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1 Introduction

Gauge mediation has been an attractive mechanism for mediating the supersymmetry break-

ing effects. Recently, Meade, Seiberg and Shih [1] presented a very general definition of the

gauge mediation mechanism that includes most models with the supersymmetry breaking sec-

tor and the messengers, and models with the direct mediation. They also computed several

physical quantities such as gaugino and sfermion masses on a general ground. Many of the

physically observable effects mediated to the MSSM can be encoded by the current-current

correlators of the global symmetry of the hidden sector. This allows us to extract the soft

supersymmetry breaking terms even in the strongly coupled hidden sector1.

In this paper, we provide methods to compute the zero-momentum current correlators in

some classes of strongly coupled gauge theories. The way we calculate the current correlators

is to weakly couple the system to some ‘spectator’ gauge theory. Sometimes the coupled

system is solvable, in which case, by taking the decoupling limit, we are able to obtain useful

information about the current correlators.

We will review the idea of general gauge mediation of [1] briefly and then understand that

the correlators of the global currents essentially characterize a wide range of gauge mediation

models. Then we go on to the basic scheme of our computation of current correlators. To

illustrate the technique, we provide a number of computable examples.

2 Review of General Gauge Mediation

In this section, we briefly review the definition of the gauge mediation and the determination

of the effect of the hidden sector via current correlations in [1]. Readers who are familiar with

the subject may skip this section safely. In [1], a careful definition of the gauge mediation is

given. Following their definition, a model has the gauge mediation mechanism if the theory

decouples into the MSSM and a separate hidden sector that breaks SUSY in the limit the

MSSM gauge couplings αi all vanish. In this setup, we may be able to compute various

quantities in perturbation theory in the gauge coupling αi, but the hidden sector may be

strongly coupled. The information of the hidden sector, however, can be parameterized by

the current correlation functions in the hidden sector. In the supersymmetric gauge theory,

a global current superfield J A has the component form

J A = JA + iθjA − iθ̄j̄A − θσµθ̄jA
µ +

1

2
θ2θ̄σ̄µ∂µj

A − 1

2
θ̄2θσµ∂µj̄

A − 1

4
θ2θ̄2

�JA , (2.1)

1For an earlier work for gauge mediation with strongly coupled hidden sector, see [2].
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and satisfies the current conservation conditions

D̄2J A = D2J A = 0 (2.2)

with jµ satisfying ∂µjA
µ = 0. Here A is an index for the adjoint representation of the global

symmetry group. We follow the notation of [3]. The current-current correlators have the

following general forms:

〈JA(x)JB(0)〉 = δAB 1

x4
C0(x

2M2)

〈jA
α (x)j̄B

α̇ (0)〉 = −iδABσµ
αα̇∂µ

(

1

x4
C1/2(x

2M2)

)

〈jA
µ (x)jB

ν (0)〉 = δAB(ηµν∂
2 − ∂µ∂ν)

(

1

x4
C1(x

2M2)

)

〈jA
α (x)jB

β (0)〉 = δABǫαβ
1

x5
B1/2(x

2M2) ,

(2.3)

where M is the characteristic mass scale of the theory. B1/2 may be complex but all Ca are

real. There could also be nonzero one-point function 〈J(x)〉, but it vanishes for nonabelian

currents. When supersymmetry is not broken spontaneously, we have the relations

C0 = C1/2 = C1 , and B1/2 = 0 . (2.4)

Since supersymmetry is restored in UV, whether SUSY is spontaneously broken or not,

lim
x→0

C0(x
2M2) = lim

x→0
C1/2(x

2M2) = lim
x→0

C1(x
2M2) , and lim

x→0
B1/2(x

2M2) = 0 . (2.5)

We now gauge the global current by coupling it to a gauge field. The part of the original

Lagrangian for the gauge field is given by

L =
1

8π
Im

(

τTr

∫

d2θ2W αWα

)

+ · · ·

=
1

2g2
DADA − i

g2
λAσµDµλ̄

A − 1

4g2
FA

µνF
Aµν + · · · ,

(2.6)

where Imτ = 4π
g2 and we use normalization such that TrTATB = δAB. After integrating out

the hidden sector, its effect is determined by the current correlation functions. Here we will

only consider one gauge group and not a product of gauge groups, such as in the MSSM, for

simplicity. Ignoring higher derivative terms, the change of the effective Lagrangian is

δLeff =
1

2
C̃0(0)DADA−C̃1/2(0)iλAσµ∂µλ̄

A− 1

4
C̃1(0)FA

µνF
Aµν− 1

2
(MB̃1/2(0)λAλA+c.c.)+· · · .

(2.7)
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Here C̃a and B̃ are Fourier transforms of Ca and B, respectively:

C̃a

(

p2

M2
;
M

Λ

)

=

∫

d4xeipx 1

x4
Ca(x

2M2)

MB̃1/2

(

p2

M2

)

=

∫

d4xeipx 1

x5
B1/2(x

2M2) .

