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Three mechanisms for power laws on the Cayley tree
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We compare preferential growth, critical phase transitions, and highly optimized tolerance (HOT) as mecha-
nisms for generating power laws in the familiar and analytically tractable context of lattice percolation and
forest fire models on the Cayley tree. All three mechanisms have been widely discussed in the context of
complexity in natural and technological systems. This parallel study enables direct comparison of the mecha-
nisms and associated lattice solutions. Criticality fits most naturally into the category of random processes,
where power laws are a consequence of fluctuations in an ensemble with no intrinsic scale. The power laws in
preferential growth can be understood in the context of competing exponential growth and decay processes.
HOT generalizes this functional mechanism involving exponentials of exponentials to a broader class of
nonexponential functions, which arise from optimization.
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I. INTRODUCTION

Power laws in cumulative event frequency P(=s) vs size
s, P(=s)~s79, arise commonly in observed data for a wide
range of phenomena including natural, social, and techno-
logical disasters [1,2]. Power law statistics also arise fre-
quently in models, and are often cited as evidence supporting
different mechanisms for complexity. These include (i) criti-
cality [3,4] and self-organized criticality (SOC) [5,6], (ii)
preferential growth [7-9] and preferential attachment
[10-12], and (iii) highly optimized tolerance (HOT) [13-21].
All three of these mechanisms have been discussed recently,
and in most cases separately, in the context of a variety of
different applications where power laws are observed, in-
cluding biology [7], ecology [22-24], and the Internet [25].
From a purely mathematical point of view, power laws have
strong statistical invariance properties, and are seen to arise
from a variety of functional mechanisms (see Appendix A).
Thus their ubiquity is not surprising. Power laws alone are
not conclusive evidence for any particular mechanism. This
mandates a more detailed, parallel examination of the as-
sumptions that underly different mechanisms, and the corre-
sponding mathematical solutions that lead to power laws, in
order to draw distinctions between the mechanisms.

It is the purpose of this paper to illustrate the origins of
the power laws in criticality, preferential growth, and HOT in
the context of a single, analytically tractable lattice model:
static site percolation on a Cayley tree. The Cayley tree (Sec.
II) is a lattice that branches from a central site, but contains
no loops. In percolation and forest fire models the branching
nodes are sites, which can be occupied (trees) or vacant (fire
breaks). The Cayley tree is a useful template for parallel,
mathematical studies because analytical calculations are rela-
tively straightforward. Presenting the mechanisms in a uni-
fied format concretely illustrates the intrinsic differences be-
tween the assumptions made in the different models, and
highlights the consequences in terms of lattice configurations
and event size statistics.
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In statistical physics, it is well known that the size distri-
bution of connected clusters of occupied sites for randomly
generated lattice configurations exhibits a power law if and
only if the density of occupied sites takes a specific critical
value [26]. However, another mechanism for power laws on
Cayley trees occurs for random lattices over a wide range of
densities above the critical point in the boundary sizes at
large lattice radii of the connected clusters. This can be
viewed as a special case of preferential growth, an early
model for bacteria population growth subject to mutations.
HOT also produces power laws at high densities, but in non-
random lattices as the result of optimization. HOT incorpo-
rates deliberate design or evolution in a manner that is mo-
tivated by engineering or biology. Unlike the other
mechanisms, HOT configurations correspond to a set of mea-
sure zero in the ensemble of all possible configurations at a
given density, and reflect robustness tradeoffs associated
with a spectrum of external perturbations.

The remainder of this paper is organized as follows. In
Sec. II we describe the Cayley tree and the Bethe lattice,
which is an infinite Cayley tree defined in a manner that
excludes boundary sites. (The Bethe lattice is used in the
analytical calculations for percolation.) The lattice is a natu-
ral template for models of bacterial growth, because the
branching structure can be associated with temporal evolu-
tion of the population through clonal reproduction. Alterna-
tively, it has a natural interpretation as a quasi-infinite-
dimensional spatial lattice in the context of criticality and
HOT. In Secs. III-V we define and solve each of the
models—preferential growth, criticality, and HOT—on the
Cayley tree (Bethe lattice), with special attention to lattice
configurations and derivations of the power laws. Preferen-
tial growth and criticality are described by essentially iden-
tical models (in both cases the system is described by the
ensemble of configuration in which sites are occupied ran-
domly), but exhibit power laws at different densities. HOT
corresponds to a particular (optimized) high density configu-
ration. In Sec. VI we compare the models directly in terms of
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FIG. 1. A Cayley tree with Z=3, and seven “levels.”

