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Dynamic Algorithms for Multicast With Intra-Session
Network Coding
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Abstract—The problem of multiple multicast sessions with
intra-session network coding in time-varying networks is consid-
ered. The network-layer capacity region of input rates that can be
stably supported is established. Dynamic algorithms for multicast
routing, network coding, power allocation, session scheduling, and
rate allocation across correlated sources, which achieve stability
for rates within the capacity region, are presented. This work
builds on the back-pressure approach introduced by Tassiulas
et al., extending it to network coding and correlated sources. In
the proposed algorithms, decisions on routing, network coding,
and scheduling between different sessions at a node are made
locally at each node based on virtual queues for different sinks.
For correlated sources, the sinks locally determine and control
transmission rates across the sources. The proposed approach
yields a completely distributed algorithm for wired networks.
In the wireless case, power control among different transmitters
is centralized while routing, network coding, and scheduling
between different sessions at a given node are distributed.

Index Terms—Back pressure, correlated sources, multihop, mul-
ticast, network coding, scheduling.

I. INTRODUCTION

N ETWORK coding has recently been shown to improve
performance compared to that of routing for multicasting

information over wired and wireless networks [1], [16], [29].
Most of the work in network coding to date assumes a flow
model for transmission in which sources generate, at fixed rates,
data that is then transmitted over a network with fixed link ca-
pacities. However, in real networks, traffic is usually bursty be-
cause either the sources generate traffic in bursts or the network
nodes employ queuing and scheduling across multiple sessions.
In such scenarios, optimal multicasting of information involves
not only routing and network coding but also power control and
scheduling of different flows on the active links. Furthermore,
optimal network coding in this context may depend on the cur-
rent state of the network—link data rates and buffer occupancy.

Routing, scheduling, and power control in networks with
bursty traffic has recently received significant attention in the
context of wireless networks [2], [15], [21]–[24], [28], [30],
[31]. Much of the recent work in this area builds on the ideas
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of [3], [27] that describe algorithms for routing and scheduling
flows using queue sizes, or differences in queue size between
the queues at the source and the destination of a link, as the
metric to select between different flows. Such an approach is
usually said to be back-pressure based since heavily loaded
nodes downstream push back and slow down the flow coming
down from nodes upstream. Such a back-pressure approach is
generally optimal in the sense that it allows transmission at the
maximum possible arrival rates into the network for which the
queues at the various network nodes are still stable. Further-
more, the algorithms are distributed in the wired network case
in the sense that decisions are made locally at each node based
on feedback from only the immediate destination nodes of the
transmission links at the node.

While the back-pressure approach has mostly been applied in
the context of unicast transmissions, it has also been extended
to the case of multicast transmissions [2], [25]. However, in the
multicast case without network coding the algorithms are sig-
nificantly more complex, even for wired networks.

We extend the above back-pressure based dynamic control
algorithms to include network coding and correlated sources.
Unlike in the case of a fixed set of flows, for time-varying
queuing networks employing the back-pressure approach,
network coding also needs to be dynamic and dependent
on the state of the network. Random linear network coding
[10], introduced for the flow model, extends naturally to a
time-varying network with bursty traffic. In this paper, we
consider dynamic multisession multicast with network coding
in wired and time-varying wireless networks. We consider the
case in which each multicast session consists of a set of sources
and sinks such that data from all the sources is intended for all
the sinks. We establish the capacity region of input rates that
can be stabilized with intrasession network coding, and present
dynamic algorithms for routing, network coding, session
scheduling, and power control that achieve stability for rates
within this capacity region. This is a network-layer rather than
an information-theoretic capacity; it refers to the maximum
achievable rates under a given physical layer modulation and
coding scheme.

The multicast algorithm described in [25] involves enu-
meration of all multicast trees used, while that in [2] involves
maintaining a virtual queue for every subset of sinks for every
session. In our approach, each node has just one virtual queue
for each sink of each session (for independent sources) or for
each source–sink pair of each session (for correlated sources).
Routing, network coding, and session scheduling decisions
are made locally by comparing, for each link, the difference
in length of corresponding virtual queues, summed over each
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session’s queues. For correlated sources, the sinks locally con-
trol rate allocation across the sources. This gives a completely
distributed algorithm for wired networks; in the wireless case,
power control among interfering transmitters is done centrally.

This paper is organized as follows. We present the system
model, discuss some network coding considerations, and de-
fine the notion of stability for multicast in Section II. The char-
acterization of the capacity region and the capacity achieving
back-pressure algorithm are presented in Sections IV and V for
independent sources on wired and the wireless networks, re-
spectively. In Section VI, we treat the general case where each
multicast session consists of multiple correlated sources. We
conclude with a summary and discussion of future work in Sec-
tion VII. Portions of this work have appeared in [14].

II. PRELIMINARIES

A. Network Model

Our network model is based on that in [24]. We consider a
network comprising a set of nodes, with a set
of communication links between them that are fixed or time-
varying according to some specified processes. There is a set of
multicast sessions sharing the network. Each session is
associated with a set of source nodes, and an arrival
process, at each source node, of exogenous session packets to
be transmitted to each of a set of sink nodes. We
denote by and the maximum number of sources and
sinks, respectively, of any given multicast session.

Time is assumed to be slotted, with the time unit normal-
ized to the slot length. For simplicity, we assume fixed-length
packets and link transmission rates that are restricted to integer
multiples of the packet-length/time-slot quotient. That is, an in-
teger number of packets can be transmitted in each slot. We as-
sume that the channel conditions are fixed over the duration of
a slot, and known at the beginning of the slot. For simplicity
of exposition, we assume that the exogenous packet arrival and
channel processes are independent and identically distributed
(i.i.d.) across slots.

We consider both wired and wireless networks. In our model,
for the wired case, the network connectivity and the link rates
are explicitly specified. For wireless networks, the network con-
nectivity and link transmission rates depend on the transmitted
signal power, interference powers, and the channel propagation
conditions. This is described in more detail in Section V-A.

