Crystal Structure Analysis of:

TA22

(Shown below)

For Investigator: Theo Agapie ext. 6576
Advisor: J. E. Bercaw ext. 6576
Account Number:

By Michael W. Day 116 Beckman ext. 2734
e-mail: mikeday@caltech.edu

Contents

Table 1. Crystal data
Figures Minimum overlap, unit cell contents, stereo view of unit cell contents
Table 2. Atomic Coordinates
Table 3. Selected bond distances and angles
Table 4. Full bond distances and angles
Table 5. Anisotropic displacement parameters
Table 6. Observed and calculated structure factors (available upon request)

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC) and has been placed on hold pending further instructions from me. The deposition number is 618859. Ideally the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 618859."
Table 1. Crystal data and structure refinement for TA22 (CCDC 618859).

Empirical formula $\text{C}_{40}\text{H}_{50}\text{NO}_{2}\text{F}_{2}\text{Ta} \cdot \text{C}_{6}\text{H}_{6}$
Formula weight 873.87
Crystallization Solvent Benzene
Crystal Habit Blade
Crystal size 0.33 x 0.23 x 0.07 mm3
Crystal color Pale yellow

Data Collection

Type of diffractometer Bruker SMART 1000
Wavelength 0.71073 Å MoKα
Data Collection Temperature 100(2) K
θ range for 35940 reflections used in lattice determination 2.42 to 39.55°
Unit cell dimensions $a = 13.6879(4)$ Å $b = 28.6266(7)$ Å $c = 11.3658(3)$ Å $\beta = 113.9350(10)^\circ$
Volume 4070.57(19) Å3
Z 4
Crystal system Monoclinic
Space group P2$_1$/c
Density (calculated) 1.426 Mg/m3
F(000) 1784
Data collection program Bruker SMART v5.630
θ range for data collection 1.63 to 40.73°
Completeness to θ = 40.73° 95.4 %
Index ranges -25 ≤ h ≤ 24, -52 ≤ k ≤ 48, -20 ≤ l ≤ 20
Data collection scan type ω scans at 7 φ settings
Data reduction program Bruker SAINT v6.45A
Reflections collected 109242
Independent reflections 25167 [R$_{int}$ = 0.0668]
Absorption coefficient 2.747 mm$^{-1}$
Absorption correction SADABES
Max. and min. transmission 0.7294 and 0.0000
Table 1 (cont.)

Structure solution and Refinement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure solution program</td>
<td>Bruker XS v6.12</td>
</tr>
<tr>
<td>Primary solution method</td>
<td>Direct methods</td>
</tr>
<tr>
<td>Secondary solution method</td>
<td>Difference Fourier map</td>
</tr>
<tr>
<td>Hydrogen placement</td>
<td>Geometric positions</td>
</tr>
<tr>
<td>Structure refinement program</td>
<td>Bruker XL v6.12</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>25167 / 0 / 481</td>
</tr>
<tr>
<td>Treatment of hydrogen atoms</td>
<td>Riding</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.229</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I), 17397 reflections]</td>
<td>R₁ = 0.0398, wR₂ = 0.0580</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R₁ = 0.0753, wR₂ = 0.0632</td>
</tr>
<tr>
<td>Type of weighting scheme used</td>
<td>Sigma</td>
</tr>
<tr>
<td>Weighting scheme used</td>
<td>w=1/σ²(Fo²)</td>
</tr>
<tr>
<td>Max shift/error</td>
<td>0.004</td>
</tr>
<tr>
<td>Average shift/error</td>
<td>0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>2.216 and -3.441 e.Å⁻³</td>
</tr>
</tbody>
</table>

