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Abstract—1 We study the MIMO wiretap channel, a MIMO
broadcast channel where the transmitter sends some confidential
information to one user which is a legitimate receiver, while the
other user is an eavesdropper. Perfect secrecy is achieved when
the transmitter and the legitimate receiver can communicate at
some positive rate, while ensuring that the eavesdropper gets zero
bits of information. In this paper, we compute the perfect secrecy
capacity of the multiple antenna MIMO broadcast channel, where
the number of antennas is arbitrary for both the transmitter and
the two receivers. Our technique involves a careful study of a
Sato-like upper bound via the solution of a certain algebraic
Riccati equation.

I. INTRODUCTION

In the traditional confidentiality setting, a transmitter (Alice)

wants to send some secret message to a legitimate receiver

(Bob), and prevent the eavesdropper (Eve) from reading the

message.

From an information theoretic point of view, the commu-

nication channel involved can be modeled as a broadcast

channel, following the wire-tap channel model introduced

by Wyner [22]: a transmitter broadcasts its message, say

wk ∈ Wk, encoded into a codeword xn, and the two receivers

(the legitimate and the illegitimate) respectively receive yn

and zn, the output of their channels. The amount of ignorance

that the eavesdropper has about a message wk is called the

equivocation rate, defined as:
Definition 1: The equivocation rate Re is defined as

Re =
1

n
h(wk|zn),

with 0 ≤ Re ≤ h(wk)/n. Clearly, if Re is equal to the

information rate h(wk)/n, then I(zn|wk) = 0, which yields
perfect secrecy.
Associated with secrecy is a perfect secrecy rate Rs, which

is the amount of information that can be sent not only reliably

but also confidentially, with the help of a (2nRs , n) code.
Definition 2: A perfect secrecy rate Rs is said to be achiev-

able if for any ε, ε′ > 0, there exists a sequence of (2nRs , n)
codes such that for any n ≥ n(ε, ε′), we have

Pe ≤ ε′ (1)

Rs − ε ≤ Re. (2)
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The first condition (1), where Pe is the probability of decoding

erroneously, is the standard definition of achievable rate as far

as reliability is concerned. The second condition (2) guarantees

secrecy, up to the equivocation rate, which we will require to

be h(wk)/n to have perfect secrecy. The secrecy capacity is
defined similarly to the standard capacity:

Definition 3: The secrecy capacity Cs is the maximum

achievable perfect secrecy rate.

In this paper, we are interested in the secrecy capacity for

the case where Alice, Bob and Eve are communicating via

multiple antenna channels.

A. Previous work

In his seminal work [22], Wyner showed for discrete mem-

oryless channels that the perfect secrecy capacity is actually

the difference of the capacity of the two users, under the

assumption that the channel of the eavesdropper is a degraded

version of the channel of the legitimate receiver. This result

has been generalized to Gaussian channels by Leung et al. [9].

In [4], Gopala et al. have shown that the secrecy capacity

is also the difference of the two capacities in the case of

a single antenna fading channel, under the assumption of

asymptotically long coherence intervals, when the transmitter

either knows both channels or only the legitimate channel. In

[1], [2], Barros et al. have characterized information theoretic

security in terms of outage probability. Independently, Liang

et al. [12], [13] and Li et al. [10] have computed the secrecy

capacity for the parallel wiretap channel with independent

subchannels. The secrecy capacity of the wiretap channel with

single antenna fading channel follows.

A first study involving multiple antenna channels has been

proposed by Hero [5], in a different context than the wire-

tap channel. In [19], the SIMO wiretap channel has been

considered. In [11], the secrecy capacity is computed for the

MISO case. Furthermore, a lower bound is computed in the

MIMO case. The secrecy capacity for the MISO case has also

been proven independently by Khisti et al. [7] and Shafiee et

al. [20]. In [7], the authors furthermore give an upper bound

for the MIMO case, in a regime asymptotic in SNR. The

secrecy capacity has been computing for the particular cases

where both the transmitter and receiver have two antennas, and

the eavesdropper has either one antenna [21] or two antennas

[17]. Finally, Liu et al. [14], [15] computed the secrecy

capacity for a Gaussian broadcast channel, where a multi-

antenna transmitter sends independent confidential messages
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Fig. 1. The MIMO wiretap channel

to two users.