(2.8)

The gaugino and sfermion masses are also determined by the current correlation functions.

The gaugino mass at tree level can be read off from the change of the Lagrangian (2.7):

Mλ = g2MB̃1/2(0) . (2.9)

When the one point function 〈J〉 is zero, the sfermion mass occurs at one loop. In this case,

we have to know the current correlation functions at the momentum of order M , the typical

scale of the hidden sector. The sfermion mass is then

m2

f̃
= g4c2fA , (2.10)

where c2f is the quadratic Casimir of the representation of f under the gauge group and

A = −
∫

d4p

(2π)4

1

p2

(

3C̃1

(

p2

M2

)

− 4C̃1/2

(

p2

M2

)

+ C̃0

(

p2

M2

))

(2.11)

3 Basic Idea

In this section, we present the basic idea to compute the current correlators in non-supersymmetric

vacua, which encode the gaugino and sfermion masses. Schematically, the full theory can be

written in the following form:

L = Lhid + Lint + LMSSM , (3.1)

where Lhid is the supersymmetry breaking hidden sector, LMSSM is the visible MSSM sector,

and Lint is the interaction between the two sectors, which transmits the supersymmetry

breaking effects to the MSSM. When we integrate out Lhid +Lint, we produce the soft terms

that break supersymmetry in the MSSM Lagrangian.

L → Leff = LMSSM + δLsoft . (3.2)

This can be done explicitly if the hidden sector is weakly coupled, but it is hard to do so for

the strongly coupled case in general.

However, we can circumvent the difficulties in certain cases. As we have reviewed in the

previous section, many of the parameters of the soft terms can be determined by calculating
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the current correlation functions. To achieve this, we will replace the MSSM with another

theory such that we have control over the combined theory. That is, we are going to consider

the following Lagrangian:

Lg′ = Lhid + L′
int + L′

spec . (3.3)

Here, if the gauge coupling constant g′ for the spectator Lagrangian goes to zero, the spectator

fields decouple. Supposing this new theory is solvable, we integrate out the hidden sector and

obtain

Lg′,eff = L′
spec + δLsoft . (3.4)

Now, by taking g′ small and extracting nontrivial terms, we get the desired soft terms for the

original theory.

In the following sections, we will be more specific and gauge the flavor symmetry of the

hidden sector. Suppose the hidden sector is a gauge theory with gauge group G1 and global

symmetry group G2, and each field lives in the representation (Ai, Bi) under G1 × G2. Now

by weakly gauging G2, we get the theory with the product gauge group G1 ×G2:

L = LG1
+ Lint + LG2

. (3.5)

Let the dynamical scales associated with gauge groups G1 and G2 be Λ1 and Λ2, respectively,

and g′ gauge coupling for the gauge group G2. We set the scale Λ1 ≫ Λ2, so that we can

treat the gauge interaction for G2 to be very weak at the scale we probe. If we can integrate

out the whole Lagrangian (3.5) in this limit, we are able to extract information about the

current correlation functions of the flavor symmetry of the hidden sector. Note that this probe

Lagrangian should not be confused with the Lagrangian for the real visible sector, although

the structure is very similar. Here, this is just a probe to extract the information of the hidden

sector. In the next section, we provide certain classes of examples in which we can follow this

procedure.

Before we go on, let us briefly mention that we do not really have to gauge the full global

symmetry. It is actually enough to gauge any subgroup H of the global symmetry group G,

because the global currents are only sensitive to group theory factors. To see this, suppose

the global current for G is in a representation R. Let the generators of G be {T a} and H

{tα}. The global current correlators can be written as

〈Ja(x)J b(0)〉 = f(x)δab , (3.6)

where we have omitted Lorentz indices. This is the only possible form by symmetry. The

current correlators come with the group theory factor

〈Ja(x)J b(0)〉G = f̃(x)DG(R)δab , (3.7)
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where DG(R) is the Dynkin index of the group G in the representation R and we have omitted

the Lorentz indices. Now, let’s decompose the representation in terms of the representations

of the subgroup H by R = ⊕iri where ri is a representation of H . Then, the correlators we

get by gauging the subgroup can be written as

〈Jα(x)Jβ(0)〉H = f̃(x)
∑

i

DH(ri)δ
αβ. (3.8)

Therefore, we can multiply the currents obtained by gauging the subgroup by the group theory

factors to get the desired current correlators.

〈Ja(x)J b(0)〉G =
DG(R)

∑

iDH(ri)
〈Ja(x)J b(0)〉H . (3.9)

4 Examples

4.1 N = 2 SQCD with a superpotential

Here we will consider N = 2 SU(Nc) Seiberg-Witten theory withNf hypermultiplets [4,5] with

an appropriate superpotential as the hidden sector. This theory has U(Nf ) global symmetry.

We will weakly gauge the SU(Nf ) part of the global symmetry. So the hidden sector is given

by the Lagrangian

L =
1

8π
Im

[

τ

(

Tr

∫

d2θW αWα + 2

∫

d2θd2θ̄Φ†e−2V Φ

)]

+

∫

d2θW (Φ) + c.c.