their scaling properties, spatial correlations, and robustness.
We conclude in Sec. VII with a discussion of the models in
the broader context of statistical and functional mechanisms
for power laws. On the Cayley tree, both preferential growth
and HOT (for an exponential distribution of disturbances) are
examples in which power laws arise from competition be-
tween exponential growth, and exponential decay, a simple
and versatile functional mechanism for generating power
laws [33]. When the HOT model is solved numerically for
different (nonexponential) disturbance patterns, the “expo-
nentials of exponentials” mechanism appears to generalize to
a broader class of nonexponential functions.

II. THE CAYLEY TREE

A Cayley tree with coordination number Z, is a branching
graph where each node (unless it is on the edge) is connected
to Z nodes with no loops. Figure 1 illustrates an example for
Z=3, with seven levels branching from a central site.

A Bethe lattice is an infinite Cayley tree. The thermody-
namic (infinite) limit is taken in a manner which eliminates
the boundary effects, which are substantial, because the
boundary corresponds to finite fraction of the Cayley tree
(see below). In this paper, the Bethe lattice is used for ana-
lytical calculations associated with the percolation phase
transition, a property associated with the interior, or bulk, of
the lattice. All other calculations and all numerical results are
performed on the Cayley tree.

A Bethe lattice is constructed by first considering an inte-
rior section far from the edge, of a large (but finite) Cayley
tree. The thermodynamic limit is defined taking both the
boundary of the Cayley tree and the interior section to infin-
ity, so that the Cayley tree boundary goes to infinity much
faster than the edge of the interior section. In this way, edge
effects are formally eliminated for calculations on the Bethe
lattice.
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The branching structure of the Cayley tree (Bethe lattice)
can be viewed as a discrete temporal evolution, as in prefer-
ential growth, or as a graph representing spatial connectivity,
as in criticality and HOT. In the spatial case, the absence of
loops in the Cayley tree (Bethe lattice) leads to solutions that
are formally analogous to those obtained in infinite dimen-
sions.

Imagine embedding a Bethe Ilattice in, say, a
d-dimensional hypercubic lattice. This can only be done in
the limit d— 0, because of the absence of loops. On an or-
dinary finite-dimensional lattice, loops become less impor-
tant as dimension increases; and statistically cease to contrib-
ute in the limit of infinite dimensions. Due to the infinite-
dimensional character of the Bethe lattice, mean field theory
is exact. For this reason, the Bethe lattice is considered a
standard template for mean field calculations. Furthermore,
in many cases the absence of loops makes calculations on the
Cayley tree or Bethe lattice tractable.

The analogy with infinite dimensions also arises in scaling
relations between the (d—1)-dimensional surface area (A)
and d-dimensional volume (V) of compact clusters, of char-
acteristic length L on the lattice. To see this first consider a
hypercubic lattice of length L on each side. The surface area
of a hypercubic lattice, Ay, scales as

Ay~ L, (1)
and the volume Vj scales as
Vy~ L% (2)
Eliminating the L dependence leads to
Ay VD ®)

Next, consider a Cayley tree with N levels extending out
from a central site (the “origin”). The corresponding
asymptotic relationships (for large N) for surface area A and
volume V- are

Ac~Z(z-D)"! (4)
and
Ve~ 2Z(Z-1)N. (3)
Hence, for the Cayley tree
Ac~ VI ©)
In the limit N— oo, surface area scales linearly with volume:
AclVe~(Z-2)1(Z-1), i.e., asymptotically A, scales lin-
early with V- on the Cayley tree, which matches the previous
result for the hypercubic lattice [Eq. (3)] in the limit d — oe.
Note that this also implies that in the limit of large lattices,

the boundary sites comprise a fraction (Z—2)/(Z-1) of the
total sites on the Cayley tree.