The contribution of this paper is to compute the perfect

secrecy capacity of the multiple antenna wire-tap channel, for

any number of transmit/receive antennas. In order to compute

the secrecy capacity, we provide a proof technique for the

converse, which allows us to deal with channels that are not

degraded. Note that our result shows that the inner bound by

Li et al. [11] is tight, and this is proved by the computation

of an upper bound that actually matches the lower bound.

Independently of our results, Khisthi and Wornell [8] have also

computed the secrecy capacity of the MIMO wiretap channel

(which they refer to as MIMO-ME). An alternative derivation

of our result, and that of Khisti-Wornell, has also appeared in

Liu and Shamai [16].

B. The MIMO wiretap channel

We consider the MIMO wiretap channel, that is, a broadcast

channel where the transmitter is equipped with n transmit
antennas, while the legitimate receiver and an eavesdropper

have respectively nM and

nE receive antennas, namely:

Y = HMX + VM

Z = HEX + VE

where Y, VM and Z, VE are resp. nM ×1 and nE×1 vectors.
We have that X is the n × 1 complex transmitted signal,
with covariance matrix KX � 0n with power constraint

Tr(KX) = P , while HM and HE are respectively nM × n
and nE × n fixed channel matrices. They are both assumed
to be known at the transmitter. Along the paper we will

usually consider two cases: the definite case, that is when
H∗

MHM � H∗
EHE or H

∗
EHE � H∗

MHM , which corresponds

to the degraded case, and the indefinite case, which is when
some of the eigenvalues of H∗

EHE − H∗
MHM are positive,

and other negative or zero. The vectors VM , VE are inde-

pendent circularly symmetric complex Gaussian with identity

covariance KM = InM
, KE = InE

and independent of the

transmitted signal X .

Our main result is:

Theorem 1: The secrecy capacity CS of the MIMO wiretap

channel is given by

max
KX�0

log det(I + HMKXH∗
M )− log det(I + HEKXH∗

E)

with Tr(KX) = P .
The paper contains the main parts of the proof of the above

theorem.

II. ON THE ACHIEVABILITY

In this section, we state the achievability part of the secrecy

capacity, and further prove that in the non-degraded case, the

achievability is maximized by n× n matrices KX which are

low rank, that is of any rank r < n.
Proposition 1: The perfect secrecy rate

Rs = max
KX�0

log det(I+HMKXH∗
M )−log det(I+HEKXH∗

E)

with Tr(KX) = P , is achievable.
This has already been proved [11]. In fact, the interpretation

is obvious. When KX is chosen, the difference between

the resulting mutual informations to the legitimate user and

eavesdropper can be secretly transmitted.

Proposition 2: Let K̃X be an optimal solution to the opti-

mization problem

max
KX�0

log det(I + HMKXH∗
M )− log det(I + HEKXH∗

E),

where Tr(KX) = P and H∗
EHE−H∗

MHM is either indefinite

or semidefinite. Then K̃X is a low rank matrix.

Proof: To show that the optimal K̃X is low rank, we

define a Lagrangian which includes the power constraint, and

show that this yields no solution. From there, we can conclude

that the optimal solution is on the boundary of the cone of

positive semi-definite matrices, i.e., matrices of rank r < n.
We thus define the following Lagrangian:

log det(InM
+ HMKXH∗

M )
− log det(InE

+ HEKXH∗
E)− λTr(KX),

and look for its stationary points, that is for the solution of

the following equation:

∇KX
(log det(I + HMKXH∗

M )
− log det(I + HEKXH∗

E)− λTr(KX)) = 0
⇐⇒ H∗

MHM (I + KXH∗
MHM )−1

= (I + H∗
EHEKX)−1H∗

EHE + λIn.