Special Refinement Details

Refinement of F² against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F², conventional R-factors (R) are based on F, with F set to zero for negative F². The threshold expression of F² > 2σ(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3) for TA22 (CCDC 618859). U(eq) is defined as the trace of the orthogonalized U_ij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U_eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ta(1)</td>
<td>1893(1)</td>
<td>1412(1)</td>
<td>1243(1)</td>
<td>10(1)</td>
</tr>
<tr>
<td>F(1)</td>
<td>1349(1)</td>
<td>1374(1)</td>
<td>2528(1)</td>
<td>16(1)</td>
</tr>
<tr>
<td>F(2)</td>
<td>2457(1)</td>
<td>1444(1)</td>
<td>-42(1)</td>
<td>19(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>3020(1)</td>
<td>1000(1)</td>
<td>2177(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>1184(1)</td>
<td>1987(1)</td>
<td>640(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>3187(1)</td>
<td>1957(1)</td>
<td>2732(1)</td>
<td>10(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>4093(1)</td>
<td>972(1)</td>
<td>2883(2)</td>
<td>12(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>4673(1)</td>
<td>574(1)</td>
<td>2838(2)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>5778(1)</td>
<td>580(1)</td>
<td>3605(2)</td>
<td>14(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>6304(1)</td>
<td>958(1)</td>
<td>4385(2)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>5688(1)</td>
<td>1341(1)</td>
<td>4408(2)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>4578(1)</td>
<td>1353(1)</td>
<td>3680(2)</td>
<td>11(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>3979(1)</td>
<td>1767(1)</td>
<td>3800(2)</td>
<td>11(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>4283(1)</td>
<td>1966(1)</td>
<td>5016(2)</td>
<td>14(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>3806(2)</td>
<td>2376(1)</td>
<td>5161(2)</td>
<td>14(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>3086(1)</td>
<td>2594(1)</td>
<td>4073(2)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>2808(1)</td>
<td>2386(1)</td>
<td>2863(2)</td>
<td>11(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>2123(1)</td>
<td>2659(1)</td>
<td>1714(2)</td>
<td>11(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>2262(1)</td>
<td>3144(1)</td>
<td>1750(2)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>1613(2)</td>
<td>3432(1)</td>
<td>747(2)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>817(1)</td>
<td>3214(1)</td>
<td>-305(2)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>638(1)</td>
<td>2733(1)</td>
<td>-407(2)</td>
<td>12(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>1319(1)</td>
<td>2457(1)</td>
<td>630(2)</td>
<td>11(1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>4131(2)</td>
<td>157(1)</td>
<td>1963(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>3203(2)</td>
<td>-28(1)</td>
<td>2262(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>4900(2)</td>
<td>-252(1)</td>
<td>2149(2)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>3726(2)</td>
<td>313(1)</td>
<td>546(2)</td>
<td>22(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>7520(1)</td>
<td>975(1)</td>
<td>5155(2)</td>
<td>15(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>7990(2)</td>
<td>1333(1)</td>
<td>4519(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(24)</td>
<td>8054(2)</td>
<td>498(1)</td>
<td>5192(2)</td>
<td>21(1)</td>
</tr>
<tr>
<td>C(25)</td>
<td>7790(2)</td>
<td>1129(1)</td>
<td>6553(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(26)</td>
<td>1796(2)</td>
<td>3962(1)</td>
<td>814(2)</td>
<td>16(1)</td>
</tr>
<tr>
<td>C(27)</td>
<td>2795(2)</td>
<td>4066(1)</td>
<td>563(2)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(28)</td>
<td>1960(2)</td>
<td>4150(1)</td>
<td>2147(2)</td>
<td>36(1)</td>
</tr>
<tr>
<td>C(29)</td>