III. PREFERENTIAL GROWTH

Preferential growth is an early and well established quan-
titative model for population growth in biology [7,22]. It is
motivated by clonal cell division in bacterial populations.
Each new generation consists of clones of the previous, par-

056120-2



THREE MECHANISMS FOR POWER LAWS ON THE...

FIG. 2. Preferential growth with Z=3 and six levels or genera-
tions, and p=0.75. Empty circles are mutants, and filled circles are
unmutated clone descendants. At the end, the largest strain size is 7
(the original strain).

ent generation, subject to a small possibility of random mu-
tation (when a mutation occurs, we say it produces a new
strain). Here preferential growth refers to the fact that large
strains (i.e., strains that have a large population) in a given
generation preferentially tend to flourish, and thus remain a
large strain in the next generation. This is a similar mecha-
nism (though not mathematically identical) to the preferen-
tial attachment mechanism which has received a great deal of
attention recently, and which leads to the so called scale-free
networks [11,27-32]. In preferential attachment, networks
are grown in a manner that favors links between new nodes
and sites which already have high connectivity (i.e., node
degree) in the network. The resulting network exhibits power
law distributions in the number of links entering and/or ex-
iting a given node, but is different from the models studied
here on the Cayley tree, because preferential attachment gen-
erates networks with loops.

Preferential growth leads to power laws in the size distri-
bution of living strain sizes [33]. While originally studied in
the context of continuous ordinary differential equations
(ODE’s) by Mandelbrot and others [7], here we define the
model on a single branch of the Cayley tree. The Cayley tree
is in fact a convenient and natural template for the model. On
the Cayley tree each node is viewed as a single organism.
This avoids issues associated with fractional cell counts,
which inevitably arise in the ODE formulation. The forward
branching structure of the Cayley tree is analogous to cell
division, corresponding to discrete time steps, separating
each offspring from the previous parent generation. Figure 2
can be viewed as a “family tree” tracing the lineage of a
single parent cell, which is created at time, or generation, ¢
=0. The boundary sites on the bottom represent the living
cells in the current generation, r=5. Absent from this model
are effects associated with limited resources, spatial con-
straints, and fluctuations in growth and reproduction times.
Thus the preferential growth model presented here is a primi-
tive model of bacterial growth, which has the primary advan-
tage of capturing a mechanism for power laws within a
framework involving minimal input ingredients.

Evolution of the population is defined on the Cayley tree
as follows. We begin with a single parent cell at time =0,
corresponding to a node on the lattice. The colony grows in
increments, marked by integer values of ¢, corresponding to
each subsequent generation of offspring. At time 7, a new

PHYSICAL REVIEW E 72, 056120 (2005)

generation is created, consisting of (Z—1) offspring from
each parent cell which existed at time (z—1). With probabil-
ity p a given offspring is an exact clone of the parent cell.
With probability (1—p) a given offspring is a mutant. Mu-
tants are always considered to be different from any other
cell type that is present in the colony, and thus each mutation
starts a new strain of cell types in the colony.

This process is represented graphically in Fig. 2. The
color coding is defined so that white nodes correspond to
mutants, and colored nodes correspond to identical clones.
Different colors correspond to different strains, arising from
distinct mutation events. Identical colors represent geneti-
cally identical offspring that are part of the same strain,
which all arise through clonal reproduction from a common
parent. For example, the initial parent cell at r=0 is white,
and thus corresponds to a new mutation. (We can think of
this tree as a branch pruned from some larger lattice.) The
two offspring that arise at =1 are both identical clones of
the parent cell, and are colored black. At r=2 three of the
four offspring are also identical clones of the parent cells,
and are thus also colored black. However, one of the cells is
a mutant, colored white, which generates a new strain in the
population. In the next generation (1=3) we see that off-
spring of this new cell type will be colored dark gray, to
distinguish them from the black colored offspring of the
original parent cell. The process continues in this manner. At
a given time ¢ the size distribution of living strains is deter-
mined by counting the number of cells that have the same
color (and thus can be traced back through the lineage to a
common mutant parent cell), with the exception of the white
colored cells, which are all new mutants, and thus distinct. At
t=5 in Fig. 2 the largest strain is the one colored black
(which contains seven total clones), which is descended from
the original parent cell at #=0. The smallest strains each have
only one cell, corresponding to new mutants (there are ten of
these).