(3)

By pre-multiplying the above equation by (I + H∗
EHEKX)

and post-multiplying it by (I + KXH∗
MHM ), we get

H∗
MHM −H∗

EHE = λ(I + H∗
EHEKX)(I + KXH∗

MHM ),

or equivalently, by further pre and post-multiplying by KX ,

KX(H∗
MHM −H∗

EHE)KX
1

λ =
(KX + KXH∗

EHEKX)(KX + KXH∗
MHMKX).

(4)

Now if KX � 0, then all the eigenvalues of (KX +
KXH∗

EHEKX)(KX + KXH∗
MHMKX) are strictly positive

(Lemma 1 below). This implies that (4) can have a solution if

and only if the Hermitian matrixKX(H∗
MHM−H∗

EHE)KX
1

λ
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is positive definite. This means that either H∗
MHM � H∗

EHE

and λ > 0, or H∗
MHM ≺ H∗

EHE and λ < 0. This gives
a contradiction if H∗

MHM − H∗
EHE is either indefinite or

semidefinite, implying that K̃X has to be low rank.

Lemma 1: If A = A∗ � 0 and B = B∗ � 0, then the

matrix AB has all positive eigenvalues.
Proof: Since A � 0, we can write A = A1/2(A∗)1/2

with A1/2 invertible. Therefore,

AB = A1/2((A∗)1/2BA1/2)A−1/2,

has the same eigenvalues as the matrix (A∗)1/2BA1/2, which

is positive definite.

III. PROOF OF THE CONVERSE

The goal of this section is to prove the converse, namely

Theorem 2: For any sequence of (2nRs , n) codes with
probability of error Pe ≤ ε′ and equivocation rate Rs−ε ≤ Re

for any n ≥ n(ε, ε′), ε, ε′ > 0, then the secrecy rateRs satisfies

Rs ≤ max
KX�0

log det(I+HMKXH∗
M )−log det(I+HEKXH∗

E),

with Tr(KX) = P .

A. Bound on I(X ; Y |Z) and result for the degraded case

We start by recalling a standard result [9], [4].

Lemma 2: Given any sequence of (2nRs , n) codes with
Pe ≤ ε and Rs − ε ≤ Re for any n ≥ n(ε), ε > 0, the
secrecy rate Rs can be upper bounded as follows:

Rs − ε ≤
1

n
[I((Xn, Y n|Zn) + δ], ε, δ > 0.

We thus focus on finding an upper bound on I(X ; Y |Z).
Proposition 3: We have the following upper bound:

I(X ; Y |Z) ≤ max
KX�0

Ĩ(X ; Y |Z)

where Ĩ(X ; Y |Z) is given by

log det

(
I + (H∗

M H∗
E)

(
I A

A∗
I

)−1(
HM

HE

)
KX

)

− log det(I + HEKXH∗
E).

(5)

and A denotes the correlation between VM and VE , which

satisfies I−AA∗ � 0.

Proof: An upper bound on I(X ; Y |Z) is obtained by
assuming that the legitimate receiver knows both its channel

and the one of the eavesdropper, so that the capacity of the

link between the transmitter and the legitimate receiver is that

of a MIMO system, namely

max
KX

log det

[
In + [H∗

M H∗
E ]

[
InM

A
A∗

InE

]−1[
HM

HE

]
KX

]

where A has to satisfy I − AA∗ � 0. Now the channel we

consider is degraded, and an upper bound is thus the difference

of the two capacities, which yields the result.

We can now conclude the proof of the converse for the “sim-

ple” cases when H∗
MHM � H∗

EHE or H∗
EHE � H∗

MHM .

Proposition 4: 1) If H∗
MHM � H∗

EHE , we have that

I(X ; Y |Z) ≤ max
KX�0

log det(I + HMKXH∗
M )−

log det(I + HEKXH∗
E).

