LATITUDINAL GRADIENTS OF GALACTIC COSMIC RAYS DURING THE 2007 SOLAR MINIMUM

Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Kiel, D-24118 Kiel, Germany; heber@physik.uni-kiel.de

R. A. Mewaldt
Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125

AND

M. S. Potgieter and S. E. S. Ferreira
Unit for Space Physics, North-West University, 2520 Potchefstroom, South Africa

Received 2008 April 8; accepted 2008 August 14

ABSTRACT

Ulysses, launched in 1990 October in the maximum phase of solar cycle 22, completed its third out-of-ecliptic orbit in 2008 February. This provides a unique opportunity to study the propagation of cosmic rays over a wide range of heliographic latitudes during different levels of solar activity and different polarities in the inner heliosphere. Comparison of the first and second fast latitude scans from 1994 to 1995 and from 2000 to 2001 confirmed the expectation of positive latitudinal gradients at solar minimum versus an isotropic Galactic cosmic ray distribution at solar maximum. During the second scan in mid-2000, the solar magnetic field reversed its global polarity. From 2007 to 2008, Ulysses made its third fast latitude scan during the declining phase of solar cycle 23. Therefore, the solar activity is comparable in 2007–2008 to that from 1994 to 1995, but the magnetic polarity is opposite. Thus, one would expect to compare positive versus negative latitudinal gradients during these two periods for protons and electrons, respectively. In contrast, our analysis of data from the Kiel Electron Telescope aboard Ulysses results in no significant latitudinal gradients for protons. However, the electrons show, as expected, a positive latitudinal gradient of ∼0.2% per degree. Although our result is surprising, the nearly isotropic distribution of protons in 2007–2008 is consistent with an isotropic distribution of electrons from 1994 to 1995.

Subject headings: convection — cosmic rays — diffusion — solar-terrestrial relations — solar wind

Online material: color figures

1. INTRODUCTION

The ongoing Ulysses mission provides a unique opportunity to study the propagation and modulation of Galactic cosmic rays (GCRs) in detail by in situ measurements in the three-dimensional heliosphere. The intensity of GCRs is modulated as they traverse the turbulent magnetic field embedded in the solar wind. These particles are scattered by irregularities in the interplanetary magnetic field and undergo convection and adiabatic deceleration in the expanding solar wind. The large-scale heliospheric magnetic field, which approximates an Archimedean spiral (Parker 1965), leads to gradient and curvature drifts of cosmic rays in the interplanetary medium. Jokipii et al. (1977) pointed out that these drift effects should also be an important element of cosmic-ray modulation. Models that take such effects into account (Evenson 1998; Heber et al. 2002; Ferreira et al. 2003a; Ferreira & Potgieter 2004) predict the latitudinal distribution of GCR protons and electrons. In the 1980s, during an A < 0 solar magnetic epoch, i.e., when the field is directed toward the Sun in the north polar region, models predicted a negative latitudinal gradient for positively charged cosmic rays. Such gradients were found by the cosmic-ray instruments aboard the two Voyager satellites (Cummings et al. 1987; McDonald et al. 1997). In the 1970s and 1990s, during the A > 0 solar magnetic epoch, Pioneer and Ulysses measurements from 1974 to 1977 and 1994 to 1995 confirmed the expectation of positive latitudinal gradients (McKibben 1989; Heber et al. 1996b). An overview of some selected results are given in Table 1. Because the observed latitudinal gradients were much smaller than predicted by drift-dominated models (Jokipii et al. 1977), in particular at low energies, reinvestigations emphasized the importance of stochastic and systematic perpendicular transport in the heliosphere and the modification of the heliospheric magnetic field (Fisk & Jokipii 1999; Fisk 1996). It was shown that the cosmic-ray observations could be described well when such processes were included (Ferreira et al. 2003a; Ferreira & Potgieter 2004; Potgieter et al. 1997). During the second fast latitude scan in 2000–2001, no latitudinal gradients were measured (McKibben et al. 2003; Heber et al. 2002). Thus, the importance of charge sign dependence (e.g., drift) in the diffusion process varies with the solar cycle (Ferreira et al. 2003a). When Ulysses again reached its highest southern heliographic latitudes in 2007, solar activity was similar to the activity level in 1994, but the heliospheric magnetic field had reversed sign.

