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Abstract

We study the dilaton/axion configuration near D-instantons in type IIB

superstring theory. In the field theory limit, the metric near the instantons

becomes flat in the string frame as well as in the Einstein frame. In the large

N limit, the string coupling constant becomes zero except near the origin.

The supersymmetry of this configuration is analyzed. An implication of this

result to the IIB Matrix Model is discussed.
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1 Introduction

According to the AdS/CFT correspondence [1–3], string theory on (p+2)-dimensional

Anti-de Sitter Space (AdSp+2) times a compact space is equivalent to a (p+1)-dimensional

conformal field theory. In particular, string theory on AdS4 ×S7, AdS5 ×S5 and AdS7 ×
S4 are shown to be equivalent to conformal field theory on M2, D3 and M5 branes,

respectively. These correspondences were discovered by studying the near horizon region

of p-branes in two different ways. One is to consider strings propagating in the curved

background generated by the p-brane. Another is to use the collective coordinates of

the p-brane, which in some limit is a (p + 1)-dimensional conformal field theory. The

equivalence of the two descriptions implies the correspondence.

In this paper, we study the region near (−1)-branes, i.e. instantons. This case is of

particular interest since the corresponding 0-dimensional gauge theory has been conjec-

tured to give a non-perturbative definition of the type IIB superstring [4, 5]. We study the

dilaton/axion fields configuration near the instantons. If we take the field theory limit of

Sen and Seiberg [6, 7], the metric near the instantons becomes flat in the string frame as

well as in the Einstein frame. Moreover, in the large N limit, the string coupling constant

becomes zero except near the origin. This seems in support of the conjecture [4, 5]. The

situation in the case of finite N is subtle and we will comment on this case toward the

end of this paper.

2 Wick Rotation and Supersymmetry

The instanton solution is defined in the Euclidean signature space. Since the Wick

rotation of type IIB supergravity is subtle, we would like to start our discussion by stating

our prescriptions for the Wick rotation and supersymmetry in the Euclidean signature

space.

In the Minkowski signature space, the dilaton and axion fields of type IIB theory

parametrize the upper half-plane, or the coset space SL(2, R)/U(1). Following [8], we

introduce the frame field,

V =

(

V 1
− V 1

+

V 2
− V 2

+

)

, (2.1)

and define the local U(1) action as

V → V

(

e−iΣ 0

0 eiΣ

)

(2.2)
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where Σ is a U(1) phase. It is convenient to parametrize the matrix V as

V =
1√

−2iτ2

(

τ̄ e−iλ τeiλ

e−iλ eiλ

)

. (2.3)

We can fix the U(1) gauge symmetry by setting the scalar field λ to be a function of τ .

For example, λ is set equal to −Im log(τ + i) in [9] whereas λ = 0 is used in [10].

The complex scalar field τ in (2.3) is related to the dilaton φ and the axion a as

τ = a+ ie−φ. (2.4)

To write the type IIB supergravity equations of motion, we introduce two SL(2, R) singlet

currents,

Pµ = −ǫαβV
α
+ ∂µV

β
+ =

i

2

∂µτ

τ2
e2iλ

Qµ = −iǫαβV
α
− ∂µV

β
+ = ∂µλ− 1

2

∂µτ1
τ2

. (2.5)

Under the U(1) gauge symmetry (2.2), they transform as

Pµ → Pµe
2iΣ

Qµ → Qµ + ∂µΣ. (2.6)

The equations of motion (in the absence of the p-form fields, p = 2, 4, 6) are

Rµν = PµP
∗
ν + P ∗

µPν

DµPµ = (∇µ − 2iQµ)Pµ = 0, (2.7)

where Rµν is the Ricci tensor. Substituting (2.5) into these, the equations of motion can

be expressed in terms of φ and a as

Rµν =
1

2
(∂µφ∂νφ+ e2φ∂µa∂νa)