2) Vice versa, if H∗
EHE � H∗

MHM , then I(X ; Y |Z) = 0.
Proof: Let us introduce two other ways of writing

Ĩ(X ; Y |Z) (see (5)). Let us first compute a UDL factorization:[
InM

A
A∗

InE

]
=

[
I A
0 I

][
I−AA∗

0

0 I

] [
I 0

A∗
I

]

so that[
I A

A∗
I

]−1

=

[
I 0

−A∗
I

][
(I−AA∗)−1

0

0 I

][
I −A
0 I

]

and we have that

(H∗
M H∗

E)

(
I A

A∗
I

)−1(
HM

HE

)
=

(H∗
M −H∗

EA∗)(I−AA∗)−1(HM −AHE) + H∗
EHE .

Thus a first equivalent formula for Ĩ(X ; Y |Z) is given by

log det(I + ((H∗
M −H∗

EA∗)(I−AA∗)−1(HM −AHE)+
H∗

EHE)KX)− log det(I + HEKXH∗
E).

(6)

By considering now a LDU factorization, we get[
I A

A∗
I

]
=

[
I 0

A∗
I

] [
I 0

0 I−A∗A

] [
I A
0 I

]
,

[
I A

A∗
I

]−1

=

[
I −A
0 I

] [
I 0

0 (I−A∗A)−1

] [
I 0

−A∗
I

]

so that

(H∗
M H∗

E)

(
I A

A∗
I

)−1(
HM

HE

)
= H∗

MHM+

(−H∗
MA + H∗

E)(I −A∗A)−1(−A∗HM + HE)

and a second equivalent formula for Ĩ(X ; Y |Z) is given by

log det(I + H∗
MHMKX+

(−H∗
MA + H∗

E)(I−A∗A)−1(−A∗HM + HE)KX)
− log det(I + HEKXH∗

E).
(7)

Since the secrecy capacity does not depend on A, and that

I(X ; Y |Z) ≤ max
KX

Ĩ(X ; Y |Z),

for all A such that I−AA∗ � 0, we are now free to take any

such A which does not depend on a choice of KX .

Case 1. If H∗
MHM � H∗

EHE , we will now show that there

always exists

a matrix A such that H∗
MA = H∗

E and I−AA∗ � 0. Note

that using (7), we then get

Ĩ(X ; Y |Z) = log det(I+H∗
MHMKX)−log det(I+H∗

EHEKX).

Now H∗
MHM � H∗

EHE implies that HMH∗
M = H∗

EHE +
X∗X , for some X∗X � 0. Now this means [6] that there
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exists a unitary matrix Θ such that [H∗
E X∗] = [H∗

M 0] Θ .
Partitioning Θ, we get

[H∗
E X∗] = [H∗

M 0]

[
Θ11 Θ12

Θ21 Θ22

]
from which it follows that H∗

E = H∗
MΘ11. Note that we can

take A = Θ11, since Θ∗
11

Θ11 ≺ I as it is a sub-block of a

unitary matrix, and using the fact that X∗X � 0.

Case 2. This is similar when H∗
EHE � H∗

MHM .

The cases described in the lemma can be understood as a

simple generalization of the scalar case, since those are the

degraded cases. When H∗
MHM � H∗

EHE , all links to the

legitimate receiver are better, and the capacity is given by the

difference of the two capacities, while if H∗
EHE � H∗

MHM ,

then all links to the eavesdropper are better, and thus no

positive secrecy capacity can be achieved.

We are now left with the interesting case when H∗
MHM −

H∗
EHE is indefinite, which is the non-degraded case.

B. Minimization over A and maximization over KX

Since Proposition 3 is true for all A such that I−AA∗ � 0,

we get

I(X ; Y |Z) ≤ min
A

max
KX

Ĩ(X ; Y, Z).

To understand this double optimization, we start by analyzing

the function Ĩ(X ; Y, Z).
Proposition 5: The function Ĩ(X ; Y, Z) defined in (5) is
concave in KX and convex in A. Consequently,

min
A

max
KX

Ĩ(X ; Y |Z) = max
KX

min
A

Ĩ(X ; Y |Z)

where Tr(KX) = P , KX � 0, I−AA∗ � 0.

This proof is skipped here by lack of space (see [18]).