As long as the probability p that an offspring cell is iden-
tical to the parent cell is large, most strain sizes grow expo-
nentially with time. What is large enough? As we will see
shortly, this system is closely connected to percolation,
where time ¢ is replaced by a radial spatial index marking the
distance from the origin (the original parent cell in preferen-
tial growth), exact clones (probability p) correspond to occu-
pied sites (with no special distinction associated with differ-
ent colors), and mutants [probability (1—p)] correspond to
vacant sites. In fact, this gives an exact mapping between
preferential growth and percolation. It is simply the quanti-
ties of interest that change. Percolation has a critical density,
marking the onset of finite probability that the origin is con-
nected to the boundary in the limit of infinite lattice size, and
the average size of connected clusters diverges. Returning to
the case of preferential growth, “large enough” for exponen-
tial growth of most strain sizes corresponds to p being large
compared to that critical point in percolation, which is given
by p.=1/(Z-1).

In preferential growth, the quantity of interest is the prob-
ability P(=s) that the size of a randomly selected strain is at
least s [i.e., selecting a strain at random from those which
exist after a long time, P(=s) is the probability there are at
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least s identical clones in that strain]. If p is sufficiently large
compared to the percolation critical point p,, P(=s) is a
power law. We show this using a simple heuristic argument.

Define the generation of the original node to be t=0. Then
at generation 7, there are (Z—1)" total nodes. On average (1
—p)(Z—1)" of these nodes will correspond to mutations rela-
tive to the corresponding parent node. Therefore, after ¢ gen-
erations, the probability P;, (subscript b denotes “born”) that
a given strain was created at generation ¢, is given by

Py(t) = t(l—p)(Z—l)’b .

> (U-p(z-1y
J=1

)

In fact, we are more interested in the probability that a strain
was created at or before 7, as we want the cumulative prob-
ability distributions (and as we show below, earlier creation
times correspond to larger sizes). Thus, the probability that
the strain was created at or before 7, is

> (1-p)(Z-1)
Py<ty) ="t (8)

> (1-p(z-1y
j=1

Computing the sums, this becomes

(Z-1)r-1

Py(<t,) = m

)

Next assume that the strain arising from a new mutation
grows deterministically once it is created (this is an approxi-
mation, which we test and verify numerically below). With
each successive generation, the expected (i.e., average) value
of the number of identical clones grows like

s(t.1,) =5t = 1,4,)(Z - 1)p, (10)

so given that each strain starts with size 1 when ¢=t,, we
have

s(t.ty) =[(Z-1)p] ™. (11)

For Eq. (11) to describe growth, (Z—1)p must be greater than
unity (p>p.). In the case where p<p,, strains do occasion-
ally grow, but this is due to stochastic deviations from the
mean (shrinking) behavior. In that case, this argument breaks
down and a power law is not observed.

As stated earlier, here we see smaller #, corresponds to
larger size. Furthermore, we can invert Eq. (11) to obtain the
time of creation,

Ins

tb(s,t) =t- m

(12)

From this we obtain the finite-time distribution of strain sizes
P(=s,0)=Py(<1,(s,1)):
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(Z _ 1)rs—[ln(Z—l)]/ln[(Z—l)p] -1

P(=s,1) = Z-1 -1 . (13)

In the limit z— o the ¢ dependence in Eq. (13) drops out,
yielding the strain size distribution after an infinite time,

P(=s) =5 (14)

which is a power law. The exponent a=[In(Z-1)]/In[(Z
—1)p], which depends on the forward branching ratio (Z
—1) (i.e., number of offspring per parent cell) as well as the
probability p that the offspring will be identical to the parent.
For a given value of Z, the power law becomes steeper as p
decreases from near unity towards the critical point. This
reflects the fact that for smaller rates of mutation (larger p)
large population sizes of a given strain are more likely.
Whereas, when mutation rates are larger (p is smaller) the
probability of a large population of a given strain is smaller.
When p=p,, this argument breaks down because the strains
are no longer growing, and a power law is no longer ob-
served.