In the remainder of this paper, all link, source, and flow rates
are in packets per unit time unless otherwise stated. For both
wired and wireless cases, we assume upper bounds and

on the total flow rate into and out of a node, respectively.

B. Network Coding Model

Network coding within a multicast session allows traffic for
different sinks of a session to share network capacity [1]. How to
determine or achieve the (network-layer) capacity of a network
for multiple multicast sessions with coding across sessions is an
open question. Thus, we consider the simpler case where coding
is done only across packets of the same session.

We use the approach of distributed random linear network
coding, described in [6], [10], [13] for independent sources, and

in [11] for correlated sources, in which each packet transmitted
by a node is a random linear combination of the node’s previ-
ously received input packets, i.e., packets received on incoming
links and exogenous source packets, if any. The contents of each
packet, as a linear combination of the input packets, are speci-
fied by a coefficient vector in the packet header, updated by ap-
plying to the coefficient vectors the same linear transformations
as to the data. The coefficient vector is thus a function of the
random code coefficients specifying the linear combinations at
intermediate nodes.

For simplicity, in the descriptions and analysis of the policies
in this paper, we do not explicitly consider batch restrictions and
the overhead of transmitting coding coefficients. An analysis
of the capacity loss from having multiple batches of given size
would require more detailed source and channel statistics, and
is beyond the scope of this paper.

III. INDEPENDENT SOURCES CASE: PROBLEM AND APPROACH

We start with the case where the information at different
source nodes is independent. If the sources have correlated
information, the policies developed for this case can be used but
are suboptimal; higher rates can be achieved using the approach
in Section VI which takes the source correlation into account.

Let be the average arrival rate of exogenous session
packets at each node . We describe the capacity region of rates

that are stabilizable in a network with intrasession network
coding, and give a dynamic control policy that achieves rates
strictly within this region.

A. Network Coding and Virtual Queues

The bits in each packet are grouped into vectors of length
which are viewed as symbols from the finite field , .
The th symbol of a transmitted packet is a scalar linear func-
tion, in , of the th symbol of each of its constituent packets,
and this function is the same for all . A sink is able to de-
code when it receives a full set of packets with linearly indepen-
dent coefficient vectors. We extend the error probability anal-
ysis given in [10] for static networks to the case of time-varying
packet networks, by viewing source packets and transmitted
packets in the time-varying case as analogous to sources and
links, respectively, in the static case. A formal statement of the
result is presented in Theorem 3 in Section IV-C.

For network coding within a multicast session, a solution is
given by a union of individual flow solutions for each sink [1].
Our approach for developing the capacity region and the ca-
pacity-achieving control policy defines virtual queues to keep
track of the individual sinks’ flow solutions as follows.

Each node conceptually maintains, for each sink of each
session , a virtual queue whose length is the number
of session packets queued at node that are intended for sink

. A single physical session packet corresponds to a packet in
the virtual queue of each sink for which it is intended. An
illustrative example is given in Fig. 1. Each packet in a virtual
queue corresponds to a distinct physical packet; thus, there is
a one-to-many correspondence between physical packets and
packets in virtual queues.

A packet in a virtual queue can be transferred over a
link to the corresponding virtual queue at the link’s
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Fig. 1. An example illustrating virtual queues. Each physical session � packet
at source node � is intended to be multicast to the two sink nodes �, �, and so
corresponds to one packet in each virtual queue � and � .

Fig. 2. An example illustrating a physical broadcast transmission with two vir-
tual transmissions, for a multicast session with two sinks. Each oval corresponds
to a node. The left node broadcasts a physical packet received by the two right
nodes, one of which adds the packet to the virtual queue for sink 1, and the other,
to the virtual queue for sink 2.

end node ; this is called a virtual transmission. With network
coding, for any subset of a session’s sinks, a single
physical transmission of a packet on a link can simulta-
neously accomplish, for each sink , one virtual trans-
mission from to . The physically transmitted packet
is a random linear coded combination of the physical packets
corresponding to the virtually transmitted packets. In the case
of a wireless broadcast transmission from a node to a set of
nodes , although the nodes in all receive the transmitted
packet, they update their virtual queues selectively, according
to the control algorithms described in Sections III-B and -C,1

such that each constituent virtual transmission is point-to-point,
i.e., from one queue to one queue at some end node

, which may differ for different sinks . An illustration
is given in Fig. 2. Thus, there is conservation of virtual packets
(virtual flows); we can draw an analogy with the no-coding case
where physical packets (physical flows) are conserved.

B. Multicast Stability Condition

Intuitively, a network is stable if all its queues remain
bounded. Let be the number of physical session packets

1This can be realized in practice by including in each packet a list of queues
that should be incremented by each node in � .

queued at node at time . We define stability as in [24], in
terms of “overflow” functions

(1)

(2)

The session queue at node is considered stable if
as . A network of queues is considered stable if

each individual queue is stable. The following lemma from [24,
Lemma 6, p. 100] gives a necessary condition for stability of a
network.

Lemma 1:
(a) As , if and only if .
(b) If the network is stable, then for any , there exists

a finite value such that arbitrarily large times can be found
for which . For , there

exists a value such that the probability that
simultaneously for all , is greater than infinitely often.

We define a similar overflow function for the sum of the vir-
tual queue lengths

(3)
and extend the above lemma to the case with virtual queues.

Lemma 2:
(a) As , if and only if

.
(b) If the network is stable, then for any , there exists a

finite value such that arbitrarily large times can be found for
which . For , there

exists a value such that the probability that
simultaneously for all , , is greater than infinitely often.

Proof: The proof approach follows that in [20, Lemma 1,
p. 30].

(a) Since each physical packet included in corresponds
to a virtual packet in one or more of the corresponding virtual
queues whose lengths are , we have, for all , ,

where and are the number of nodes and sessions, respec-
tively, and is the maximum number of sinks of a session.
The last inequality follows from noting that

implies that for some and using
the union bound. It follows that for all ,
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where the last inequality holds because the lim sup of a sum is
less than or equal to the sum of the lim sups. Part (a) follows by
taking limits as .