<td>853(2)</td>
<td>4223(1)</td>
<td>-205(2)</td>
<td>20(1)</td>
</tr>
<tr>
<td>C(30)</td>
<td>-298(1)</td>
<td>2524(1)</td>
<td>-1568(2)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(31)</td>
<td>-813(2)</td>
<td>2893(1)</td>
<td>-2621(2)</td>
<td>18(1)</td>
</tr>
<tr>
<td>C(32)</td>
<td>58(2)</td>
<td>2118(1)</td>
<td>-2195(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(33)</td>
<td>-1145(2)</td>
<td>2349(1)</td>
<td>-1103(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(34)</td>
<td>688(2)</td>
<td>916(1)</td>
<td>36(2)</td>
<td>17(1)</td>
</tr>
<tr>
<td>C(35)</td>
<td>-164(2)</td>
<td>782(1)</td>
<td>496(2)</td>
<td>19(1)</td>
</tr>
<tr>
<td>C(36)</td>
<td>-1064(2)</td>
<td>1059(1)</td>
<td>220(2)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(37)</td>
<td>-1822(2)</td>
<td>955(1)</td>
<td>708(3)</td>
<td>43(1)</td>
</tr>
<tr>
<td>C(38)</td>
<td>-1685(2)</td>
<td>568(1)</td>
<td>1482(3)</td>
<td>50(1)</td>
</tr>
<tr>
<td>C(39)</td>
<td>-810(2)</td>
<td>282(1)</td>
<td>1744(2)</td>
<td>41(1)</td>
</tr>
<tr>
<td>C(40)</td>
<td>-57(2)</td>
<td>387(1)</td>
<td>1256(2)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(51)</td>
<td>5821(2)</td>
<td>2926(1)</td>
<td>3957(3)</td>
<td>45(1)</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>C(52)</td>
<td>6342(2)</td>
<td>2764(1)</td>
<td>5204(3)</td>
<td>45(1)</td>
</tr>
<tr>
<td>C(53)</td>
<td>6228(2)</td>
<td>2999(1)</td>
<td>6204(3)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(54)</td>
<td>5580(2)</td>
<td>3390(1)</td>
<td>5954(2)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(55)</td>
<td>5064(2)</td>
<td>3546(1)</td>
<td>4708(2)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(56)</td>
<td>5190(2)</td>
<td>3315(1)</td>
<td>3720(2)</td>
<td>40(1)</td>
</tr>
</tbody>
</table>
Table 3. Selected bond lengths [Å] and angles [°] for TA22 (CCDC 618859).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length [Å]</th>
<th>Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ta(1)-O(1)</td>
<td>1.8906(13)</td>
<td>O(1)-Ta(1)-F(1) 91.00(5)</td>
</tr>
<tr>
<td>Ta(1)-F(1)</td>
<td>1.8927(10)</td>
<td>O(1)-Ta(1)-O(2) 158.28(5)</td>
</tr>
<tr>
<td>Ta(1)-O(2)</td>
<td>1.8908(13)</td>
<td>F(1)-Ta(1)-O(2) 91.47(5)</td>
</tr>
<tr>
<td>Ta(1)-F(2)</td>
<td>1.9110(11)</td>
<td>F(1)-Ta(1)-F(2) 88.16(5)</td>
</tr>
<tr>
<td>Ta(1)-C(34)</td>
<td>2.1872(19)</td>
<td>F(1)-Ta(1)-C(34) 100.50(6)</td>
</tr>
<tr>
<td>Ta(1)-N(1)</td>
<td>2.4486(14)</td>
<td>F(1)-Ta(1)-N(1) 79.26(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O(2)-Ta(1)-F(2) 89.39(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O(2)-Ta(1)-O(2) 101.05(7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O(2)-Ta(1)-C(34) 89.21(6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O(1)-Ta(1)-C(34) 79.26(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F(2)-Ta(1)-C(34) 84.55(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F(2)-Ta(1)-N(1) 79.50(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(34)-Ta(1)-N(1) 175.28(6)</td>
</tr>
</tbody>
</table>
Table 4. Bond lengths [Å] and angles [°] for TA22 (CCDC 618859).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ta(1)-O(1)</td>
<td>1.8906(13)</td>
</tr>
<tr>
<td>Ta(1)-F(1)</td>
<td>1.8927(10)</td>
</tr>
<tr>
<td>Ta(1)-O(2)</td>
<td>1.8908(13)</td>
</tr>
<tr>
<td>Ta(1)-F(2)</td>
<td>1.9110(11)</td>
</tr>
<tr>
<td>Ta(1)-C(34)</td>
<td>2.1872(19)</td>
</tr>
<tr>
<td>Ta(1)-N(1)</td>
<td>2.4486(14)</td>
</tr>
<tr>
<td>C(34)-Ta(1)</td>
<td>2.1872(19)</td>
</tr>
<tr>
<td>C(11)-N(1)</td>
<td>1.366(2)</td>
</tr>
<tr>
<td>N(1)-C(7)</td>
<td>1.370(2)</td>
</tr>
<tr>
<td>C(1)-O(1)</td>
<td>1.360(2)</td>
</tr>
<tr>
<td>C(17)-O(2)</td>
<td>1.360(2)</td>
</tr>
<tr>
<td>N(1)-C(11)</td>
<td>1.366(2)</td>
</tr>
<tr>
<td>C(7)-N(1)</td>
<td>1.370(2)</td>
</tr>
<tr>
<td>C(1)-C(6)</td>
<td>1.399(2)</td>
</tr>
<tr>