2. INSTRUMENTATION AND OBSERVATIONS

The observations were made with the Kiel Electron Telescope (KET) aboard Ulysses and the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE). KET measures protons and helium in the energy range from 6 MeV to above 2 GeV per nucleon and electrons in the energy range from 3 MeV to a few GeV (Simpson et al. 1992). Ulysses was launched on 1990 October 6, shortly before the declining activity phase of solar cycle 22. A swing-by maneuver at Jupiter in 1992 February placed the spacecraft into a trajectory inclined by 80° with respect to the ecliptic plane. In this paper, we compare the Ulysses helium 125–250 MeV nucleon−1 channel with the ACE carbon 147–198 MeV nucleon−1 channel. As discussed in Gieseler et al. (2007), both channels
Overview of Latitudinal Gradients for Cosmic-Ray Protons and Helium Reported in the Literature

<table>
<thead>
<tr>
<th>Magnetic Epoch</th>
<th>Energy</th>
<th>G_θ (% deg(^{-1}))</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A > 0$</td>
<td>145–255 MeV nucleon(^{-1}) (He)</td>
<td>0.21 ± 0.6</td>
<td>McDonald et al. 1997</td>
</tr>
<tr>
<td></td>
<td>145–255 MeV nucleon(^{-1}) (He) at 60 AU</td>
<td>0.0 ± 0.4</td>
<td>McDonald et al. 1997</td>
</tr>
<tr>
<td>$A < 0$</td>
<td>145–255 MeV nucleon(^{-1}) (He)</td>
<td>−1.1 ± 0.1</td>
<td>McDonald et al. 1997</td>
</tr>
<tr>
<td></td>
<td>140–350 MeV nucleon(^{-1}) (He)</td>
<td>−0.8 ± 0.1</td>
<td>Cummings et al. 1987</td>
</tr>
<tr>
<td></td>
<td>130–210 MeV (H)</td>
<td>−0.9 ± 0.1</td>
<td>Cummings et al. 1987</td>
</tr>
<tr>
<td>$A > 0$</td>
<td>250–2000 MeV (H)</td>
<td>0.29 ± 0.8</td>
<td>Heber et al. 1996b</td>
</tr>
<tr>
<td></td>
<td>125–250 MeV nucleon(^{-1}) (He)</td>
<td>0.32 ± 0.9</td>
<td>Heber et al. 1996b</td>
</tr>
<tr>
<td></td>
<td>>2000 MeV (H)</td>
<td>0.17 ± 0.02</td>
<td>Belov et al. 1999</td>
</tr>
<tr>
<td></td>
<td>>2000 MeV nucleon(^{-1}) (He)</td>
<td>0.12 ± 0.01</td>
<td>Belov et al. 1999</td>
</tr>
<tr>
<td></td>
<td>>70 MeV (H)</td>
<td>0.04 ± 0.01</td>
<td>McKibben 1989</td>
</tr>
<tr>
<td></td>
<td>>70 MeV (H) at 5 AU</td>
<td>0.4 ± 0.05</td>
<td>McKibben 1989</td>
</tr>
</tbody>
</table>

In what follows, we determine the latitudinal gradient of GCRs, the temporal variation and the radial gradient in the inner heliosphere at a given rigidity have to be known. We summarize some recent results important for the current analysis:

Temporal variations.—With the loss of the IMP satellite in 2002, no 1 AU baseline is currently available for protons above 100 MeV. Therefore, Gieseler et al. (2007) replaced these with the 125 to 250 MeV nucleon\(^{-1}\) helium channel and found that the 147 to 198 MeV nucleon\(^{-1}\) carbon channel from the CRIS instrument aboard ACE (Stone et al. 1998) has nearly the same temporal variation as the Ulysses helium channel.