(b) From part (a), if the network is stable, then there exists a
value such that for arbitrarily small .
This means that for any arbitrarily large time , from (3), there
exists a value in for which is
less than .

C. Redundancy Coding at Sources

Each source node forms coded source packets at an
average rate , where is its exogenous packet ar-
rival rate and . Each coded source packet is formed as an
independent random linear combination of previously arrived
exogenous packets, and is “added” to each queue .
Here we provide some intuition for this in advance of the de-
tailed development in subsequent sections. The decoding condi-
tion at each sink is that the total number of linearly independent
coded packets reaching each sink up to some time should be
equal to the total number of exogenous packets up to that time.
The rate of coded source packets is greater than the rate of ex-
ogenous packets to allow for a small fraction of coded packets
to be delayed in network queues; this fraction tends to decrease
with time since the queue sizes are bounded. Thus, the choice
of trades off between closeness to capacity and the potential
decoding delay; for sufficiently large decoding delay , the de-
coding condition is satisfied and decoding is successful with
high probability.2 The number of coded session source
packets formed at node in time slot is i.i.d. with expected
value

(4)

The second moment of the total number of source packets
formed at each node in each time slot is bounded by a finite
maximum value , i.e.,

(5)

IV. WIRED NETWORKS

We first describe the capacity region and back pressure policy
for independent sources on wired networks, deferring proofs
of the results to Section V, which generalizes these results to
the wireless case. We present these results separately for the
wired case as they are simpler and provide useful intuition. The
main difference between the wired and wireless scenarios is that
in a wired network all links are point-to-point links with fixed
transmission rates, whereas in a wireless network, links could be
point-to-multipoint with mutually dependent transmission rates.

2If we employ batch coding, where each batch contains a fixed number of
exogenous packets, feedback from the sinks can be used to signal when the
sources should stop forming coded packets of each batch. This determines the
effective value of � for each batch.

A. Notation

We denote by the capacity of link . We use to
denote average virtual flow rate, over link , from
to . We use to denote average physical flow rate for
session over . For brevity of notation, we use the
convention that any term with subscript equals zero unless

, and any term with superscript equals zero unless
.

B. Capacity Region With Intrasession Network Coding

Let be the set of all source rate vectors such that there

exist variables satisfying

(6)

(7)

(8)

(9)

(10)

The variables for a (session, sink) pair define
a flow carrying rate at least from each source node to
(by (7)–(8)), in which virtual flow that is intended for is not
retransmitted away from (6). Network coding allows flows for
different sinks of a common multicast session to share capacity
by being coded together [1], so the total usage of link
by session need only be as large as the maximum virtual usage

by individual sinks of the session (inequality (9)).
The flow constraints given above provide a characterization of
the capacity region as shown in Theorem 1 below.

Theorem 1:
(a) A necessary condition for stability of multiple multicast

sessions with intrasession network coding is .
(b) A sufficient condition for stability is that is strictly

interior to .

C. Achievability

The following back-pressure policy stabilizes the network for
all input rates within the capacity region. It is a special case of
the back-pressure policy for wireless networks described and
analyzed in Section V. The intuition behind the policy is that
it chooses, for each link at each time slot, the session with the
maximum total weight of virtual transmissions, summed over
the session’s sinks.

Back-Pressure Policy for Wired Networks: For each time slot
and each link we have the following.
• Session scheduling: one session

is chosen.
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• Rate allocation: the maximum rate of virtual transmissions
from to is set as

if and
otherwise.

(11)
• Network coding: each session packet physically trans-

mitted on link is a random linear combination, in
, of packets corresponding to a set of virtual transmis-

sions on each associated with a different sink in ,
as described in Section III-A. The subset of associated
with virtual transmissions consists of the destinations for
which .

Let

Theorem 2: If coding rates are such that
, the back-pressure policy stabilizes the system with av-

erage total virtual queue length bounded as

where is the number of network nodes and

Theorems 1 and 2 are special cases of the corresponding the-
orems for wireless networks that are stated and proved in Sec-
tion V. While the above result shows that each sink can receive
packets at a rate arbitrarily close to the source rate, the packets
received contain randomly coded data. In order to retrieve the
actual information, each sink decodes the information from the
coded packets that it receives. The following theorem shows that
the probability that not all sinks are able to decode the informa-
tion tends to zero exponentially in the coding block length.

Theorem 3: For exogenous arrival rates , if
is strictly interior to , then for sufficiently large times , the
probability that not every sink is able to decode its session’s
exogenous packets decreases exponentially in the length of the
code.

Proof: We can cast a given sequence of packet transmis-
sions in the algebraic network coding framework of [16], [10] as
follows. We consider a corresponding static network with the
same node set and with links corresponding to transmissions
in , where for each packet transmitted from node to in

, has one unit-capacity link from to . This has sim-
ilarity with the notion of a time-expanded network introduced
in [1], where a fixed network is replicated in time to analyze a
sequence of transmissions in time. The coding coefficient spec-
ifying the mapping from link to is set to zero if packet
is not among the packets coded together to form . The fol-
lowing analysis is an extension, based on this correspondence,
of the analysis in [16], [10].

Consider any session . Let be the vector consisting of the
randomly chosen network coding coefficients associated with
the session packets. Consider any sink . It follows
from Theorem 2 and Lemma 2 that for any , there exists a
sufficiently large value such that

Since the arrival processes of the exogenous packets and coded
packets are ergodic, taking into account the last formula it
follows that with arbitrarily high probability one can choose
arbitrarily large so that for all , , it holds that

, the number of session exogenous packet
arrivals at source during the time interval is approximately

and the total number of session packets added
to the source queue at node is approximately . The total
number of session packets arrived by the chosen time to

from each source is given by these packets minus the
number of them left in the virtual queues and hence
is lower-bounded by

The physical packets corresponding to this virtual flow are
coded combinations of the exogenous packets from . These
exogenous packets are in one-to-one correspondence with the
source processes in the corresponding static network .

