \epsilon_1 \frac{d\sigma_2}{dr} \left|_{r_1} \right. - \epsilon_1 \frac{d\sigma_0}{dr} \left|_{r_1} \right. = 0
\]

which are the terms of order \( \theta^2 \) and \( \theta^2 \) in (15). It can be seen then that \( \epsilon_1 \) is of order \( \theta_{\omega}^2 \) and the order \( \sigma_0 + \sigma_2 \left|_{r_1} \right. \right] = 0
\]

\[
\epsilon_1 = \frac{\sigma_2 \left|_{r_1} \right.}{d\sigma_0/d\theta \left|_{r_1} \right.}
\]

This same condition can also be applied along the top surface. Evaluating the constants \( U \) and \( A \) in (13), we have

Journal of Applied Mechanics SEPTEMBER 1979, VOL. 46 / 531
\[
F = \frac{U^2}{\rho g r_1} = \left(1 - \frac{r_2}{r_1}\right)^{-\omega} \left(1 - \frac{\theta_2}{\theta_1}\right)^{-\omega} \left[1 + \theta_2 \sin \varphi\right] \times \left(1 + 4 \gamma_w \sin \varphi + 5 \theta_w \sin \varphi - \theta_2 \right)
\]

The exit velocity averaged over the exit area is given by
\[
\bar{u} = \frac{\int_0^{\theta_w} u \cos \theta d\theta}{\int_0^{\theta_w} \sin \theta d\theta}
\]
or, in dimensionless form,
\[
\frac{\bar{u}}{\sqrt{\frac{U}{2}} g D} = \sqrt{\frac{F}{2 \sin \theta_w}} \left[1 - \frac{3 \gamma_w \int_0^{\theta_w} \theta_2 \sin \theta d\theta}{(1 - \cos \theta_w) \theta_w}\right]
\]

Presentation of Results

In this section, the solution will be compared to some experimental data and to other analyses.

(a) Comparison With Experimental Results. Sand (688\textmu m dia) and glass beads (610\textmu m dia) were both used to obtain measurements of the mass flow rate in some conical hoppers. These granular materials are effectively cohesionless and have a size distribution which is fairly uniform. The measured internal friction angles were 31° for sand and 25° for the glass beads; their wall friction angle on an aluminum wall are 24.5° and 15°, respectively (see [6]). The bulk specific gravity of the flowing material (at critical void ratio) was 1.5 for both materials. The materials used in the present experiments have a fairly small grain size; the interstitial air may therefore have some effects on the flow rate. This effect was studied by Crewdson, Ormond, and Templeton [26], Blair-Fish and Bransby [27] and Drescher, Cousins, and Bransby [28].

In Fig. 3 a plot of the dimensionless exit velocity versus the exit diameter for sand flowing in conical hoppers of various half-wall angles.

The nondimensional mean stress along the wall can be obtained from equations (13) and (14). Thus
\[
\frac{\sigma}{\rho g r_1} = \left[\frac{4 \theta_w + 3 \gamma_w}{\omega (1 - \sin^2 \varphi)} + \theta_2 \right] \left(1 - \frac{r_2}{r_1}\right) + \frac{F}{(\omega + 4)(1 - \sin^2 \varphi)} \left(1 - \frac{r_2}{r_1}\right) + A \left[1 + \frac{3 \gamma_w \theta_2 + 3 \theta_w + 3 \gamma_w \sin \varphi}{\gamma_w} \right] \times \left(1 + \sin \varphi\right)
\]

Some comments can be made about the solutions (17) and (18). First, the magnitude of the \(\theta_2\) terms are smaller than the \(\theta_2\) terms by factors of \(\gamma_0, \theta_0, \theta_0^2\), and \(\gamma_0^2\). Thus the successive terms in the expansion decrease in magnitude and convergence of the regular expansion is expected. Second, the value of \(U\) (and therefore of \(u\)) is independent of the ratio \(r_2/r_1\) when the head of the material above the exit opening is sufficiently large. This is consistent with the well-known experimental observation of head independent flow.
(b) Comparison With Other Analyses. In this section, the analytical expressions for the mass flow rate derived by Johanson, Brown, Williams, and Savage will be compared to the present solution.