We next compute the minimization over A. Note that we
can write Ĩ(X ; Y |Z) in the following alternative way:

log det(HMKXH∗
M + InM

−
(HMKXH∗

E + A)(HEKXH∗
E + I)−1(HEKXH∗

M + A∗))
− log det(InM

−AA∗).
(8)

Proposition 6: Let Ã∗ be a local minima of Ĩ(X ; Y |Z).
Then

Ã∗ = (HEV QW )(HMV PW )−1,

whereW is anm1×m2 matrix, 0 ≤ m2 ≤ nM , (P
T QT )T is

orthogonal to (−H∗
M H∗

E), P, Q of dimension resp. nM×m1,

ne ×m1, and V is a n× (nM −m2) matrix, such that(
HMV
HEV

)
is an invariant subspace of M , as defined in (9).

Proof: Let M1, M2, M3, X be square complex matrices.
Set f(X) = M1 − (X + M2)M3(X

∗ + M∗
2
). We have that

∇X log det(f(X)) = −f(X)−1(X + M2)M3.

Using this formula, we compute that ∇A∗ Ĩ(X ; Y |Z) = 0 iff

f(A)(A∗ + HEKXH∗
M )−1(HEKXH∗

E + I) =
(I−AA∗)(A∗)−1,

where f(A) is given by

HMKXH∗
M + I

−(HMKXH∗
E + A)(HEKXH∗

E + I)−1(HEKXH∗
M + A∗).

We get a nonsymmetric algebraic Ricatti equation given by

A∗(HMKXH∗
M+I)−1HMKXH∗

EA∗+A∗(HMKXH∗
M+I)−1+

[−HEKXH∗
E−I+HEKXH∗

M (HMKXH∗
M+I)−1HMKXH∗

E ]A∗

+HEKXH∗
M (HMKXH∗

M + I)−1 = 0.

One way of solving an algebraic Riccati [3] of the form

0 = M21 + M22A
∗ −A∗M11 −A∗M12A

∗,

is to look for invariant subspaces of

M =

(
M11 M12

M21 M22

)
.

Here we have that M is given by

M11 = −(HMKXH∗
M + I)−1

M12 = −(HMKXH∗
M + I)−1HMKXH∗

E

M21 = HEKXH∗
M (HMKXH∗

M + I)−1

M22 = −HEKXH∗
E − I+

HEKXH∗
M (HMKXH∗

M + I)−1HMKXH∗
E .
(9)

Set

F =

(
HMKXH∗

M + InM
0

0 InE

)
.

It is easy to see that F (M + I) is given by[
−HM

−HE + HEKXH∗
M (HMKXH∗

M + I)−1HM

]
KX [−H∗

M H∗
E ]

which implies that −1 is an eigenvalue of M . Thus a first
invariant subspace is given by the eigenspace associated to

−1, which is the kernel of M + I, or in other words, the

subspace (P T QT )T orthogonal to (−KXH∗
M KXH∗

E).
We further rewrite M as(

−HM (KXH∗
MHM + I)−1

−HE + HE(KXH∗
MHM + I)−1KXH∗

MHM

)
·

(−KXH∗
M KXH∗

E)− I

=

(
−HM

−HE

)
(KXH∗

MHM + I)−1(−KXH∗
M KXH∗

E)− I.

Thus, a Jordan basis of M is given by(
HM P
HE Q

)

with (P T QT )T orthogonal to (−H∗
M H∗

E).
Finally, solutions of the Ricatti equation are given [3], in

the general case, by:

Ã∗ = (HEV QW )(HMV PW )−1,

where W is an nM ×m matrix, 0 ≤ m ≤ nM , and V is a
nM × nM −m matrix, such that(

HMV
HEV

)
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is an invariant subspace of M . Note that W can be chosen

arbitrary since (P T , QT )T is the eigenspace associated to −1.

Proposition 7: Let K̃X be an optimal solution to the opti-

mization problem

maxKX minA Ĩ(X ; Y |Z)

s.t. KX � 0, Tr(KX) = P,

where Ã∗ = (HEV QW )(HMV PW )−1 is the optimal

solution for the minimization over A. Then K̃X is low rank.