Consider any arbitrary fixed choice of of the packets
received by from each session source node , corresponding
to a choice of input links at in the static network . This
choice fixes only the sequence of which packets are coded
together to form the chosen packets; by the Principle of De-
ferred Decisions (see, e.g., [18]), we can assume that the values
of the random coding coefficients are chosen subsequently.
We denote by the determinant, as a polynomial in , of
the matrix whose rows equal the coefficient vectors of these

packets. Consider the physical packet transmissions
corresponding to this virtual flow, which are transmissions
involving queues . These physical transmissions would
constitute an uncoded physical flow if their originating trans-
missions from the source nodes were uncoded independent
packets and there were no other sinks/virtual flows in the net-
work. We denote by the value of corresponding to this case,
noting that or .3 Thus, is not identically
zero.

Since the product as a function of the
network code coefficients is not identically zero, by the
Schwartz–Zippel theorem (see, e.g., [18]), choosing the code
coefficients uniformly at random from a finite field of size
yields a zero value with probability inversely proportional to
. A nonzero value for the product corresponds to each sink

having enough linearly independent combinations to decode all
data transmitted up to that point. The result follows since is
exponential in the length of the code.

3For this uncoded flow case, the coefficient vectors of the �� � �� � session
� packets received by � form the rows of the identity matrix.
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V. WIRELESS NETWORKS

A. Wireless Model

The wireless case is considerably more complicated, as we
take into account interference among signals transmitted simul-
taneously by multiple nodes and the fact that a single node’s
transmission can be received by multiple nodes, referred to as
wireless multicast advantage. Furthermore, it is possible for a
receive node to combine information received from multiple
transmit nodes that are transmitting the same signal.

We assume we are given a set consisting of point-to-point
links and/or point-to-multipoint links where

. While there are potentially a large number of pos-
sible wireless links, in practice we consider a limited set of
useful links. For example, the set of receivers for a link
could be chosen to be some number of closest neighbors of the
transmitter . The selection and size of the set of links over
which optimization occurs trades off achievable performance
against complexity, and is an issue inherent to wireless network
optimization in general. It is a pertinent practical problem that
is considered in, e.g., [19], [29], but is beyond the scope of this
paper.

We assume we are given a rate function specifying
the vector of link rates as a function of the vector of transmit
powers and channel states . Consider first a single link .
The rate in packets per unit time on the link, , could,
for example, be modeled according to the Shannon formula (see,
e.g., [7])

(12)

where is the packet length in bits, denotes nodes transmit-
ting interfering signals, is the additive white Gaussian noise
variance, and is channel gain from transmitter node to
receiver node and includes the effects of distance loss, large
scale and small scale fading effects. This is just one possible ap-
proximate but useful formula. Note that the link rates could in
general be modeled using any monotonically increasing func-
tion of the signal-to-interference-noise ratio (SINR), or could
be restricted to a finite set of possible values corresponding to
practical coding and modulation schemes; as in [24], we assume
only that is upper semicontinuous in for all states .

The channel state vector is assumed to be constant over
each time slot, i.e., state transitions occur only on slot bound-
aries, where time is an integer. We assume that in each time
slot the value of is taken i.i.d. from a finite set; we denote
by the probability of state . Transmit powers are also
held constant over each time slot, and each node ’s transmit
power is limited by the maximum transmit power .
Hence, the set of power allocations is a compact set. In the rest
of the paper, is taken to be an integer unless otherwise stated.

For a wireless broadcast link from a node to a set
of nodes , the instantaneous link rate is also deter-
mined by the vector of transmit powers and the channel
state vector . It is related to the individual link rates ac-
cording to

(13)

B. Notation

Recall from Section III-A that for a wireless transmission
over a link , although the nodes in all receive the trans-
mitted packet, they update their virtual queues selectively such
that each constituent virtual transmission is point-to-point, i.e.,
from one queue to one queue at some end node

. We use to denote average virtual flow rate, over link
, from to . We use to denote

the average physical flow rate for session over .
We denote by the average value of the time-varying rate

of link . Precise definitions of , ,
are given below with each different context in which the

variables are used.
For brevity of notation, we use the convention that any vari-

able term with subscript equals zero unless ,
, and any variable term with superscript equals zero

unless , .
We use to denote the vector of all link rates

.

C. Capacity Region With Intrasession Network Coding

Similarly to [20], [24], we define the network graph family
consisting of all rate vectors that can be rep-

resented as for some set of rate vectors ,
each of which is in the convex hull of the set of rate vectors

. can be viewed as the set of long-term
average transmission rates supportable by the network.
The assumption that is upper semicontinuous in for
all ensures the compactness of the set of all rate matrices
entry-wise less than or equal to some element of , and in turn,
the compactness of the region defined below [20], which is
needed in the proof of Theorem 4.

Let be the set of all input rate vectors such that there

exist values for satisfying

(14)

(15)

(16)

(17)

(18)

The interpretation of these equations is similar to the wired
case: variables define a flow solution from the session
sources to .

Theorem 4:
(a) A necessary condition for stability of multiple multicast

sessions with intrasession network coding is .
(b) A sufficient condition for stability is that is strictly

interior to .
Proof:

(a) Let be the total number of session source packets
formed at node up to time . For an intrasession network coding
and power control policy, let be the total virtual flow,
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up to time , from queue to queue over link ,
and let be the total physical flow of session packets
transmitted over link up to time . These quantities must
satisfy

(19)

(20)

(21)

(22)

Suppose the system is stabilizable with some intrasession net-
work coding and power control policy. Then there exists a sta-
bilizing policy for which

(23)

i.e., virtual flow that has reached its intended sink is not retrans-
mitted away from the sink.