Radial gradients.—Furthermore, Gieseler et al. (2007) examined the radial intensity gradient of the 125–250 MeV nucleon\(^{-1}\) helium channel based on the measurements mentioned above. They determined a radial gradient of $G_r = 4.7\% ± 0.6\%$ AU\(^{-1}\) for the 1998–2005 time period. This gradient is consistent with previous measurements (McDonald et al. 2003). The mean radial gradients of 1.2 and 2.5 GV electrons were found to be nearly the same as for protons during the declining phase of solar cycle 22 from 1992 to 1994 (Clem et al. 2002).

In what follows, we determine the latitudinal gradient of 1.2 GV helium and the latitudinal gradient of electrons at 2.5 GV from the electron-to-proton ratio.

3.1. Latitudinal Gradient of 1.2 GV Helium

Gieseler et al. (2007) showed that the 147–198 MeV nucleon\(^{-1}\) carbon channel of the CRIS instrument can serve as a 1 AU baseline for the 125–250 MeV nucleon\(^{-1}\) helium channel of KET.
aboard *Ulysses*. Figure 2 displays the ratio of 1.2 GV helium at *Ulysses* and 1.2 GV carbon close to Earth as a function of the latitude difference between *Ulysses* and *ACE*. Medium, light, and dark gray represent measurements during the *Ulysses* slow descend and during the fast latitude scan in the southern and northern hemisphere, respectively. *Ulysses* helium intensities have been corrected for the radial motion of the spacecraft using radial gradients of 4.1% AU\(^{-1}\) (left) and 5.3% AU\(^{-1}\) (right). [See the electronic edition of the Journal for a color version of this figure.]

With these assumptions, the latitudinal gradient of electrons can be estimated from the electron-to-proton ratio during the fast latitude scans around solar minimum. A latitudinal gradient of electrons should manifest itself in the electron-to-proton ratio by a V-shaped profile when the spacecraft moves from high southern to high northern latitudes (Ferreira et al. 2003b). Figure 3, the temporal variations are smaller. While no significant variation with latitude is observed for the 2.5 GV protons, the 2.5 GV electrons exhibit a V-shaped time profile.

3. The latitudinal gradient of 2.5 GV protons is consistent with zero. This assumption is motivated by the fact that the latitudinal gradient of 1.2 GV helium is consistent with zero and that gradients at 1.2 GV were more significant than at 2.5 GV (Cummings et al. 1987; Heber et al. 1996b).

With these assumptions, the latitudinal gradient of electrons can be estimated from the electron-to-proton ratio during the fast latitude scans around solar minimum. A latitudinal gradient of electrons should manifest itself in the electron-to-proton ratio by a V-shaped profile when the spacecraft moves from high southern to high northern latitudes (Ferreira et al. 2003b). Figure 3, the temporal variations are smaller. While no significant variation with latitude is observed for the 2.5 GV protons, the 2.5 GV electrons exhibit a V-shaped time profile.

3. The latitudinal gradient of 2.5 GV protons is consistent with zero. This assumption is motivated by the fact that the latitudinal gradient of 1.2 GV helium is consistent with zero and that gradients at 1.2 GV were more significant than at 2.5 GV (Cummings et al. 1987; Heber et al. 1996b).

With these assumptions, the latitudinal gradient of electrons can be estimated from the electron-to-proton ratio during the fast latitude scans around solar minimum. A latitudinal gradient of electrons should manifest itself in the electron-to-proton ratio by a V-shaped profile when the spacecraft moves from high southern to high northern latitudes (Ferreira et al. 2003b). Figure 3, the temporal variations are smaller. While no significant variation with latitude is observed for the 2.5 GV protons, the 2.5 GV electrons exhibit a V-shaped time profile.