<td>C(2)-C(1)</td>
<td>1.403(3)</td>
</tr>
<tr>
<td>C(3)-C(2)</td>
<td>1.406(3)</td>
</tr>
<tr>
<td>C(18)-C(2)</td>
<td>1.537(3)</td>
</tr>
<tr>
<td>C(4)-C(3)</td>
<td>1.399(3)</td>
</tr>
<tr>
<td>C(5)-C(4)</td>
<td>1.391(2)</td>
</tr>
<tr>
<td>C(22)-C(4)</td>
<td>1.535(2)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.405(2)</td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.478(2)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.393(2)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.385(3)</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.378(3)</td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.401(2)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.401(3)</td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.401(2)</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.395(3)</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.396(3)</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.395(3)</td>
</tr>
<tr>
<td>C(16)-C(17)</td>
<td>1.410(2)</td>
</tr>
<tr>
<td>C(17)-C(18)</td>
<td>1.483(2)</td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.532(3)</td>
</tr>
<tr>
<td>C(19)-C(20)</td>
<td>1.536(3)</td>
</tr>
<tr>
<td>C(20)-C(21)</td>
<td>1.542(3)</td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>1.540(3)</td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.539(3)</td>
</tr>
<tr>
<td>C(23)-C(24)</td>
<td>1.542(3)</td>
</tr>
<tr>
<td>C(24)-C(25)</td>
<td>1.535(3)</td>
</tr>
<tr>
<td>C(25)-C(26)</td>
<td>1.536(3)</td>
</tr>
<tr>
<td>C(26)-C(27)</td>
<td>1.534(3)</td>
</tr>
<tr>
<td>C(27)-C(28)</td>
<td>1.536(3)</td>
</tr>
<tr>
<td>C(28)-C(29)</td>
<td>1.536(3)</td>
</tr>
<tr>
<td>C(29)-C(30)</td>
<td>1.536(3)</td>
</tr>
<tr>
<td>C(30)-C(31)</td>
<td>1.542(3)</td>
</tr>
<tr>
<td>C(31)-C(32)</td>
<td>1.541(2)</td>
</tr>
<tr>
<td>C(32)-C(33)</td>
<td>1.509(3)</td>
</tr>
<tr>
<td>C(33)-C(34)</td>
<td>1.393(3)</td>
</tr>
<tr>
<td>C(34)-C(35)</td>
<td>1.391(3)</td>
</tr>
<tr>
<td>C(35)-C(36)</td>
<td>1.394(3)</td>
</tr>
<tr>
<td>C(36)-C(37)</td>
<td>1.379(5)</td>
</tr>
<tr>
<td>C(37)-C(38)</td>
<td>1.381(5)</td>
</tr>
<tr>
<td>C(38)-C(39)</td>
<td>1.388(3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>C(13)-C(12)-C(11)</td>
<td>117.75(16)</td>
</tr>
<tr>
<td>C(17)-C(12)-C(11)</td>
<td>123.30(16)</td>
</tr>
<tr>
<td>C(14)-C(13)-C(12)</td>
<td>121.84(17)</td>
</tr>
<tr>
<td>C(13)-C(14)-C(15)</td>
<td>116.97(17)</td>
</tr>
<tr>
<td>C(13)-C(14)-C(26)</td>
<td>120.39(16)</td>
</tr>
<tr>
<td>C(15)-C(14)-C(26)</td>
<td>122.64(16)</td>
</tr>
<tr>
<td>C(16)-C(15)-C(14)</td>
<td>124.17(17)</td>
</tr>
<tr>
<td>C(15)-C(16)-C(17)</td>
<td>116.66(16)</td>
</tr>
<tr>
<td>C(15)-C(16)-C(30)</td>
<td>120.75(16)</td>
</tr>
<tr>
<td>C(17)-C(16)-C(30)</td>
<td>122.51(16)</td>
</tr>
<tr>
<td>O(2)-C(17)-C(12)</td>
<td>117.43(15)</td>
</tr>
<tr>
<td>O(2)-C(17)-C(16)</td>
<td>121.03(16)</td>
</tr>
<tr>
<td>C(12)-C(17)-C(16)</td>
<td>121.46(16)</td>
</tr>
<tr>
<td>C(2)-C(18)-C(20)</td>
<td>112.30(16)</td>
</tr>
<tr>
<td>C(2)-C(18)-C(19)</td>
<td>110.52(16)</td>
</tr>
<tr>
<td>C(20)-C(18)-C(19)</td>
<td>106.79(17)</td>
</tr>
<tr>
<td>C(2)-C(18)-C(21)</td>
<td>108.99(16)</td>
</tr>
<tr>
<td>C(20)-C(18)-C(21)</td>
<td>107.57(17)</td>
</tr>
<tr>
<td>C(19)-C(18)-C(21)</td>
<td>110.63(17)</td>
</tr>
<tr>
<td>C(24)-C(22)-C(23)</td>
<td>108.62(16)</td>
</tr>
<tr>
<td>C(24)-C(22)-C(4)</td>
<td>112.34(16)</td>
</tr>
<tr>
<td>C(23)-C(22)-C(4)</td>
<td>108.43(15)</td>
</tr>
<tr>
<td>C(24)-C(22)-C(25)</td>
<td>108.19(16)</td>
</tr>
<tr>
<td>C(23)-C(22)-C(25)</td>
<td>108.81(16)</td>
</tr>
<tr>
<td>C(4)-C(22)-C(25)</td>
<td>110.38(16)</td>
</tr>
<tr>
<td>C(27)-C(26)-C(28)</td>
<td>109.32(19)</td>
</tr>
</tbody>
</table>
Table 5. Anisotropic displacement parameters (Å² x 10⁴) for TA22 (CCDC 618859). The anisotropic displacement factorexponent takes the form: -2\pi²[h²a*²U₁₁ + ... + 2 h k a* b* U₁₂]