Mathematically the mechanism that produces the power
laws is associated with competing exponential growth and
decay processes. Because the overall size of the population
as a whole (all strains) grows exponentially with generation,
the probability a given strain originates in generation f,
grows exponentially as well, i.e., P(z,) [Eq. (9)] grows ex-
ponentially in 7,. However, the number of offspring s in the
current generation which results from a mutation in genera-
tion 1, decreases exponentially with increasing 7, reflecting
the fact that smaller strain sizes are typically associated with
more recent mutations. The competing exponential processes
produce a power law in P(=s) [Eq. (14)].

Exponentials of exponentially distributed variables com-
prise a general probabilistic mechanism leading to power law
distributions. It has been discussed by Mandelbrot both gen-
erally and in the specific context of preferential growth [33].
In Sec. V we see that HOT generates power laws in a math-
ematically similar (but more general) way. We discuss both
models in the context of this broader mathematical context in
Sec. VIL

Next we return to the approximation made in Eq. (11)
where we replaced the actual (random) growth of clone
population size with deterministic growth at the average rate.
Of course, the growth of clone populations is not really de-
terministic. Taken literally, Eq. (11) implies there is only one
possible strain size s at the current generation ¢ associated
with mutations at generation f,. In particular, since (£—1,)
increases by unity each generation, Eq. (11) implies s in-
creases by a factor of (Z—1)p each generation. This discrete
set of s values produces steps of width log;o[(Z—1)p] for the
cumulative probability P(=s) of strain sizes greater than or
equal to s, plotted on a logg-log;, graph. Here the term
“power law” describes the decay of the predicted values of
sizes (the upper right corners of the steps). This is illustrated
in the solid, piecewise constant curve in Fig. 3. It should also
be noted that while an individual strain’s size grows expo-
nentially [grows by a factor of (Z—1)p each time step, as in
Eq. (10)], it grows more slowly than the number of boundary
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FIG. 3. Preferential growth. Cumulative number of strains
P(=s) vs strain size s with Z=4 and p=0.9 (well above the critical
point). The solid lines are the deterministic analytic results, and the
X’s are the results of stochastic simulations. The predicted distri-
bution has steps because there is only one strain size per generation
(i.e., it is discrete because all strains created in a given level will
have the same size). The numerical result is not exactly a step
because fluctuations produce some variation in the sizes. In this
case, we show results for Z=4 (instead of 3) to make the “steps”
wider and easier to see.

sites of the whole lattice (which grows by a factor of Z—1
each time step). Thus in the 7— 0 limit, any individual strain
makes a negligible contribution to the total population (ex-
cept in the case p=1 where of course the whole population is
one strain, as there is no mutation).

When the assumption of deterministic growth used in the
analytical calculation is replaced by the original random pro-
cess [where mutation occurs randomly for each offspring
with probability (1—p)], we observe a range of sizes cen-
tered around the average size given in Eq. (11). These sto-
chastic effects smooth the steps. For large values of p, as
illustrated in Fig. 3, the steps are still visible, and the ana-
lytical formula for P(=s) [Eq. (13)] fits the data well. As p
decreases toward p,, the rounding in the steps increases, but
the power law predicted in Eq. (13) remains a reasonably
good fit.

At and below the critical point, the growth of the strains
can no longer be approximated by the deterministic growth
we described (below p, the strain sizes tend to shrink rather
than grow). Instead, the only way that a strain achieves a size
greater than unity is through transient fluctuations. The aver-
age behavior of all strains is to decrease in size and eventu-
ally die. A reasonably good fit to the size distribution can be
obtained by assuming that all the surviving strains were cre-
ated in the last few generations, and calculating the probabil-
ity that they would have achieved a certain size. There is no
power law below the critical point. Instead the distribution
has a roughly exponentially cutoff beyond some characteris-
tic size. This characteristic strain size decreases with de-
creasing p. This can be seen numerically in Fig. 4.
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Log, (P =s)

s

FIG. 4. Preferential growth. Cumulative number of strains
P(=s5) vs strain size s with Z=3 and p=0.5 (at the critical point) for
X’s, and p=0.25 (below critical point) for the circles. Best fit lines
are included in the log-linear plot to illustrate that the graphs are not
power laws, and are in fact closer to exponential distributions. Note
the difference in scale compared to Fig. 3.