Johanson [24] presented a semiempirical method for computing the flow rate of granular materials from hoppers. By considering a balance of forces acting on an arch across the hopper opening, he considered that the material would flow when the flow factor of the hopper was less than a critical value. The dimensionless exit velocity is obtained in the form

$$\frac{u}{\sqrt{gD}} = \frac{1}{\sqrt{4 \tan \theta_w}} \sqrt{1 - \frac{ff}{ffa}}$$

where

- $ff$ = the hopper flow factor
- $ffa$ = the critical value of the flow factor
- $\theta_w$ = the half-wall angle

This result is fairly general. It is dependent on both the hopper angle $\theta_w$ and the material property through the flow factor. However, the presence of the flow factor in the formula implies some degree of empiricism since this quantity must be determined independently. The upper limiting curve $u/\sqrt{gD} = (4 \tan \theta_w)^{-1/2}$ is presented in Fig. 7 since the flow factors for the hoppers used in the present experiments were not available.

Brown [4] used an energy principle to derive the mass flow rate of granular materials through an aperture. He suggested that the material would flow when the total potential and kinetic energies reached a minimum at a certain radius. Taking this radius to be that of the exit opening, he derived an upper limit of the dimensionless exit velocity as

$$\frac{u}{\sqrt{gD}} = \frac{2(1 - \cos^{3/2} \beta)}{3 \sin^{3/2} \beta}$$

where $\beta$ is the angle of the channel formed by the flowing material. For a mass flow hopper, $\beta$ would be the hopper half-wall angle and is a simple geometric quantity. The results of this expression for the hopper used in the present experiments are included in Fig. 7.

Williams [9] derived the upper and lower limiting solutions by
solving the equations of the flow along the center line and the hopper wall, respectively.

Along the center line, he assumed that \( \frac{\partial \psi}{\partial \theta} = 0 \) which may not be justified. The expression of the center-line velocity is

\[
v_{cl} = \frac{k + 1}{(2k - 3)} \frac{r_0^6}{r^4}.
\]

Along the wall, the radial velocity is given by

\[
v_{w} = \frac{\rho}{2} \left( \frac{\cos \theta - \sin \phi \sin 2\psi_{w} \sin \theta_{w}}{1 - \sin \phi \cos 2\psi_{w}} \right) \frac{B - 4}{B + 1} \frac{r_0^6}{r^4}.
\]

where

\[
k = \frac{1 + \sin \phi}{1 - \sin \phi}
\]

and

\[
B = \frac{k_2}{k_1}
\]

where \( k_2 \) and \( k_1 \) are defined in his paper [9, page 250].

This solution is based on some assumptions which are important. For example, the values of \( \partial \psi/\partial \theta \) on the center line and along the wall are approximations to the actual values. Also, the dependence of the radial velocity on the radial position \( \theta \) taken to be \( \cos^{-1/2} \theta \) is based on the observation of the frictionless wall solution and may not be representative of the actual velocity profile.

Savage [5] seems to have been the first author to systematically analyze the hopper flow problem by considering the complete equations of motion. His perturbation scheme is based on \( \epsilon = (\tan \delta)^{1/2} \) where \( \delta \) is the wall friction angle and is based upon the limit process (tan \( \delta \))/\( \theta_{w} \to 0 \) as \( \theta_{w} \to 0 \). The results are given as

\[
u = \nu_{l} \left[ 1 + \frac{k + 1}{2(2k - 3)\theta_{w}} \right]^{1/2} + \frac{\epsilon^{2k}}{\theta_{w}} \left[ \frac{1}{2} \left( k + 1 \right) \left( 2(2k - 3)\theta_{w} \right)^{-1/2} \right]^{1/2}
\]

where \( k = \frac{(1 + \sin \phi)(1 - \sin \phi) \theta_{w}}{\theta_{w}} \).