+

∫

d2θd2θ̄
(

Q†
ae

−2VQa + Q̃ae
2V Q̃a

†
)

+

∫

d2θ
(√

2Q̃aΦQa +MQ̃aQa

)

+ c.c ,

(4.1)

where a = 1, · · · , Nf and W (Φ) is a superpotential for the adjoint chiral superfield Φ. Note

that M in the mass term MQ̃aQa is proportional to the Nf ×Nf identity matrix, which is of

the most general form to preserve SU(Nf ) global symmetry. We will consider the Coulomb

branch of the hidden sector, whose special coordinates are denoted by ai where i = 1, · · · , Nc

with
∑

ai = 0. With a suitable choice of the superpotential W (Φ), the hidden sector can be

in a metastable SUSY breaking state. For example, we can use a Kähler normal coordinate

truncated at some finite order as a superpotential to get a metastable SUSY breaking state at

a generic point in the Coulomb branch [6, 7]. Note that ai may have nonzero F -component,

which we denote by F i. Our purpose is to compute the current-current correlators of the

SU(Nf ) global current below the typical scale of ai.

To achieve this, we gauge the flavor symmetry of the hypermultiplets. Since our purpose

is to calculate the current-current correlators, we need not gauge the flavor symmetry using
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the MSSM. To facilitate computations, it is better to gauge the flavor symmetry by another

N = 2 SU(Nf ) SW gauge theory. So the total Lagrangian can be written as

L′ =
1

8π
Im

[

τ

(

Tr

∫

d2θW αWα + 2

∫

d2θd2θ̄Φ†e−2V Φ

)]

+

∫

d2θW (Φ) + c.c.

+

∫

d2θd2θ̄
(

Q†e−2V −2V ′

Q+ Q̃e2V +2V ′

Q̃†
)

+

∫

d2θ
(√

2Q̃aΦQa +MQ̃aQa +
√

2Q̃aΦ
′
abQb

)

+ c.c.

+
1

8π
Im

[

τ ′
(

Tr

∫

d2θW ′αW ′
α + 2

∫

d2θd2θ̄Φ′†e−2V ′

Φ′

)]

,

(4.2)

where primes denote similar multiplets in the SU(Nf ) gauge theory and the trace in the last

line is over the flavor SU(Nf ) indices. Also, in the second line, the first term may be explicitly

expressed as

Q†i
a

(

e−2V
)j

i

(

e−2V ′

)a

b
Qb

j , (4.3)

where i, j = 1, · · · , Nc and a, b = 1, · · · , Nf . The gauge coupling of the spectator gauge theory

is assumed to be very weak, so τ ′ = 4πi/g′2 with g′ very small.

Treating the theory as N = 2 SU(Nc)×SU(Nf ) SW gauge theory, the low energy effective

theory in the Coulomb branch is given by

L′
eff =

1

8π
Im

[
∫

d2θ
(

FijW
αiW j

α + 2FiaW
αiW ′a

α + FabW
′αaW ′b

α

)

]

+
1

4π
Im

[
∫

d2θd2θ̄
(

Fiā
i + Fam̄

a
)

]

,

(4.4)

where ai and ma are eigenvalues of Φ and Φ′, respectively, and subscripts under F denote

differentiations. Note that the prepotential F depends both on ai and ma. Usually, it is hard

to compute F for product gauge groups. However, using the fact that the spectator gauge

theory is weakly coupled, we may obtain necessary information out of F0 of the original N = 2

SU(Nc) SW theory. To see this, note that the low energy effective theory of (4.1) is

Leff =
1

8π
Im

[
∫

d2θF0ijW
iαW j

α + 2

∫

d2θd2θ̄F0iā
i

]

, (4.5)

where F0(a) is the prepotential for N = 2 SU(Nc) SW theory. Let us consider the case where

g′ goes to zero. In such a limit, ma is treated as constant. Note that the dynamics of ai in (4.4)

and (4.5) agree when Fi = F0i and ma ∼ 0. ma ∼ 0 is necessary since we set all nonabelian

mass parameters to vanish in (4.5). The condition ma ∼ 0 really means that the typical scale

of ma is much smaller than that of ai. That is, of the moduli space of the Coulomb branch
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of the product gauge group, in the region where |a| ≫ |m|, we may interchange Fi and F0i

freely. Therefore, if our interest is to consider the low energy effective theory whose typical

scale of m is much lower than that of a, we may use the prepotential of the original N = 2

SU(Nc) SW theory to compute quantities.

In the Seiberg-Witten curve language, one can obtain the prepotential in this limit by

taking appropriate mass deformation of the curve, and regarding it as the moduli of the

gauge theory. To see this, let’s compare (4.1) and (4.2). In the limit where the second gauge

group SU(Nf ) decouples, the only difference is the term
√

2Q̃aΦ
′
abQb in the superpotential.