<table>
<thead>
<tr>
<th></th>
<th>U₁₁</th>
<th>U₂₂</th>
<th>U₃₃</th>
<th>U₂₃</th>
<th>U₁₃</th>
<th>U₁₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ta(1)</td>
<td>103(1)</td>
<td>76(1)</td>
<td>106(1)</td>
<td>-4(1)</td>
<td>38(1)</td>
<td>-8(1)</td>
</tr>
<tr>
<td>F(1)</td>
<td>161(5)</td>
<td>178(6)</td>
<td>157(5)</td>
<td>3(4)</td>
<td>92(4)</td>
<td>-12(5)</td>
</tr>
<tr>
<td>F(2)</td>
<td>266(6)</td>
<td>137(5)</td>
<td>215(5)</td>
<td>21(5)</td>
<td>159(5)</td>
<td>9(5)</td>
</tr>
<tr>
<td>O(1)</td>
<td>104(5)</td>
<td>92(6)</td>
<td>166(6)</td>
<td>-11(4)</td>
<td>39(5)</td>
<td>-12(5)</td>
</tr>
<tr>
<td>O(2)</td>
<td>125(6)</td>
<td>126(6)</td>
<td>140(6)</td>
<td>-1(4)</td>
<td>21(5)</td>
<td>1(5)</td>
</tr>
<tr>
<td>N(1)</td>
<td>105(6)</td>
<td>81(6)</td>
<td>123(6)</td>
<td>-8(5)</td>
<td>44(5)</td>
<td>-2(5)</td>
</tr>
<tr>
<td>C(1)</td>
<td>114(7)</td>
<td>115(8)</td>
<td>126(7)</td>
<td>11(6)</td>
<td>49(6)</td>
<td>0(6)</td>
</tr>
<tr>
<td>C(2)</td>
<td>131(7)</td>
<td>105(8)</td>
<td>159(8)</td>
<td>-2(6)</td>
<td>64(6)</td>
<td>-4(6)</td>
</tr>
<tr>
<td>C(3)</td>
<td>127(7)</td>
<td>108(8)</td>
<td>192(8)</td>
<td>6(6)</td>
<td>68(7)</td>
<td>25(6)</td>
</tr>
<tr>
<td>C(4)</td>
<td>120(7)</td>
<td>108(8)</td>
<td>156(8)</td>
<td>6(6)</td>
<td>49(6)</td>
<td>10(6)</td>
</tr>
<tr>
<td>C(5)</td>
<td>125(7)</td>
<td>119(9)</td>
<td>144(7)</td>
<td>-6(6)</td>
<td>47(6)</td>
<td>-3(6)</td>
</tr>
<tr>
<td>C(6)</td>
<td>115(7)</td>
<td>103(8)</td>
<td>123(7)</td>
<td>-2(5)</td>
<td>52(6)</td>
<td>7(6)</td>
</tr>
<tr>
<td>C(7)</td>
<td>114(7)</td>
<td>90(7)</td>
<td>137(7)</td>
<td>-2(6)</td>
<td>57(6)</td>
<td>1(6)</td>
</tr>
<tr>
<td>C(8)</td>
<td>126(7)</td>
<td>154(8)</td>
<td>120(7)</td>
<td>2(6)</td>
<td>42(6)</td>
<td>-5(6)</td>
</tr>
<tr>
<td>C(9)</td>
<td>144(8)</td>
<td>153(8)</td>
<td>116(7)</td>
<td>-26(6)</td>
<td>58(6)</td>
<td>-7(7)</td>
</tr>
<tr>
<td>C(10)</td>
<td>139(8)</td>
<td>112(8)</td>
<td>143(7)</td>
<td>-36(6)</td>
<td>68(6)</td>
<td>0(6)</td>
</tr>
<tr>
<td>C(11)</td>
<td>97(7)</td>
<td>115(8)</td>
<td>122(7)</td>
<td>1(6)</td>
<td>40(6)</td>
<td>-8(6)</td>
</tr>
<tr>
<td>C(12)</td>