Let denote the subset of time slots,
up to time , during which the channel is in state . As

, and converge to their time average values
and , respectively, and the inequalities

(24)

(25)

are simultaneously satisfied with probability tending to since
there are a finite number of arrival processes and channel
states . By Lemma 2, for the stabilizing policy, there exists
some finite value such that at arbitrarily large times

(26)

with probability greater than . Thus, there exists some value
of such that (24)–(26) are simultaneously satisfied with

nonzero probability.
Choosing one such value , let ,

. Considering (22) at and dividing
by , we obtain

(27)

where vectors

are elements of the convex hull of rate vectors
, and the vector inequality is considered entrywise. Substi-

tuting (25) into (27) we obtain

(28)

where is the number of channel states and is
the maximum transmission rate of link .

Similarly, considering (19)–(21) at and dividing by , and
using (24)–(26) we obtain

(29)

(30)

(31)

(32)

Considering (28)–(32) in the limit as , we see that
is a limit point of , which is compact and thus contains its limit
points.

(b) This part is proved constructively in Section V-D.

D. Control Policies

We consider policies that make control decisions at the start
of each time slot and operate as follows.

• Power allocation: A vector of transmit powers
is chosen from the set of feasible power al-

locations. This, together with the channel state , deter-
mines the link rates , assumed constant
over the time slot.

• Session scheduling, rate allocation and network coding:
For each link , each sink of each session is allo-
cated a transmission rate for each destination node

. These allocated rates must satisfy the overall link
rate constraint

(33)

gives the maximum rate of virtual transmissions
from to over . Besides this limit on virtual
transmissions for pairs of queues over each link, the total
number of virtual transmissions out of over all links
with start node is also limited by the queue length
at the start of the time slot. Each session packet physically
transmitted on link is a random linear combination,
in , of packets corresponding to a set of virtual transmis-
sions on , each associated with a different sink in .
Thus, the rate allocated to session on is the max-
imum, over sinks , of each sink ’s total allocated
rate , which explains (33).

The following dynamic policy relies on queue length infor-
mation to make control decisions, without requiring knowledge
of the input or channel statistics. The intuition behind the policy
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is that it seeks to maximize the total weight of virtual transmis-
sions for each time slot, subject to the above constraints.

Back-Pressure Policy: For each time slot , transmit powers
and allocated rates are chosen based on the

queue lengths at the start of the slot, as follows.

• Session scheduling: For each link ,
— for each session and sink , one end node

is chosen. Let denote for brevity.

— one session

is chosen. Let

(34)

be the weight of the chosen session.
• Power control: The state is observed, and a power

allocation

(35)

is chosen.
• Link rate allocation: For each link , we get (36)

shown at the bottom of the page.
The complexity of the optimization (35) depends on the phys-

ical network model. If there are enough channels so that dif-
ferent nodes’ transmissions do not interfere, the optimization
can be done locally at each node. If transmissions by different
nodes interfere, solving the optimization requires coordination
or a centralized solution. It is shown in subsequent work [9]
that for some network models, e.g., an interference set model
which specifies sets of links that interfere with each other, there
are distributed approximation algorithms that achieve a guar-
anteed fraction of the optimal solution of (35), and stabilize
the system for any rate vector such that
(an extension of [17, Proposition 3] for the nonmulticast routing
case). Alternatively, the optimization (35) can be done heuristi-
cally, e.g., by a greedy approach along the lines of that in [19],
[29] but with the added guidance of weights for prioriti-
zation among candidate links . However, we do not have
performance guarantees for these heuristics.

The stability of the back pressure policy for is
shown by comparison with a randomized policy that assumes

knowledge of the long-term input and channel statistics. We
will show that the randomized policy is stable, and that stability
of the randomized policy implies stability of the back pressure
policy.

Randomized Policy: Assume given values of rate vector
and flow variables satisfying

(37)

(38)

(39)

(40)

(41)

The following lemma, adapted from [24, Lemma 1], shows that
for any rate vector , power can be allocated according
to the time-varying channel state such that the time average
link rates converge to .

Lemma 3: Consider a rate vector . There exists a
stationary randomized power allocation policy which gives link
rates satisfying

with probability for all , where, for each time slot
in which channel state takes value , the power alloca-

tion is chosen randomly from a finite set ac-
cording to stationary probabilities .

Proof: The proof follows that of [20, Lemma 8, p. 125].
From the definition of in Section V-C and by Carathéodory’s
theorem [5], for some set of rate vectors

, each of which is a convex combination of vectors in
. For each state , the probabilities of

the stationary randomized power allocation policy are chosen
according to the weights of the corresponding convex combina-
tion, which gives . By the
law of large numbers,

as , where denotes the subset
of time slots, up to time , during which the channel is in
state . The result follows since as .

The randomized policy is designed such that

(42)

For each time slot , transmit powers and allocated
rates are chosen based on the given values of ,

as well as the channel state , as follows.

if and
otherwise.

(36)
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• Power allocation: The channel state is observed, and
power is allocated according to the algorithm of Lemma
3, giving instantaneous link rates and long-term
average rates .

• Session scheduling and rate allocation: For each link
, one session is chosen randomly with

probability . Each of its sinks is chosen

independently with probability . Let
denote the set of chosen sinks. For each , one
destination node in is chosen with probability

. The corresponding allocated rates are

if and
otherwise.

(43)

Theorem 5: If input rates are such that ,
both the randomized policy and the back-pressure policy stabi-
lize the system with average total virtual queue length bounded
as

(44)

where is the number of network nodes and

The proof of this theorem uses the following result which is
adapted from [24, Theorem 3].

Theorem 6: Let be a vector of
queue lengths, for some positive integer . Define the Lyapunov
function . If for all

(45)

for some positive constants , , and if ,
then

(46)

and each queue is stable.
Proof: Summing over the expectation

of (45) over the distribution of , we have

Since ,

Taking the lim sup as gives (46). Each queue is stable
since

as

Proof of Theorem 5: The queue lengths evolve according
to

(47)

which reflects the policy that the total number of virtual trans-
missions out of is limited by the queue length .

Define the Lyapunov function .
Squaring (47) and dropping some negative terms from the
right-hand side, we obtain

(48)

where the time dependencies of and are not shown for
brevity, since these remain constant over the considered time
slot.