3. The latitudinal gradient of 2.5 GV protons is consistent with zero. This assumption is motivated by the fact that the latitudinal gradient of 1.2 GV helium is consistent with zero and that gradients at 1.2 GV were more significant than at 2.5 GV (Cummings et al. 1987; Heber et al. 1996b).

With these assumptions, the latitudinal gradient of electrons can be estimated from the electron-to-proton ratio during the fast latitude scans around solar minimum. A latitudinal gradient of electrons should manifest itself in the electron-to-proton ratio by a V-shaped profile when the spacecraft moves from high southern to high northern latitudes (Ferreira et al. 2003b). Figure 3, the temporal variations are smaller. While no significant variation with latitude is observed for the 2.5 GV protons, the 2.5 GV electrons exhibit a V-shaped time profile.

3. The latitudinal gradient of 2.5 GV protons is consistent with zero. This assumption is motivated by the fact that the latitudinal gradient of 1.2 GV helium is consistent with zero and that gradients at 1.2 GV were more significant than at 2.5 GV (Cummings et al. 1987; Heber et al. 1996b).

With these assumptions, the latitudinal gradient of electrons can be estimated from the electron-to-proton ratio during the fast latitude scans around solar minimum. A latitudinal gradient of electrons should manifest itself in the electron-to-proton ratio by a V-shaped profile when the spacecraft moves from high southern to high northern latitudes (Ferreira et al. 2003b). Figure 3, the temporal variations are smaller. While no significant variation with latitude is observed for the 2.5 GV protons, the 2.5 GV electrons exhibit a V-shaped time profile.

3. The latitudinal gradient of 2.5 GV protons is consistent with zero. This assumption is motivated by the fact that the latitudinal gradient of 1.2 GV helium is consistent with zero and that gradients at 1.2 GV were more significant than at 2.5 GV (Cummings et al. 1987; Heber et al. 1996b).

With these assumptions, the latitudinal gradient of electrons can be estimated from the electron-to-proton ratio during the fast latitude scans around solar minimum. A latitudinal gradient of electrons should manifest itself in the electron-to-proton ratio by a V-shaped profile when the spacecraft moves from high southern to high northern latitudes (Ferreira et al. 2003b). Figure 3, the temporal variations are smaller. While no significant variation with latitude is observed for the 2.5 GV protons, the 2.5 GV electrons exhibit a V-shaped time profile.

3. The latitudinal gradient of 2.5 GV protons is consistent with zero. This assumption is motivated by the fact that the latitudinal gradient of 1.2 GV helium is consistent with zero and that gradients at 1.2 GV were more significant than at 2.5 GV (Cummings et al. 1987; Heber et al. 1996b).

With these assumptions, the latitudinal gradient of electrons can be estimated from the electron-to-proton ratio during the fast latitude scans around solar minimum. A latitudinal gradient of electrons should manifest itself in the electron-to-proton ratio by a V-shaped profile when the spacecraft moves from high southern to high northern latitudes (Ferreira et al. 2003b). Figure 3, the temporal variations are smaller. While no significant variation with latitude is observed for the 2.5 GV protons, the 2.5 GV electrons exhibit a V-shaped time profile.

3. The latitudinal gradient of 2.5 GV protons is consistent with zero. This assumption is motivated by the fact that the latitudinal gradient of 1.2 GV helium is consistent with zero and that gradients at 1.2 GV were more significant than at 2.5 GV (Cummings et al. 1987; Heber et al. 1996b).

With these assumptions, the latitudinal gradient of electrons can be estimated from the electron-to-proton ratio during the fast latitude scans around solar minimum. A latitudinal gradient of electrons should manifest itself in the electron-to-proton ratio by a V-shaped profile when the spacecraft moves from high southern to high northern latitudes (Ferreira et al. 2003b). Figure 3, the temporal variations are smaller. While no significant variation with latitude is observed for the 2.5 GV protons, the 2.5 GV electrons exhibit a V-shaped time profile.
displays the 13 day averaged quiet-time variation of 2.5 GV electrons and protons (top) and the e/p ratio (bottom) for 2007. The latter is lower in mid-2007, when Ulysses was at lower latitudes, than in early 2007 and late 2007, when the spacecraft was at southern and northern polar latitudes, confirming our expectation of a positive latitudinal gradient of electrons.