The adjoint scalar component of Φ′
ab acts as a mass term for the hypermultiplets. Therefore,

by identifying the massive deformation parameter m̃a to be
√

2ma, and computing the period

integrals, we can obtain the prepotential F and its derivatives in the limit of |m| ≪ |a|.

4.1.1 Calculation of B̃1/2(0)

From (4.4), we can read off the coefficients of D′2, λ′σµ∂µλ̄′, F
′
µνF

′µν and λ′λ′ of the spectator

gauge theory. Let’s first consider the coefficient of λ′λ′. To show what is going on explicitly,

let us write down the Lagrangian in terms of the component fields ignoring terms involving

derivatives:

L′
eff = · · ·+gIJF

IF̄ J +
1

2π
gIJD

IDJ +
1

8
√

2π
FIJKD

IψJλK +
1

8
√

2π
F̄IJKD

Iψ̄jλ̄K

+
i

16π
FIJKF̄

IψJψK − i

16π
FIJKF

IλJλK + c.c.

+
i

32π
FIJKL(ψIψJ)(λKλL) +WIF

I − 1

2
WIJψ

IψJ + c.c.

(4.6)

Here I = (i, a) and the prepotential F has the superfields AI = (ai, ma) as its arguments.

Note that Wa = 0. gIJ = 1
4π

ImFIJ is the metric for the product group gauge theory. After

integrating out the auxiliary fields F I , we can read off the coefficients of λIλJ and these are

given by

L′
eff = · · ·+ i

16π
FIJKg

KLW̄Lλ
IλJ + · · · . (4.7)

If the hidden sector is very weakly interacting with the spectator gauge theory, gKLW̄L should

nearly be the same as (gij
0 W̄j , 0) where gij

0 is the inverse metric of the original N = 2 SU(Nc)

gauge theory. To see this, note that among the components of the metric gIJ , gab is very large

compared with gij and gia in the limit g′ → 0. From the expression below

δK
J = gIJg

JK =

(

gij gib

gaj gab

) (

gjk gjc

gbk gbc

)

, (4.8)

7



we see that gij is much larger than gib and gab and this is more so as g′ → 0. Also gij is the

inverse of gij , which is the same as g0ij, all in the limit g′ → 0. Therefore, gaLW̄L can be

ignored compared to gijW̄j and

gIJW̄J = (gij
0 W̄j , 0) =: (−F i, 0) . (4.9)

Next, we need to integrate out λi fields in (4.7). When we do this, we get

L = · · · − i

16π

(

F iFiab − (FijmF
m)−1FaikFbjlF

kF l
)

λaλb + · · · , (4.10)

where (FijmF
m)−1 is the inverse of the matrix Xij = (FijmF

m) and we use the relation (4.9)

in our limit. There are two terms in the coefficient of λaλb. The first term is the usual

one, but the second is from integrating out the gaugino λi in the hidden sector. However,

when we gauge the SU(Nf ) flavor current, the second term can be neglected. The point is

that, in the second term, F is differentiated only once by ma. Note that F0 in the original

N = 2 SU(Nc) SW theory depends smoothly on the symmetric polynomials of ma’s, such as
∑

a≤bm
amb,

∑

a≤b≤c m
ambmc, · · · . Hence, when differentiated once, F0 necessarily contains

at least one factor of ma and so goes to zero when |m|/|a| → 0. On the other hand, F0 itself

or its second derivatives by ma need not vanish when ma is small. Since F0i = Fi in our limit,

in the region of the moduli space where |a| ≫ |m|, the first term dominates and we can safely

ignore the second term. Therefore, when the hidden sector fields are integrated out, we may

say that the relevant gaugino mass term is

L = · · · − i

16π
F kFkabλ

aλb + · · · . (4.11)

Note that, if we gauged the U(Nf ) flavor current, the prepotential would depend on
∑

am
a

and we would not be able to ignore the second term in (4.10).

Next, we will look for a theory at the scale of |a| which gives the low energy effective theory

described above. That is, we hide all signals of the hidden sector into the gauge coupling of

the spectator gauge theory and consider N = 2 SU(Nf) SW theory

L =
1

8π
Im

[

τ2

(

Tr

∫

d2θW ′αW ′
α + 2

∫

d2θd2θ̄Φ′†e−2V ′

Φ′

)]

, (4.12)

where τ2 = 4πi/g′2 + θ2Fτ is the gauge coupling of the probe Lagrangian at the scale of |a|.
This is a theory at the scale of |a|. We will go to the low energy effective theory in the

Coulomb branch where the superfield Φ′ has eigenvalues ma, a = 1, · · · , Nf(so
∑

ma = 0).