Because of the aforementioned limit process it follows that this analysis and flow rate is invalid for wall angles, \( \theta_{w} \), less than about tan \( \delta \). This region of lack of validity is clearly demonstrated in Fig. 7. However provided tan \( \delta \)/\( \theta_{w} \) is small it would appear that Savage's

**Conclusion**

Treating the granular material as a perfectly plastic continuum, approximate solutions for the flow in a conical hopper were derived. It is seen that the continuum model describes the behavior of granular materials fairly well. It should be noted that the problem being studied is for a mass flow hopper only. Therefore, at large hopper angles, deviation between the theory and experiments is expected. Using the empirical criteria established by Jenike and Johanson [23] it is found that the upper limit of hopper angle for mass flow to exist is 20° for sand and about 25° for glass beads.

**Acknowledgments**

Support for this research was provided by the Union Carbide Corporation and by the National Science Foundation under Grant ENG. 78-15043.

**References**

Readers Of
The Journal Of Applied Mechanics
Will Be Interested In:

ASME's SI (Metric) Units Series

SI is the basic guide for all and should be used in conjunction with all other SI booklets which address themselves to specific fields.
1978 Bk. No. E00058 35 pp. $2 Members $1

The sections in this booklet cover units and conversion factors, solved problems, and practice problems with answers. The tables cover principal quantities encountered in strength of materials and their units, derived units, commonly used conversion factors, and average physical properties of common materials.

SI-3 ASME Text Booklet: SI Units in Dynamics
This text covers units and conversion factors, solved problems and practice problems with answers. The tables cover principal quantities encountered in dynamics and their units, derived units and commonly used conversion factors.
1976 Bk. No. E00083 20 pp. $4 Members $2

SI-4 ASME Text Booklet: SI Units in Thermodynamics
Prepared by James W. Murdock and Leo T. Smith
The sections in this booklet cover units and conversion factors, conversion techniques, solved problems, and practice problems with answers. The tables cover: properties of selected gases at 101.3kPa and 20°C, principal quantities encountered in thermodynamics and their units, commonly used conversion factors, and SI unit prefixes.
1976 Bk. No. E00084 60 pp. $6.50 Members $3.25

SI-5 ASME Text Booklet: SI Units in Fluid Mechanics
Prepared by James W. Murdock and Leo T. Smith
Covers units and conversion techniques, solved problems, and practice problems with answers. The tables cover fluid properties considered in the study of fluid mechanics, properties of selected liquids at 101.3kPa and 20°C, dimensionless numbers used in the study of fluid mechanics, principal quantities encountered in fluid mechanics and their units, derived units, commonly used conversion factors, and SI unit prefixes.
1976 Bk. No. E00085 36 pp. $5 Members $2.50

SI-6 ASME Text Booklet: SI Units in Kinematics
The sections cover units and conversion factors, solved problems, and practice problems with answers. The tables cover principal quantities encountered in kinematics and their units, derived units, units in use with the international system, and commonly used conversion factors.
1976 Bk. No. E00086 14 pp. $3. Members $1.50

SI-7 ASME Text Booklet: SI Units in Heat Transfer
Prepared by James W. Murdock
Covers units and conversion factors, conversion techniques, solved problems and practice problems with answers. The tables cover principal quantities encountered in heat transfer and their units, derived units, commonly used conversion factors, SI unit prefixes, dimensionless numbers used in the study of heat transfer, properties of air at one atmosphere, properties of saturated water and properties of 316 stainless steel.
1977 Bk. No. E00087 36 pp. $5. Members $2.50

SI-8 ASME Text Booklet: SI Units in Vibration
The sections cover: units and conversion factors, solved problems, and practice problems with answers. Tables cover principal quantities encountered in vibration and their units: derived units, length, velocity, acceleration, mass, mass moment of inertia, force, and force per unit of deformation of spring constant.

SI-10 Steam Charts
Author: James H. Potter
Thermodynamic properties of Steam, h-v, in Graphical Form for the Superheated Vapor and Liquid Conditions in both SI (Metric) and U.S. Customary Units.
One prime application of the Steam Charts is to offer a compact, portable device for calculating appropriate values of steam properties without resorting to computers. The Steam Charts will be of real help in the hands of design engineers, manufacturers of steam-raising and steam-using equipment, and in engineering offices generally.

Address Orders To:
Order Department • The American Society Of Mechanical Engineers • 345 East 47th Street, New York, N.Y. 10017