Taking expectations of the sum of (48) over all , , , noting
that

(49)

(50)
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where the Cauchy–Schwarz inequality is used in steps (49) and
(50), and using (4), (5), we obtain the drift expression given in
(51) shown at the bottom of the page.

For randomized policy, substituting (39) and (42) into (51)
gives

(52)
Applying Theorem 6 gives

(53)

Thus, the randomized policy satisfies the queue occupancy
bound (44).

For the back pressure policy, is dependent

on . The drift expression (51) can be expressed as

where

(54)

which is the portion of the drift expression that depends on the
policy, can be rewritten as

(55)

We compare the values of (55) for the two policies, giving

where the last step follows from (35)–(36). Since the Lyapunov
drift for the back-pressure policy is more negative than the drift
for the randomized policy, the bound (53) also applies for the
back-pressure policy. This completes the proof.

This also proves Theorem 4 part (b).

Proof of Theorems 1 and 2: The results follow from spe-
cializing Theorems 4 and 5 to the case where each link
has a destination set of size and a capacity that does not
depend on or .

Theorem 3 on decoding applies to both the wired and wireless
cases.

VI. CORRELATED SOURCES

A. Model, Approach, and Notation

We consider the case of source nodes with correlated infor-
mation. For simplicity, we assume that the exogenous source
processes consist of bits, or have been converted to bits by ap-
propriate source coding.

Let be the rate of exogenous bits which are to be trans-
mitted from each source . The exogenous bits at
are partitioned into groups of bits which we refer to as sym-
bols in this paragraph. As in the classical distributed source
coding problem formulation of [26], we consider coding over a
block of symbols present at each source,4 and assume that for
each session , successive tuples of source symbols are drawn
i.i.d. from some joint distribution .

Following [11], we consider intrasession random vector
linear coding in across the exogenous bits in each block.
Each source packet contains coded source bits from each
of a set of blocks, where is a constant whose value will be
determined later. Each of the coded source bits is formed as
an independent random linear combination, in , of the
exogenous bits in the corresponding block. The code descrip-
tion overhead is amortized over the set of blocks by using
the same linear combinations to form the coded source bits for
each block in each packet. A set of source packets formed in
this way from a set of blocks constitutes a batch across which
network coding occurs; as discussed in Section II-B, there is
some capacity loss from having multiple batches, the analysis
of which is beyond the scope of this paper. The rate at which
coded source packets are formed at each source is determined
by the control policy.

Each packet formed subsequently at a node by coding to-
gether a set of input packets contains coded bits for each
block, each an independent random linear combination of the

4If the exogenous bits arrive sequentially at the sources, an initial startup delay
is incurred in waiting to accumulate � symbols before coding begins. This dif-
fers from the model for independent sources in the previous sections, where
information is encoded incrementally without needing a full block of informa-
tion to be present.

(51)
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Fig. 3. Illustration of the packet structure for the case of correlated sources, courtesy of an anonymous reviewer.

bits from that block in the input packets. The same linear com-
bination is used for each of the blocks in the packet. An illus-
tration is given in Fig. 3.

Each sink decodes by mapping its block of received bits to a
block of decoded bits that has minimum entropy or maximum

-probability among all possible source values consistent with
the received bit values.

The virtual queues in the correlated sources case are defined
similarly as in Section III-A, except that they are additionally
indexed by sources: each node maintains, for each source
and sink of each session a virtual queue whose length

is the number of packets from source queued at node
that are intended for sink . At each source , each

coded source packet formed is added to some subset of the vir-
tual queues , according to the control policy. A
virtual transmission transfers a packet from a queue to a
queue over a link where . At a sink node

, packets are removed from queue at a rate con-
trolled by the policy.

For simplicity, in the rest of the paper all rates are given in
packets per unit time, for a fixed packet length of bits. We
use to denote the average rate at which packets are added
to , and to denote average virtual flow rate, over link

, from to . We use to denote
the average physical flow rate for session over .

For a set of sources, we denote by their joint entropy
in bits per unit time divided by the packet length . Condi-
tional entropies are similarly denoted.

Let for each source . We
assume that is less than or equal to the maximum outflow
rate of a node.

For brevity of notation, we use the convention that any vari-
able term with superscript equals zero unless ,

, , and any variable term with subscript equals zero
unless .

B. Capacity Region With Intrasession Network Coding

A transmission problem with correlated sources is considered
achievable with intrasession network coding if there exists a se-
quence of codes such that the probability of decoding any ses-
sion source symbol in error at any sink in tends to zero.

Let be the set of all entropy vectors
such that there exist variables and

satisfying

(56)

(57)

(58)

(59)

(60)

(61)

(62)

where is defined as in Section V-C.
Analogously to the independent sources case, variables

define a session flow of size at least from
source to sink . For each pair , (62) corresponds to the
Slepian–Wolf region [26].

Theorem 7: A necessary condition for achievability of a
transmission problem is that the source entropy vector satisfies

.
Proof: For an intrasession network coding and power con-

trol policy, let be the total number of packets added
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to queue up to time , and the total number of
packets removed from in that time. Let be the

total virtual flow (in packets) from queue to over
link up to time , and the total number of session

packets physically transmitted over link up to time .
By definition these quantities satisfy

(63)

(64)

(65)

(66)

(67)

(68)

Suppose the transmission problem is achievable with some
intrasession network coding and power control policy. Then
there exists some achievable policy satisfying

(69)

i.e., virtual flow that has reached its intended sink is not retrans-
mitted away from the sink. Also, for each session and suffi-
ciently large , the flow rates from the sources in to each sink

must be in the Slepian–Wolf region

(70)
Let denote the subset of time slots,

up to time , during which the channel is in state . By similar
reasoning as in the independent sources case ((25)–(26)), there
exists some finite and some time for which

(71)

(72)

are simultaneously satisfied with nonzero probability.
Let

(73)

(74)

(75)

As in the independent sources case ((27)–(28)), from (67), (72),
and (74) we obtain

(76)

where vectors are elements of the convex hull of rate
vectors , is the number of channel
states, and is the maximum transmission rate of link

.
Considering (63)–(66) and (68)–(70) at , dividing by , and

using (71) and (73)–(75), we obtain

(77)

(78)

(79)

(80)

(81)

(82)

(83)

Considering (76)–(83) in the limit as , we see that
is a limit point of , which is

compact and thus contains its limit points.