IV. PERCOLATION

Percolation is among the simplest, most analytically trac-
table models in statistical physics that exhibits a critical
phase transition [26]. In site percolation sites on the lattice
are independently occupied with probability p and vacant
with probability (1-p). Thus p corresponds to the density of
occupied sites. The critical density p,.. is defined by the onset
of long range connectivity of occupied sites. That is, p, is the
density marking the onset of nonzero probability that a cho-
sen site in the interior of the lattice (the origin) is connected
via a continuous path of occupied sites to the boundary, in
the limit of infinite lattice size. The model can be solved
exactly in d=1, and on the Bethe lattice, and many quantities
are known exactly in the d=2 case. In this section we show
the exact solution on the Bethe lattice, for completeness (and
because it has been difficult to find some details of the cal-
culations in the literature).

Criticality in percolation is closely related to the self-
organized critical forest fire models [34,35]. Such models
include rules that ultimately govern evolution of p through
specified rates for occupying vacant sites (growing “trees”),
introducing sparks which ignite trees, and propagating fires
through connected clusters (which are then converted to va-
cancies). In the forest fire models, the lattice evolves to a
critical density and the statistics of burned clusters are de-
scribed by power laws. Here we discuss static percolation
rather than the dynamic SOC models, and consider cluster
size distributions as well as fire size distributions. In this case
fire sizes are generated over the ensemble of static configu-
rations rather than a dynamical algorithm.

Percolation configurations are generated using the same
algorithm we used to generate preferential growth configu-
rations in Sec. III. However, for percolation the interpretation
of the lattice structure is spatial, rather than temporal, and we
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are primarily interested in connected clusters in the interior
of the lattice (the Bethe lattice, defined in Sec. II), rather than
the boundary sites with a common ancestor on the Cayley
tree.

In percolation, a connected cluster is defined to be a set of
nearest neighbor connected occupied sites, surrounded com-
pletely by vacant sites at the perimeter. Strictly speaking, a
given cluster is said to be “percolating” if it is infinite on an
infinite Bethe lattice, as defined in Sec. II. On a large finite
lattice, we will use the terminology “percolating clusters” to
describe properties of a finite lattice as if it were embedded
within an infinite lattice. We refer to any cluster on the finite
lattice that comprises a subset of a percolating cluster on the
infinite lattice as “percolating.” In finite dimensions there is
either one (above p,) or zero (below p,) percolating clusters
on an infinite lattice. However, on a Bethe lattice, the ab-
sence of loops gives rise to many infinite clusters for densi-
ties above p,.

In fact, boundary sites of these percolating clusters on a
Cayley tree make up the populations of larger strains in pref-
erential growth above the critical point. The large strains
almost surely continue to grow without bound and therefore
clearly result in an infinite cluster (on an infinite lattice). On
the other hand, the probability that an infinite cluster will
maintain a bounded strain size goes to zero as the lattice size
goes to infinity.

The probability that a randomly chosen site is both occu-
pied and part of an infinite cluster defines the percolation
order parameter P, (p). This can be calculated on the Bethe
lattice using a recursion relation for the probability that the
origin is in a finite cluster P/(p), and noting that P.(p)=p
—P/(p). A given cluster is finite if and only if it has at least
one occupied site, and all its sub-branches are finite:

2z
Pip)=p> (n )p"(l - PP (p), (15)
n=0

where Py,(p) is the probability that the sub-branch is finite.
Here a sub-branch is defined to be a connected subcompo-
nent of the original cluster, and thus share a common con-
nection to the remainder of the cluster.