Proof: Note that Ĩ(X ; Y |Z) can be written

log det(I + BKX)− log det(I + HEKXH∗
E),

where

B := (H∗
M −H∗

EA∗)(I−AA∗)−1(HM −AHE) + H∗
EHE .

We now show that B − H∗
EHE is low rank by showing

that (H∗
M − H∗

EA∗) is low rank. Indeed, we have that
A∗ = (HEV QW )(HMV PW )−1. Therefore,

H∗
M −H∗

EA∗ = (H∗
M −H∗

E)

(
I

A∗

)

= (H∗
M −H∗

E)

(
HMV PW
HEV QW

)
(HMV PW )−1

which, since (P T QT )T is orthogonal to (H∗
M −H∗

E) yields

H∗
M −H∗

EA∗ = ((H∗
MHM −H∗

EHE)V 0)(HMV PW )−1,

which, as desired, is low rank.

Now, from Proposition 2, we know that either B � H∗
EHE

and λ > 0, or B ≺ H∗
EHE and λ < 0. This is a contradiction

since B � H∗
EHE , yielding that K̃X is low rank.

Proposition 8: The rank of K̃X being r < n, that is KX =
UXU∗

X with UX an n× r matrix, the optimal solution to

min
A

Ĩ(X ; Y |Z)

is given by

A∗ = (HE(KXH∗
MHM + I)−1UXV QW )

(HM (KXH∗
MHM + I)−1UXV PW )−1.

Proof: The Jordan decomposition of M is now given by

M

(
HM P
HE Q

)
=

(
HM P
HE Q

)(
J 0

0 −I

)
where

J = (I+KXH∗
MHM )−1(KXH∗

M −KXH∗
E)

(
HM

HE

)
−I.

Let us now look more carefully at J . We first notice that when
KX is low rank, −1 is an eigenvalue. This is clear since

J + I = (I + KXH∗
MHM )−1KX(H∗

M −H∗
E)

(
HM

HE

)

and det(KX) = 0. Furthermore, sinceKX = UXU∗
X , we have

J = (I + KXH∗
MHM )−1UXU∗

X(H∗
M −H∗

E)

(
HM

HE

)
− I

and clearly (I + KXH∗
MHM )−1UX is an invariant subspace

of J . A Jordan basis is thus given by

P ′ =
(

(I + KXH∗
MHM )−1UX Q′

)
whereQ′ is the eigenspace associated to −1. This thus gives us
a more precise Jordan basis forM (as defined in (9)), namely[
HMP ′ P
HEP ′ Q

]
=

[
HM (KXH∗

MHM + I)−1UX HMQ′ P
HE(KXH∗

MHM + I)−1UX HEQ′ Q

]
.

From this Jordan basis of M , we have that

A∗ = (HE(KXH∗
MHM + I)−1UXV QW )

(HM (KXH∗
MHM + I)−1UXV PW )−1

is a solution of the Ricatti equation, where W is any nM ×
(nM − r) matrix, and V is any r × r matrix.

C. The converse matches the achievability

We can now conclude.

Proposition 9: Let

A∗ = (HE(KXH∗
MHM + I)−1UXV QW )

(HM (KXH∗
MHM + I)−1UXV PW )−1

be a solution of the Ricatti equation. Then

Ĩ(X ; Y |Z) = log det(I+HMKXH∗
M )−log det(I+HEKXH∗

E).

Furthermore, there exists V, W such that I−AA∗ � 0.

Now that the matrix A∗ is known explicitly, this can be

checked by computation, which is omitted here by lack of

space (see [18]).

IV. CONCLUSION

In this paper, we considered the problem of computing the

perfect secrecy capacity of a multiple antenna channel, based

on a generalization of the wire-tap channel to a MIMO broad-

cast wire-tap channel. We proved that for an arbitrary number

of transmit/receive antennas, the perfect secrecy capacity is

the difference of the two capacities, the one of the legitimate

user minus the one of the eavesdropper, after a suitable

optimization over the transmitter’s input covariance matrix.
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