C. Policies and Achievability

We next give sufficient conditions and a back-pressure policy
for achievability. Similarly to the case of independent sources,
the conditions involve, informally speaking, the network ca-
pacity and source data rates being slightly higher than the joint
source entropy rates.

The back-pressure policy for correlated sources differs from
that for independent sources primarily in the operation at the
sinks and the sources. The rates at which packets are injected
into the network by the different sources of a session may have
to be traded off against each other as the total information rate
from all the sources may be larger than the joint entropy rate.

We propose a mechanism in which the different sinks monitor
the amount of information received from each of the sources and
provide feedback implicitly through back-pressure to throttle
the source rates. This is accomplished by maintaining virtual
queues on a per-source basis at each of the sinks and emptying
these queues at appropriate rates. The information in these vir-
tual queues creates the necessary gradient in queue sizes that
then propagates back to the sources. The sources compress the
information stream and transmit packets into the network at
rates limited by the gradients and thus each source in the set
of correlated sources transmits at the appropriate rate.

We can draw the following intuitive analogy between this
policy and the back-pressure policy for independent sources de-
scribed earlier. In the independent sources case, the system is
driven by packet arrivals at the sources, which create “posi-
tive pressure” at the sources. In the correlated sources case, the
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system is driven by removal of packets at the sinks, which cre-
ates “negative pressure” or “vacuum” at the sinks. The policies
differ in the details of the operation of sources and sinks, but the
operation of interior network nodes according to the pressure
gradient is the same in both cases. Thus, we call the policy for
correlated sources a reverse back-pressure policy.

Unlike the back-pressure policy for independent sources, the
policy for correlated sources ensures that the length of each vir-
tual queue never exceeds a maximum length whose value
we will derive below. The virtual queues are, conceptually, ini-
tialized as containing dummy packets each. Dummy packets
are treated like other virtual packets by the control policy, and
can be viewed as all-zero packets for the purposes of network
coding. They serve only an accounting purpose, allowing queue
length gradients to be set up by the sinks when initially there
are no real data packets in the network. Initially dummy packets
are removed at the sinks, but the number of dummy packets as
a proportion of the total number of packets removed decreases
with time since the total number of dummy packets is finite.

For ease of explanation, we describe the policies below in
terms of the difference

(84)

between the maximum queue length and the virtual queue
lengths. A negative gradient in is equivalent to a
positive gradient in . Thus, the reverse back-pressure
policy for correlated sources can be viewed as similar to the
back-pressure policy for independent sources with the roles of
sources and sinks exchanged, and in place of .

Each sink attempts to remove packets from the various vir-
tual queues at rates within the Slepian–Wolf region. However,
at times there may be insufficient packets at a sink node owing
to channel variations. Each sink maintains, for each

, a variable which keeps track of the net
number of packets “owed” when there are insufficient packets
to remove from . This is analogous to the use of overflow
buffers for positive flow in [4].

Specifically, suppose there exists a rate vector and
flow variables satisfying, for some

(85)

(86)

(87)

(88)

(89)

(90)

(91)

Then, by the structure of the Slepian–Wolf region (91), there
exists and satisfying

(92)

in addition to (85)–(91).
At time , . We

consider policies that carry out the following sequence of steps
in each time slot .

• Rebalancing: Let and denote the time instant just
before and just after rebalancing, respectively. For each

, let

where is a constant whose value will be derived
later. represents an upper bound on the sink’s “vacuum”

, , enforced by the policy; this follows

inductively from and the steps of the policy,

as we will show. packets are removed from
and is subtracted from , i.e.,

Note that

(93)

where the first step follows from the induction hypothesis
and the last step follows from (84). Thus

(94)

and there are sufficient packets in to remove. Also

note that and .
• Outflow rate allocation: Let be any positive constant less

than . For each sink , , the policy chooses
outflow variables subject to

(95)
It then removes

(96)

packets from queue and is added
to . Note that by similar reasoning as in the re-
balancing step

• Inflow rate control: For each source , , the
policy chooses inflow variables subject to

(97)
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Let

coded source packets are formed at and
of them are added to queue for each sink

.
• Power allocation: The policy chooses a vector of transmit

powers from the set of feasible power
allocations. This, together with the channel state , de-
termines the link rates , assumed constant
over the time slot.

• Session scheduling, rate allocation, and network coding:
For each link , each (source, sink) pair of each
session , and each destination node , the policy
allocates a transmission rate , subject to

(98)

as well as the overall link rate constraint

gives the maximum rate of virtual transmissions
from to over . Besides this limit on vir-
tual transmissions for pairs of queues over each link, the
total number of virtual transmissions into over all
links with destination node is also limited by the value

Each session packet physically transmitted on link
is a random linear combination, in , of packets corre-
sponding to a set of virtual transmissions on , each
associated with a different sink in . Thus, the rate allo-
cated to session on is the maximum, over sinks

, of each sink ’s total allocated rate .
Note that by (96) and (98),

The following reverse back-pressure algorithm uses the state
of the virtual queues described above to allow receiver nodes to
draw appropriate rates from among various correlated sources.

Reverse Back-Pressure Policy:
• Outflow rate allocation: Each sink , chooses

outflow variables to minimize

subject to (95). This optimization problem has a simple
greedy solution [8, Theorem 1]: let be

the set of sources in ascending order of the value of
, i.e.,

The solution of the optimization problem is

(99)

• Inflow rate control: For each source , ,
.

• Session scheduling: For each link , one session

is chosen. For each , let

• Power control: The state is observed, and a power
allocation

(100)

is chosen.
• Link rate allocation: For each link , we get (101) at

the bottom of the page
In analyzing the reverse back-pressure algorithm, we com-

pare it with the following randomized policy, which bases its
control decisions on the assumed solution to (85)–(92).