Although |a| ≫ |m|, the coupling g′ is so small that one loop correction is enough when we

8



consider the dynamics at the scale of |m|. The prepotential at one loop is given by

F(m) =
τ2
2

∑

a

(

ma −
∑

bm
b

Nc

)2

+
i

4π

∑

a<b

(ma −mb)2 log
(ma −mb)2

Λ2
, (4.13)

and the low energy effective theory is

L =
1

8π
Im

[
∫

d2θFabW
′αaW ′b

α + 2

∫

d2θd2θ̄Fam̄
a

]

. (4.14)

Note that the θ2 component of F is not corrected by the one-loop effect. So the gaugino mass

term is given by

L = · · · − 1

8π
Fτλ

aλa + · · · . (4.15)

Note that we use coordinates for the second gauge group such that
∑Nf

a=1 λ
a = 0. Comparing

this with (4.11), we obtain

Fτ

(

δab −
1

Nc

)

=
i

2
F kFkab (4.16)

at ma = 0. Note that, since Fk depends on the masses ma by the combination ma−∑

bm
b/Nc,

taking derivatives with respect to ma and mb, Fkab in the right-hand side has the same index

structure as that in the left-hand side. From (2.7),

MB̃1/2(0)

(

δab −
1

Nc

)

=
i

8π
F kF0kab . (4.17)

It is instructive to actually calculate the gaugino mass using this formula in the semiclas-

sical regime. That is, we check the expressions in the case where the expectation value of the

chiral superfield Φ of the hidden sector is much larger than the scale of the hidden sector gauge

theory. Additionally, we assume that the hypermultiplets Q and Q̃ are massless: i.e. M = 0

in (4.2). The chiral superfield Φij has nonzero F -term FΦij where i and j are the gauge group

indices for the hidden sector. Note that we are in the Coulomb branch of the hidden sector.

We use gauge transformation such that 〈Φij〉 is diagonal with diagonal elements ai(
∑

ai = 0).

Let Fi be the corresponding F -term of ai. We will calculate the gaugino mass in this setup.

We start with the Lagrangian (4.2) and go to the low energy effective theory at the scale of

|m|, where 〈Φ′〉 has eigenvalues of ma with the constraint
∑

ma = 0. The ai dependent part

9



of the prepotential F , given by [8] with the constraint
∑

ma = 0 built in, is

F =
2π

g2

∑

i

(

ai −
∑

j aj

Nc

)2

+
i

4π

∑

i<j

(ai − aj)
2 log

(ai − aj)
2

Λ2

− i

8π

∑

i,b

(

ai −mb −
∑

a

Nc
+

∑

m

Nf

)2

log

(

ai −mb −
P

a
Nc

+
P

m
Nf

)2

Λ′′2
+ · · · ,

(4.18)

where τ = 4πi/g2, τ ′ = 4πi/g′2. Λ is the scale for the first gauge group and Λ′′ is some scale

which does not change the answer that follows. Then

Fkab = − i

2π

∑

i

1

ai −mb

(

δik −
1

Nc

) (

δab −
1

N f

)

, (4.19)

after imposing tracelessness conditions. Since the scale of the spectator gauge theory does

not enter into the expression, we may set F0kab = Fkab. In the limit mb → 0, we have, from

(4.17),

MB̃1/2(0) =
1

16π2

∑

k

Fk

ak

, (4.20)

which gives the usual one-loop gaugino mass through (2.9)

Mλ =
g2

16π2

∑

k

Fk

ak
, (4.21)

if we identify
√

2ak with masses of the messengers(The F -term of
√

2ak is
√

2Fk).

4.1.2 Calculation of C̃a(0) and sfermion masses

Using the same technique, we may compute C̃a(p
2/M2) at zero momentum. Note that the

effect of integrating out the hidden sector fields is to change the gauge coupling τ ′ to τ2 as

shown in (4.12). Also, in this case, all C̃a(0) are the same. Using (2.7),

C̃a(0) =
1

4π
Im (τ2(a) − τ ′) . (4.22)

When we go to the low energy effective theory, τ2(a) gets renormalized. But since g′ is

very small, it is enough to consider only the one-loop effect. So τ2(a) gets only additive

renormalization of the form logm, which is independent of a. Hence we have

∂τ2(a)

∂ak

(

δab −
1

N

)

= Fkab . (4.23)

10



Integrating this equation, we are able to obtain τ2(a), which then may be fed into (4.22) to

get C̃a(0). The additive constant is determined by noting that C̃a(0) goes to zero in the limit

where a→ ∞.

Since we are required to calculate C̃a(p
2/M2) when p2/M2 is of order 1, the information we

have just obtained is not enough to calculate the sfermion masses of the MSSM. Alternatively,

we can introduce a matter multiplet charged with respect to SU(Nf ) and evaluate its low

energy effective action terms. A work in this direction is in progress.