<td>118(7)</td>
<td>91(7)</td>
<td>117(7)</td>
<td>7(5)</td>
<td>45(6)</td>
<td>3(6)</td>
</tr>
<tr>
<td>C(13)</td>
<td>125(7)</td>
<td>108(8)</td>
<td>140(7)</td>
<td>-21(6)</td>
<td>48(6)</td>
<td>-8(6)</td>
</tr>
<tr>
<td>C(14)</td>
<td>153(8)</td>
<td>100(7)</td>
<td>155(8)</td>
<td>-2(6)</td>
<td>81(6)</td>
<td>4(6)</td>
</tr>
<tr>
<td>C(15)</td>
<td>149(8)</td>
<td>116(8)</td>
<td>137(7)</td>
<td>21(6)</td>
<td>66(6)</td>
<td>19(6)</td>
</tr>
<tr>
<td>C(16)</td>
<td>110(7)</td>
<td>121(8)</td>
<td>136(7)</td>
<td>-1(6)</td>
<td>61(6)</td>
<td>9(6)</td>
</tr>
<tr>
<td>C(17)</td>
<td>128(7)</td>
<td>80(7)</td>
<td>145(7)</td>
<td>1(6)</td>
<td>68(6)</td>
<td>7(6)</td>
</tr>
<tr>
<td>C(18)</td>
<td>166(8)</td>
<td>98(8)</td>
<td>211(9)</td>
<td>-38(6)</td>
<td>54(7)</td>
<td>2(7)</td>
</tr>
<tr>
<td>C(19)</td>
<td>226(10)</td>
<td>125(9)</td>
<td>292(10)</td>
<td>-18(7)</td>
<td>90(8)</td>
<td>-31(8)</td>
</tr>
<tr>
<td>C(20)</td>
<td>252(11)</td>
<td>133(9)</td>
<td>351(12)</td>
<td>-77(8)</td>
<td>59(9)</td>
<td>30(8)</td>
</tr>
<tr>
<td>C(21)</td>
<td>256(10)</td>
<td>183(10)</td>
<td>200(9)</td>
<td>-66(7)</td>
<td>72(8)</td>
<td>-10(8)</td>
</tr>
<tr>
<td>C(22)</td>
<td>103(7)</td>
<td>130(8)</td>
<td>190(8)</td>
<td>13(6)</td>
<td>37(6)</td>
<td>2(6)</td>
</tr>
<tr>
<td>C(23)</td>
<td>158(8)</td>
<td>165(10)</td>
<td>310(10)</td>
<td>35(7)</td>
<td>104(8)</td>
<td>-6(7)</td>
</tr>
<tr>
<td>C(24)</td>
<td>140(8)</td>
<td>141(9)</td>
<td>311(11)</td>
<td>16(8)</td>
<td>51(8)</td>
<td>23(7)</td>
</tr>
<tr>
<td>C(25)</td>
<td>153(9)</td>
<td>208(10)</td>
<td>204(9)</td>
<td>9(7)</td>
<td>23(7)</td>
<td>-12(8)</td>
</tr>
<tr>
<td>C(26)</td>
<td>213(9)</td>
<td>87(8)</td>
<td>168(8)</td>
<td>-4(6)</td>
<td>74(7)</td>
<td>8(7)</td>
</tr>
<tr>
<td>C(27)</td>
<td>161(9)</td>
<td>136(9)</td>
<td>377(12)</td>
<td>-5(8)</td>
<td>57(9)</td>
<td>-46(8)</td>
</tr>
<tr>
<td>C(28)</td>
<td>726(19)</td>
<td>142(10)</td>
<td>219(10)</td>
<td>-29(8)</td>
<td>197(12)</td>
<td>43(11)</td>
</tr>
<tr>
<td>C(29)</td>
<td>175(9)</td>
<td>99(8)</td>
<td>302(10)</td>
<td>27(7)</td>
<td>80(8)</td>
<td>14(7)</td>
</tr>
<tr>
<td>C(30)</td>