Randomized Policy:
• Outflow rate allocation: For each ,

.
• Inflow rate control: For each source ,

.
• Power allocation: The channel state is observed, and

power is allocated according to the algorithm of Lemma 3,
giving instantaneous link rates and long-term av-
erage rates .

• Session scheduling and network coding: For each link
, one session is chosen randomly with

probability . Each of its sinks is independently

if and
otherwise.

(101)



HO AND VISWANATHAN: DYNAMIC ALGORITHMS FOR MULTICAST WITH INTRA-SESSION NETWORK CODING 811

chosen with probability . Let denote the
set of chosen sinks. For each chosen sink, one (source,
destination node) pair is

chosen with probability . The corresponding

allocated rates are given in (102) at the bottom of the page.

Theorem 8: Suppose the source statistics satisfy

Consider the reverse back-pressure algorithm with
and , where

and and denote the maximum number of sources and
sinks respectively of a multicast session.

(a) The algorithm is stable with

(103)

(104)

(b) For sufficiently large , the probability of error decreases
exponentially in .

Proof: The proof is presented in Appendix.

VII. SUMMARY AND FUTURE WORK

We presented dynamic algorithms with network coding
for multicast in wired and time-varying wireless networks.
We showed that random network coding can be applied in
such a dynamic setting. In our algorithms, feedback to nodes
upstream is achieved through back-pressure. In particular, for
the correlated sources case, the source rate allocation is also
achieved through back-pressure by control of per-source virtual
queues at the sinks modulating the relative gradients between
different sources. This is in contrast to the Internet, where
source control is achieved through explicit feedback such as in
the transmission control protocol (TCP). Combining network
coding with the methods that are currently in widespread use
for flow control and scheduling would be an important area for
future research.

In wireless networks, network coding results in nodes trans-
mitting different information that may interfere with each
other resulting in lower transmission rates compared to the
case without network coding, where the same information

is broadcast by different nodes. Thus, there is an inherent
tradeoff between network coding and reduced interference in
combination with larger combining gain in the wireless case.
Our approach provides a way to combine both techniques by
optimizing over the different transmit scenarios. Understanding
the balance between network coding and interference reduction
are interesting topics for investigation.

Another line of work is to investigate the performance of
heuristics for transmitter scheduling that takes into account the
product of link rate and queue size difference, rather than link
rate alone.

APPENDIX

Proof of Theorem 8(a): Consider a time slot . For both
policies

For each , define the Lyapunov function

and let

(105)

In the rebalancing step, the change in is

(106)

where the last step follows from (93) and (94).
In the rest of the time slot , and

evolve according to (107)–(110) given at the top of the following
page.

Squaring (107)–(110) and dropping some negative terms
from the right-hand sides, we obtain (111)–(113) also shown at
the top of the following page, where the time index of ,

, and are not shown for simplicity of notation.
From (110)–(113), we have

if and
otherwise.

(102)
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(107)

(108)

(109)

(110)

(111)

(112)

(113)

since, from (96), either , in which case

or , in which case

Summing over all and taking expecta-
tions, we obtain (114) at the top of the following page, where

by noting that
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(114)

(115)

(116)

(117)

where the Cauchy–Schwarz inequality is used in the numbered
steps (115)–(117). The drift expression (114) can be expressed
as

(118)

where

(119)

is the portion of (114) that depends on the policy.
For the randomized policy

independently of , . Substituting this into (119) and
using (85)–(88) gives

Next, we consider the back-pressure policy. Variables
, and

are dependent on . Equation
(119) can be rewritten as

(120)

The three terms of the expression above involve disjoint sets of
policy-dependent variables, so the three terms can be considered
separately. The reverse back-pressure policy maximizes each
of them subject to constraints which are also satisfied by the
randomized policy: for the first term, this is shown in detail in
the proof of Theorem 5. For the second term, this follows from
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the inflow rate control step where the constraint is given by (97).
For the third term, this follows from the outflow rate allocation
step where the constraint is given by (95). Thus

(121)

Since flow is transmitted only from a longer to a shorter
queue, and since

Thus, the maximum virtual queue length can be set to
.

From (96) and (99), the increase in over the time
slot (which occurs in the outflow rate allocation step) is at most

. If for all ,
then

(122)
If, on the other hand, for some , then

,5 and

from (118) and (121); setting and using (106) gives
. By induction on the

number of time slots, using (122), we have

This in turn gives, using (105)

(123)

Since , (104)
follows.

The proof of Theorem 8(b) uses the following theorem which
is a straightforward generalization of [12, Theorem 6] from a
static network model to the packet network model described in
Section VI-A.

Theorem 9: Consider a block of exogenous symbols
from each source and a sink node . If the corresponding
virtual flow from each subset of source nodes to is

5In the rebalancing step, either �� ��� � � � � �� �, in which case
� �� ��� , or else �� ����� �� �, in which case� �� ���.

greater than packets (where each packet con-
tains bits from the block), then the decoding error proba-
bility at decreases exponentially in .

Proof: Analogously to the proof of Theorem 3, for a given
sequence of packet transmissions corresponding to the block,
we can define a corresponding static network which has the
same node set, unit capacity links corresponding to transmis-
sions in , and each subset of session sources has
conditional entropy conditioned on the other
sources. With this correspondence, the virtual flow from to

in the packet model corresponds to the minimum cut between
and in the static graph .

We can then apply [12, Theorem 6] to obtain that the prob-
ability that a sink decodes sources in wrongly and sources
in correctly decreases exponentially in . Theorem 6 in
[12] is stated for the case of two sources, but for sessions with
more than two sources, for each subset of sources, the
same proof applies with taking the place of one source and

the other.

Proof of Theorem 8(b): Over the time period ,
there is a virtual flow of packets
from to , of which at most are dummy packets. By
Theorem 8(a), for sufficiently large , with high probability
there is, for each , a virtual flow of more

than non-dummy packets from to
. From (95), we have

Applying Theorem 9 gives the result.
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