4.1.3 Generalization to other gauge groups

Let us briefly comment on how the expressions (4.17) and (4.23) change for other non-abelian

groups. We start from (4.12). Let TA be a basis of the adjoint representation of the flavor

symmetry group and Ha be a basis of the Cartan subalgebra. The prepotential as a function

of the N = 2 adjoint chiral superfield Φ′ at classical level is given by

F(Φ′) =
1

2

τ2
cadj

Tradj(Φ
′2) , (4.24)

where cadj is the Dynkin index for the adjoint representation:

Tradj(TATB) = cadjδAB . (4.25)

In the Coulomb branch, all massive modes are integrated out and Φ′ is diagonalizable due to

D-term constraint. Hence Φ′ =
∑

am
aHa and the prepotential above becomes

F(a) =
1

2

τ2
cadj

Tradj(HaHb)m
amb =

τ2
cadj

mamb
∑

α

αaαb , (4.26)

where the summation is over all positive roots of the flavor group. Therefore λλ term in (4.14)

becomes

L = · · · − 1

4π

Fτ

cadj

∑

α

αaαbλ
aλb · · · . (4.27)

We now compare this with the λλ term in the low energy theory of the product gauge group

(4.11). Therefore

Fτ

∑

α

αaαb =
icadj

4
F kFkab . (4.28)

Since the θ2 component of τ does not receive corrections at one loop, this Fτ can be used to

calculate MB̃1/2(0). That is, the part of λλ consisting of the Cartan subalgebra part in (2.7)

is

δLeff = · · · −MB̃1/2(0)
1

cadj

∑

α

αaαbλ
aλb · · · . (4.29)
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Therefore the relation corresponding to (4.17) is

MB̃1/2(0)
∑

α

αaαb =
i

16π
cadjF

kF0kab . (4.30)

Similarly, corresponding to (4.23), we have

∂τa(a)

∂ak

∑

α

αaαb =
1

8π
cadjF0kab . (4.31)

4.1.4 Hypermultiplet condensation

It may be of interest to check whether the hypermultiplet bilinear Q̃aQb develops a nonzero

expectation value. The Lagrangian for the product SU(Nc)×SU(Nf ) gauge theory (4.2) has

some terms containing the F component of Φ′:

L′ = · · ·+ 1

g′2
Tr

(

F̄Φ′FΦ′

)

+ Q̃aFΦ′abQb + c.c. + · · · . (4.32)

Therefore we can calculate the expectation values of the bilinear Q̃aQb by differentiating the

partition function with respect to FΦ′ . More precisely, we will calculate the traceless part of

〈Q̃aQb〉 since the source FΦ′ is traceless. To get the effective Lagrangian for the spectator

gauge theory, we start with (4.6) and set all vev’s for the fermions to zero. Then we integrate

out the F and D terms for the hidden sector. The equation of motion for Di sets Di = 0.

The equation of motion for F i is

F̄ j̄ = −gij̄giāF̄
ā − gij̄Wi , (4.33)

Plugging the result into the Lagrangian, we get

L′
eff = −gjī(gāiF

a + W̄ī)(gjb̄F̄
b̄ +Wj) + gab̄F

aF̄ b̄ . (4.34)

Now we can read off the linear term in F a:

L′
eff = · · · − gjīgāiWjF

a + · · ·
= · · · − gjī

0 g0āiWjF
a + · · · ,

(4.35)

where the second line follows in the limit g′ → 0. But as we argued below (4.11), giā vanishes

as ma goes to 0 since we differentiate the prepotential F only once with respect to the second

gauge indices to get giā. Therefore, the linear term vanishes and the hypermultiplet bilinear

can have at best an expectation value of the form

〈Q̃a(0)Qb(0)〉 = h(a)δab , (4.36)

12



QΦQQQ

p

p

∼ ∼

Figure 1: One loop diagram contributing hypermultiplet condensation

for some function h(a). This does not break U(Nf ) symmetry. Also, Q or Q̃ cannot have

nonzero expectation values perturbatively in the superpotentialW . The reason is that we have

a U(1) subgroup of SU(2) R-symmetry of N = 2 theory even after including a superpotential

if we assign charge +2 to the superpotential. Since Q and Q̃ have charge +1, it cannot be

expressed as a series in W . Therefore, although there could be hypermultiplet condensation,

U(Nf ) symmetry is still preserved. Note that, if we gauged U(Nf ) symmetry instead, the

bilinear would be diagonal with a-th diagonal element gij̄giāWj . In this case, this would not

vanish when ma → 0. However, by symmetry, giā would be the same for all a for a fixed

i. Hence the vev of the bilinear would be proportional to the identity matrix, and U(Nf )

symmetry would still exist. Of course, the answer does not depend on which global symmetry

we gauge. Therefore h(a) in (4.36) is determined and we have, for any index c,

〈Q̃a(0)Qb(0)〉 = gjī
0 g0c̄iWjδab , for the metric g0 of U(Nf ) . (4.37)

Note that we actually calculate 〈Q̃a(0)Qb(0)〉 at the scale of |m|. But 〈Q̃a(0)Qb(0)〉 both at

the scale of |m| and at the scale of |a| have the same form since when we go from the scale

|a| to |m|, we receive only perturbative effects, and this does not change 〈Q̃a(0)Qb(0)〉.
Having derived the formula for the quark condensate (4.37), let us verify it in the semi-

classical regime. The leading contribution of
√

2Q̃i
aF

j
ΦiQ

a
j to 〈Q̃i

aQ
b
i〉 for small FΦ, shown in

Figure 1, is

〈Q̃i
aQ

b
i〉 =

∑

i

∫ Λ0

0

d4p

(2π)4

F̄iδ
b
a

(p2 + (
√

2ai)2)2

= − 1

16π2
δb
a

∑

i

F̄i log(
√

2ai)
2 .

