CaltechAUTHORS
  A Caltech Library Service

Image recognition: Visual grouping, recognition, and learning

Buhmann, Joachim M. and Malik, Jitendra and Perona, Pietro (1999) Image recognition: Visual grouping, recognition, and learning. Proceedings of the National Academy of Sciences of the United States of America, 96 (25). pp. 14203-14204. ISSN 0027-8424. http://resolver.caltech.edu/CaltechAUTHORS:BUHpnas99

[img]
Preview
PDF
See Usage Policy.

127Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:BUHpnas99

Abstract

Vision extracts useful information from images. Reconstructing the three-dimensional structure of our environment and recognizing the objects that populate it are among the most important functions of our visual system. Computer vision researchers study the computational principles of vision and aim at designing algorithms that reproduce these functions. Vision is difficult: the same scene may give rise to very different images depending on illumination and viewpoint. Typically, an astronomical number of hypotheses exist that in principle have to be analyzed to infer a correct scene description. Moreover, image information might be extracted at different levels of spatial and logical resolution dependent on the image processing task. Knowledge of the world allows the visual system to limit the amount of ambiguity and to greatly simplify visual computations. We discuss how simple properties of the world are captured by the Gestalt rules of grouping, how the visual system may learn and organize models of objects for recognition, and how one may control the complexity of the description that the visual system computes.


Item Type:Article
Additional Information:Copyright © 1999 by the National Academy of Sciences. This paper is a summary of a session presented at the fifth annual German-American Frontiers of Science symposium, held June 10–13, 1999, at the Alexander von Humboldt Foundation in Potsdam, Germany.
Subject Keywords:SEGMENTATION
Record Number:CaltechAUTHORS:BUHpnas99
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:BUHpnas99
Alternative URL:http://www.pnas.org/cgi/content/abstract/96/25/14203
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:1491
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:23 Jan 2006
Last Modified:26 Dec 2012 08:44

Repository Staff Only: item control page