<td>117(7)</td>
<td>131(8)</td>
<td>135(7)</td>
<td>0(6)</td>
<td>53(6)</td>
<td>1(6)</td>
</tr>
<tr>
<td>C(31)</td>
<td>154(8)</td>
<td>182(9)</td>
<td>156(8)</td>
<td>24(7)</td>
<td>15(7)</td>
<td>-10(7)</td>
</tr>
<tr>
<td>C(32)</td>
<td>174(8)</td>
<td>191(10)</td>
<td>142(8)</td>
<td>-31(7)</td>
<td>65(7)</td>
<td>7(7)</td>
</tr>
<tr>
<td>C(33)</td>
<td>143(8)</td>
<td>185(9)</td>
<td>195(9)</td>
<td>10(7)</td>
<td>81(7)</td>
<td>-10(7)</td>
</tr>
<tr>
<td>C(34)</td>
<td>192(9)</td>
<td>126(9)</td>
<td>187(9)</td>
<td>-30(6)</td>
<td>62(7)</td>
<td>-27(7)</td>
</tr>
<tr>
<td>C(35)</td>
<td>172(8)</td>
<td>183(9)</td>
<td>185(8)</td>
<td>-68(7)</td>
<td>57(7)</td>
<td>-75(7)</td>
</tr>
<tr>
<td>C(36)</td>
<td>224(10)</td>
<td>237(12)</td>
<td>403(13)</td>
<td>-131(10)</td>
<td>132(10)</td>
<td>-61(9)</td>
</tr>
<tr>
<td>C(37)</td>
<td>254(12)</td>
<td>469(17)</td>
<td>613(18)</td>
<td>-344(15)</td>
<td>236(13)</td>
<td>-166(12)</td>
</tr>
<tr>
<td>C(38)</td>
<td>467(16)</td>
<td>710(20)</td>
<td>447(16)</td>
<td>-374(15)</td>
<td>321(14)</td>
<td>-436(16)</td>
</tr>
<tr>
<td>C(39)</td>
<td>489(16)</td>
<td>471(17)</td>
<td>262(12)</td>
<td>-54(11)</td>
<td>154(12)</td>
<td>-319(14)</td>
</tr>
<tr>
<td>C(40)</td>
<td>292(12)</td>
<td>259(12)</td>
<td>258(11)</td>
<td>-3(9)</td>
<td>69(9)</td>
<td>-119(9)</td>
</tr>
<tr>
<td>C(51)</td>
<td>252(12)</td>
<td>600(20)</td>
<td>455(16)</td>
<td>-294(14)</td>
<td>118(12)</td>
<td>11(13)</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>C(52)</td>
<td>187(11)</td>
<td>237(13)</td>
<td>770(20)</td>
<td>-77(13)</td>
<td>33(13)</td>
<td>4(10)</td>
</tr>
<tr>
<td>C(53)</td>
<td>263(12)</td>
<td>425(16)</td>
<td>331(13)</td>
<td>102(11)</td>
<td>-30(10)</td>
<td>-139(11)</td>
</tr>
<tr>
<td>C(54)</td>
<td>316(12)</td>
<td>386(14)</td>
<td>292(12)</td>
<td>-112(10)</td>
<td>162(10)</td>
<td>-124(11)</td>
</tr>
<tr>
<td>C(55)</td>
<td>243(10)</td>
<td>314(13)</td>
<td>381(12)</td>
<td>-1(10)</td>
<td>127(9)</td>
<td>42(10)</td>
</tr>
<tr>
<td>C(56)</td>
<td>270(12)</td>
<td>670(20)</td>
<td>227(11)</td>
<td>-9(12)</td>
<td>63(10)</td>
<td>59(13)</td>
</tr>
</tbody>
</table>