(4.38)

Note that the interaction is insensitive to the cutoff Λ0. Let’s compare this with (4.37). The

13



relevant part of the prepotential is similar to (4.18):

F =
2π

g2

∑

i

(ai)
2

+
i

4π

∑

i<j

(ai − aj)
2 log

(ai − aj)
2

Λ2
− i

8π

∑

i,a

(ai −ma)
2 log

(ai −ma)
2

Λ′′2
+ · · · ,

(4.39)

Note we do not impose the constraint
∑

ma = 0 since (4.37) is valid when gauging U(Nf )

symmetry. The metric component gia at weak coupling is given by

gāi =
3

16π2
+

1

16π2
log

(ai −ma)
2

Λ′′2
. (4.40)

Let’s go to the limit ma → 0. Then gjī
0 Wj = −F̄ ī and using (4.37),

〈Q̃k
aQ

b
k〉 = −F̄ k̄g0ck̄δ

b
a = − 1

16π2
δb
a

∑

k

F̄k log(
√

2ak)
2 . (4.41)

The result agrees with (4.38).

4.2 Geometrically Realized Models

As another controllable model, we study geometrically induced supersymmetry breaking con-

figuration in Type IIB string theory on A2-fibered geometry. This has been studied in [9]

somewhat in a different context. Consider A2 fibred geometry [10] defined by

x2 + y2 + z (z −m1(t− a1)) (z +m2(t− a2)) = 0.

There are three singular points, t = a1,2 and a3 = (m1a1 + m2a2)/(m1 + m2). Wrapping

Nc anti-D5 and Nf D5 branes on two S2s that resolve the singularities at t = a1 and a2

respectively, we can construct a supersymmetry breaking configuration. We do not wrap any

brane at t = a3, because this can decay into a lower energy configuration. Our present setup

does not have an unstable mode as has been discussed in [11]. Therefore we can take field

theory limit. Here we claim that as long as the size of S2 at t = a2 is much bigger than that

at t = a1, there is a field theory description for this brane/anti-brane system. According to

the conjecture proposed in [9,12–14], there is a glueball description with respect to the hidden

sector gauge group corresponding to a partial geometric transition. Thus it is reasonable to

claim that the low energy field theory description is an interacting product U(1)×U(Nf ) gau

ge theory. The kinetic term is

∫

d4θK(S1)Φ2Φ
†
2 + Im

[
∫

d4θS̄1

∂F0,0(S1)

∂S1

]

+

∫

d2θ [τ (S1)W
αWα] + c.c+ · · · (4.42)
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where · · · includes higher derivative terms and U(1) gauge kinetic terms. F0,0(S1) is the

prepotential for the geometry after the transition,

2πiF0,0 =
S2

1

2

[

log

(

S1

m1Λ2
0

)

− 3

2

]

.

where Λ0 is a cutoff scale of this description. The superpotential terms are

W = αS1 +Nc
∂F0,0

∂S1

+ W̃2(Φ2, S1) (4.43)

In application to phenomenology we will identify a subgroup of SU(Nf ) as the standard model

gauge group. So the adjoint field Φ2 for SU(Nf ) gauge group should be integrated out by

taking m2 → ∞. In the limit, the superpotential W̃2 becomes a relatively simple function,

W̃2 =

∫ a2

Λ0

[

m1

2
(t− a1) +

1

2

√

m2
1(t− a1)2 − 4S1

m1

]

dt.

Our goal in this section is to compute the function τ(S1) and extract Cis and B1/2 from

it. In the open string description we can say that this S1 dependence is generated by the

bifundamental matter. On the other hand, after the transition in closed string point of

view, it is generated by closed string modes. To extract the interacting part, we use the

glueball description for U(Nf ) gauge group as well and assume that the glueball fields and

U(1) ⊂ U(Nf ) gauge supermultiplet wα are background fields. Following [15, 16], we use

glueball description for evaluating the interacting part even though the SU(Nf ) theory is

weakly coupled and is not confined. Turning on these backgrounds modifies the geometry

slightly. At the leading order of the modification, we read off the kinetic term for the gauge

group. The low energy description is given by

L = Im

(
∫

d4θS̄i
∂F0

∂Si

+

∫

d2θ
1

2

∂F0

∂Si∂Sj

wiwj

)