In order to determine this gradient, Figure 4 shows the e/p ratio as a function of the latitude difference, $\Delta \theta$, between Ulysses and Earth, calculated as

$$ \Delta \theta = |\theta^U| - |\theta^A| $$

with θ^U and θ^A the latitudes of Ulysses and ACE, respectively. Thus we assume that the Galactic cosmic ray electron distribution is symmetric around the heliographic equator. In contrast to Heber et al. (1996a) and Simpson et al. (1996), the data do not allow us to investigate the north-south asymmetry found during the first fast latitude scan. In order to achieve reasonable statistical accuracy, the data in Figure 4 are binned by 15°. The solid line displays the result of a fit of the form

$$ \frac{e}{p} (\Delta \theta) = \frac{e}{p} \exp (G_\theta \Delta \theta), $$

resulting in a latitudinal gradient of $G_\theta = 0.2\% \pm 0.05\% \text{ deg}^{-1}$ for electrons. Heber et al. (1996b) found a latitudinal gradient G_θ of $0.29\% \pm 0.08\% \text{ deg}^{-1}$ for 2.5 GV protons during the first fast latitude scan. Thus, the electron gradients found during the third fast latitude scan are consistent with the small gradients of protons during the first scan.

4. SUMMARY AND CONCLUSION

The large-scale heliospheric magnetic field causes gradient and curvature and current sheet drifts. When the field is directed outward from the Sun in the north polar region ($A > 0$) as in the 1990s, drift models predict that positively charged particles drift predominantly inward through the solar polar regions and then outward through the equatorial regions along the heliospheric current sheet. In contrast, electrons drift mainly into the inner heliosphere along the heliospheric current sheet and then outward through the polar regions. The vanishing and small positive latitudinal gradients for electrons and protons during the 1997 solar minimum can be understood in terms of modulation models that take into account larger perpendicular diffusion to the mean heliospheric magnetic field than previously expected. After solar magnetic field reversal, these patterns reverse. Therefore we investigated the GCR latitudinal gradients obtained in Ulysses’ fast latitude scan during 2007. If we correct the 1.2 GV helium data with a radial gradient of $G_r = 4.7\% \pm 0.6\% \text{ AU}^{-1}$ for Ulysses’ radial variation, we obtain a latitudinal gradient $G_\theta = -0.04\% \pm 0.03\% \text{ deg}^{-1}$. These values are in agreement with the vanishing gradient of electrons during the $A > 0$ solar magnetic epoch.

The determination of the electron gradient is less straightforward and relies on the assumption that the radial gradient and temporal variation of electrons and protons are nearly the same in 2007. In 2007, the temporal recovery of 1.2 GV particles was still much larger than the latitudinal variation, so we used the 2.5 GV electrons and protons instead. Our analysis results in a latitudinal gradient $G_\theta = 0.2\% \pm 0.05\% \text{ deg}^{-1}$ for electrons. Although the uncertainty is quite large, we can for the first time determine the latitudinal distribution of Galactic cosmic ray electrons during an $A < 0$ solar magnetic epoch. Our result is consistent with that for GCR protons in the 1990s during the $A > 0$ solar magnetic epoch. Since these gradients are much smaller than would be predicted without an enhanced perpendicular transport, we conclude that the cause of such an enhancement is present in the $A > 0$ and $A < 0$ solar magnetic epochs. Since there are two competing models to explain such particle transport, our results might help to distinguish between these numerical particle transport models.
Parker, E. N. 1965, Planet. Space Sci., 13, 9