∆a+ 2∂µφ∂µa = 0

∆φ− e2φ(∂a)2 = 0. (2.8)

These can be derived from the Lagrangian density

L = R− 1

2
(∂φ)2 − 1

2
e2φ(∂a)2. (2.9)

The supersymmetry transformations of the dilatino ρ and the gravitino ψµ are given by

δρ = iPµγ
µǫ∗

δψµ =
(

∇µ − i

2
Qµ

)

ǫ. (2.10)
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The instanton is a solution in Euclidean signature space. The equations is this case

are obtained from (2.8) by the substitution a→ α = ia,

Rµν =
1

2
(∂µφ∂νφ− e2φ∂µα∂να)

∆α + 2∂µφ∂µα = 0

∆φ+ e2φ(∂α)2 = 0. (2.11)

The supersymmetry transformation rules that can be derived analogously [11–13]. We

make the substitution a → α = ia, and we treat ǫ and ǫ∗ as independent spinors. In

addition, we Wick rotate the spinors as in [12, 13]. This yields

δρ = iPµγ
µǫ∗, δρ∗ = −iP ∗

µγ
µǫ

δψµ = (∇µ − i

2
Qµ)ǫ, δψµ∗ = (∇µ +

i

2
Qµ)ǫ

∗, (2.12)

where

Pµ =
1

2

(∂µτ1 − ∂µτ2)

τ2
e2iλ,

P ∗
µ = −1

2

(∂µτ1 + ∂µτ2)

τ2
e−2iλ,

Qµ = ∂µλ+
i

2

∂µτ1
τ2

. (2.13)

The invariance of the Wick-rotated action under these rules directly follows from the in-

variance of the original action under the transformation rules (2.10). For a more complete

discussion of Euclidean spinors and Wick rotation we refer to [11–13].

3 Instanton Solution

As shown in [9], the Euclidean equations of motion (2.11) have a solution where the

metric (in the Einstein frame) is flat gµν = δµν and the dilaton and the axion are related

as

∂µα = ±e−φ∂µφ. (3.1)

In the following, we choose the plus sign in the right hand side. The equations (2.11) are

then satisfied if the dilaton obeys

∆eφ = 0. (3.2)

A spherically symmetric solution to (3.2) with the boundary condition eφ → gs at

infinity r = ∞ is given by

eφ = gs

(

1 +
c

r8

)

(3.3)
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for some constant c. The equation (3.1) then determines the axion α as

α =
−1

gs

(

1 + c
r8

) + const. (3.4)

Since α behaves for large r as

α ≃ c

gs

1

r8
+ · · · , (3.5)

the constant c is related to the instanton charge N as

c = c0gsNl
8

s (3.6)

where ls is the string length and c0 is a numerical constant related to the volume of the

unit 9-sphere.

To summarize, the instanton solution with N unites of charge is given by

gµν = δµν

eφ = gs

(

1 + c0
gsNl

8
s

r8

)

α = −g−1

s

(

1 + c0
gsNl

8
s

r8

)−1

+ const. (3.7)

4 Field Theory Limit of D-Instantons

It was shown in [9] that the solution (3.7) preserves half of the maximal supersymmetry.

Here we will study the field theory limit [1, 6, 7]

u =
r

l2s
, g2

Y M =
gs

l4s
: fixed, ls → 0, (4.1)

of the solutions∗. In this limit, the ls-dependence of the dilaton/axion fields in (3.7)

disappears and we obtain

τ2 = e−φ ≃ Nu8

c0(g2
Y MN)2

, τ1 = −τ2 + const. (4.2)

∗The near instanton configuration was also studied in [14] (see also [15] for a related observation). In

that paper they considered the strict r → 0 limit instead of the field theory limit (4.1). They showed that

the configuration one obtains in this limit preserves the maximal supersymmetry (a similar result holds

for all Dp-branes (p < 7) [16]). Notice that the final configuration they obtain is singular as the dilaton

diverges in the limit. In the field theory limit (4.1), the dilaton and axion remain finite as in (4.2)
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Since ∂µτ1 = −∂µτ2 for the instanton solution (3.7), the composite gauge field Qµ given

by (2.13) is a pure gauge†. Therefore it is natural to set Qµ = 0 by fixing the U(1) gauge

symmetry as

λ =
i

2
logτ2 (4.3)

In this gauge, the gravitino variation in (2.12) becomes simply

δψµ = ∂µǫ. (4.4)

Thus the equation δψµ = 0 has the maximal number of solutions.