+

∫

d2θW (Si) + c.c (4.44)

where W (Si) is Gukov-Vafa-Witten superpotential [17] generated by the flux. Solving the

equation of motion for F 1, we obtain the potential

V =
1

g11

∣

∣g12F̄
2 + ∂1W

∣

∣

2 − g22F
2F̄ 2 − F 2∂2W − F̄ 2∂̄2W̄ , (4.45)

where we ignored U(1) gauge fields. The metric is defined by Im ∂i∂jF0. Since we are

interested in coefficients of correlation functions B1/2 and Ci, which are related to linear

terms in S2 and F 2, we can put these to be zero when we evaluate the minimum of the

potential,

V (S2 = 0, F 2 = 0) =
1

g11

∣

∣∂1W
∣

∣

2
.
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To find the minimum it is useful to expand the prepotential F0 for A2 geometry as

F0 =

∞
∑

b=0

S2
bF0,b(S1),

where we ignored S1 independent part, which can be combined with the classical action of

SU(Nf ) and construct the one-loop running coupling constant. In the matrix model computa-

tion, F0,b are contributions of diagrams with b boundaries, which are perturbatively calculable

order by order. With this expansion, the superpotential and metric become

W (S2 = 0) = α1S1 +Nc
∂F0,0(S1)

∂S1

+NfF0,1(S1),

g11(S2 = 0) = Im
∂2F0,0

∂S1∂S1

.

In our setup, the disk and annulus amplitudes are exactly known, [18–20]

2πiF0,1 = S1

(

log
∆ +

√

∆2 − 4S1

m1

2Λ0

+
∆

∆ +
√

∆2 − 4S1

m1

− 1

2

)

≃ S1 log
∆

Λ0

− S2
1

2m1∆2
+ · · · ,

2πiF0,2 =
1

2
log

(

∆ +

√

∆2 − 4S1

m1

)

− 1

2
log

(

2

√

∆2 − 4S1

m1

)

≃ S1

2m1∆2
+ · · · ,

where ∆ = a1 − a2. With these expressions, we see that W (S2 = 0) reproduces the superpo-

tential in (4.43) in the limit m2 → ∞ and S2 → 0. At the leading order, the minimum of the

potential is given by

〈S1〉|Nc| = (m1Λ0)
|Nc|

(

∆̄

Λ̄0

)Nf

e2πiᾱ1 . (4.46)

Note that Nf > 0 > Nc. Since there is an exponential suppression factor, vev of S1 exists in

physical region, which we regard as a dynamical scale of the theory on the anti-D5 branes.

Expanding the potential (4.45) around the minimum we can read off coefficients of linear

terms in S2 which yield the gaugino mass term for SU(Nf ) part,

2πi

g2
Y M

mλ =
2πiF1

16π2

[

−|Nc|
∂2F0,1

∂S1∂S1

+ 2Nf
∂F0,2

∂S1

]
∣

∣

∣

∣

〈S1〉

− |F1|2
32π2iΛ4

∂2F0,1

∂S1∂S1

∣

∣

∣

∣

〈S1〉

,

≃ 1

16π2

[ |Nc| +Nf

m1∆2
F1 +

|F1|2
2im1∆2Λ4

]

, (4.47)
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where we supplied a dimensionful parameter Λ. In the field theory limit, we take the string

scale to be infinity, keeping the scale Λ finite which should be identified with the scale of S1

in (4.46) in our model. The α1, which is the size of P1, also has to scale appropriately [21]2.

The vev of F 1 is cut-off independent and a finite quantity in the limit,

F 1 = −g−1
11 ∂1W

∣

∣

0
≃ βΛ4,

where the β is defined3 by 2i Imᾱ1 ∼ β log Λ0, which encodes geometric data of the P1. On

the other hand, another correlation functions can be read off from the linear term in F 2.

2πiCi(0) =
−2πi

16π2
Re

[

Im

(

∂F0,1

∂S1

)

Λ−4F̄ 1 + |Nc|
∂F0,1

∂S1

− 2NfF0,2

]
∣

∣

∣

∣

〈S1〉

,

≃ 1

16π2

[

Im

( 〈S1〉
m1∆2

)

Λ−4ReF 1 + (|Nc| +Nf)Re

( 〈S1〉
m1∆2

)]

. (4.48)

Finally let us comment on the diagrammatical computation of the gaugino mass. Although

our present geometric configuration does not include an unstable mode, we do not know

explicitly the UV Lagrangian for the brane/anti-brane system. Thus it is not easy to compute

the correlation functions studied above from Matrix model computations directly. However,

the flop of the S2 wrapping the anti-brane is a smooth process because its physical volume

can never be zero [9,13]. The new geometry yields the brane/brane configuration. The world

volume theory on the branes is quiver gauge theory with a superpotential,

WSUSY =
m1

2
tr(Φ1 − a1)

2 +
m2

2
tr(Φ2 − a2)

2 +Q12Φ2Q21 +Q21Φ1Q12.

Using this explicit Lagrangian and technology developed in [15,16,22,23], we can compute the

non-perturbative effect from perturbative Feynman diagram computations. In fact, explicit

formulae for F0,0, F0,1 and F0,2 have been perturbatively computed by this method.
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