Let us turn to the dilatino variation in (2.12). Since ∂µτ1 = −∂µτ2, P
∗
µ = 0 and

therefore, δρ∗ = 0. On the other hand,

Pµ = ∂µ
1

τ2
=
c0(g

2
Y MN)2

N
∂µu

−8 (4.5)

which is non-zero in the field theory limit. Thus, only 1/2 of supersymmetry is preserved

even in the field theory limit.

5 Comment on the IIB Matrix Model

In the D-brane description of the p-brane [17], the open string dynamics on the brane

reduces to the (p+ 1)-dimensional supersymmetric gauge theory [18] in the limit

u =
r

l2s
, g2

Y M =
gs

l3−p
s

: fixed, ls → 0. (5.1)

Repeating the argument in [1] in the case of the D(−1) brane, it is natural to expect that

type IIB string in the flat metric (5.4) and the dilaton background (4.2) is equivalent to

the 0-dimensional matrix model given by the action

S = − 1

g2
Y M

tr

(

1

4
[Aµ, Aν ][A

µ, Aν ] +
1

2
ψ̄Γµ[Aµ, ψ]

)

, (5.2)

where Aµ (µ = 1, ..., 10) and ψ are N × N hermitian matrices. The large N limit of

this model has been proposed in [4, 5] as a non-perturbative definition of type IIB string

theory. There they found that the string length of the type IIB string is (g2
Y MN)1/4 and

that the string coupling constant is (Nǫ2)−1, where ǫ is a cut-off parameter in the matrix

integral.

†This is the case even before the field theory limit (4.1) is taken.
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Let us compare their results with the field theory limit of the instanton studied in this

paper. Since the metric for the instanton solution is flat in the Einstein frame, the string

frame metric for the instanton solution is given by

ds2

s = l4s

√

√

√

√1 + c0
g2

Y MN

l4su
8

(du2 + u2dΩ2

9). (5.3)

Here dΩ9 is the line element of the unit 9-sphere. In the limit (4.1), this becomes

ds2
s

l2s
≃
√

c0g2
Y MN

(

du2

u4
+
dΩ2

9

u2

)

=
√

c0g2
Y MN(dũ2 + ũ2dΩ2

9), (5.4)

where ũ = 1/u. Thus the metric in the string frame also becomes flat. Moreover the

factor
√

g2
Y MN is reminiscent of the string length found in [5].

At the same time, the dilaton in the field theory limit is

eφ ≃ c0
(g2

Y MN)2

Nu8
. (5.5)

This appears to be different from the expression for the string coupling constant found in

[5]. The non-constant dilaton (5.5) is also responsible for the breaking of 1/2 of super-

symmetry near the instanton, as we saw in (4.5). On the other hand, it was pointed out

in [4] that the matrix model (5.2) has N = 2 super Poincaré symmetry in ten dimensions.

In the limit N → ∞ with g2
Y MN finite, these two view points are in complete agree-

ment. In the field theory limit, the string coupling given by the dilaton field eφ is small

for u8 ≫ 1/N . As we take N to be large, the size of this region expands. In the limit

N → ∞, one obtains type IIB string in the flat space (5.4) with vanishing string coupling

eφ = 0. From the large N analysis of (5.2), one also finds free type IIB strings [4]. It

would be very interesting to clarify the situation at finite N .
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