Computing the sum in Eq. (15) yields

Pp)=p(1 - p+pPp)”. (16)

Similarly, a sub-branch is finite if and only if its sub-
branches are finite,

Z1y,
Pylp) =2 (n )p”(l - )P (p), (17)
n=0
which yields the implicit equation for Pg,(p):
Ppy(p)=(1=p+p X Py)*". (18)

This equation can be solved numerically to obtain P,(p) for
an arbitrary given value of p. Notice that the right side of Eq.
(16) is just p times the right side of Eq. (18) raised to the
Z/(Z-1) power. Using this, we obtain
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0 0.2 0.4
P

FIG. 5. Graph of the probability a cluster is infinite, P, Vs
density (p) for Z=3. Note the jump in the first derivative at p
=1/2.

Py{p) = pP{ "V, (19)
Since P..=p—P/p), we have
P.=p(1- P "%, (20)

Thus one can numerically solve Eq. (18) and substitute into
Eq. (20) to find the value of the order parameter for all p.
Below p=p., P.(p) is zero, but it has a jump in its first
derivative at p,., and monotonically increases after that point.
Figure 5 shows an example plot of P, vs p.

In statistical physics, a special significance of the critical
density p, is the emergence of power laws in the distribution
of cluster sizes. In fact, for configurations generated ran-
domly at fixed density, p,. is the only density which leads to
power laws in the cluster size distribution in the interior of
the lattice. The strain sizes are measured at the boundary of
the Cayley tree, and occur over a range of densities (from p,
to unity), with a power law exponent « which decreases
monotonically across this range. Together these calculations
illustrate how power laws may arise in what is essentially the
same model, but at different densities, in different quantities,
and by different mechanisms. The goal of the remainder of
this section is to calculate P(=s), the probability that a ran-
domly selected cluster has size greater than or equal to s, and
compare the result with the distribution of strain sizes from
the previous section on preferential growth.

On any lattice with filling probability p, the probability
¢(s) that a given site is occupied and in a cluster of size s is
defined to be:

b(s) = 2 sgup'(1-p)* 21
k

where the sum runs over the cluster perimeter, indexed by k,
consisting of unoccupied sites. Here g is referred to as the
“animal” number—the number of distinct clusters (up to
translation) with fixed s and k (note that the extra factor of s
is required because g, only describes the shape of the clus-
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ter, and the given site could be in any of the s nodes of the
cluster). On the Bethe lattice, a cluster with a given size
always has the same number of sites composing the perim-
eter, k=(Z-2)s+2, so gu=g, and

B(s) = sg,p(1 = p)“+2, (22)

The noncumulative P(s) (i.e., the probability that a cluster
is of size s) can be related to the probability a given occupied
site is in a cluster of size s as follows. The cluster density
(also called the “cluster number” [26]) is defined to be the
number of clusters of size s per unit volume:

= @(s)ls = g,p'(1 - p)#25+2, (23)

To see that this is correct, multiply ¢(s) by V (the volume) to
get the total number of sites in clusters of size s, then divide
by s to get the total number of clusters of size s, then finally
divide by V to get the cluster density. P(s) is then simply the
normalized density:

P(s)=n/>, n;. (24)
j=1

What remains is to determine the animal numbers g, in
Eq. (21). The absence of loops on the Bethe lattice makes it
possible to calculate g, exactly. A detailed derivation of g, is
given in Appendix B. Here we simply state the result:

Z-1)s]!
P ()] (25)
[(Z-2)s+2]!s!

This formula for g, can be used to derive the cluster den-
sity n, [Eq. (23)] and thus the cluster size density P(s) [Eq.
(24)]. Using the Stirling approximation, we obtain for large s

(1-p)? ZVZ-1

-5/2 —cs
" - ¢ 2
where
(z-n*! _
c=—1In mp(l -p)“2. (27)

And since P(s)on,, we can write P(s) in the form
P(s) ~s7e™ (28)

with T=%. At p=p.=1/(Z-1), ¢=0, and if we Taylor ex-
pand c [Eq. (27)] for p near p,, we find that as p— p,, ¢ goes
to zero as ¢~ (p—p,)>. At p., P(s) is a pure power law with
exponent —7, which identifies p, as the critical density where
the average cluster size diverges, and defines the critical ex-
ponent 7= %:

P(=s)= > P(s), (29)

j=s

and since the sum of this discrete power law is well approxi-
mated by an integral, the cumulative distribution at the criti-
cal point is also a power law P(=s)~s~%, with an exponent
of a=7-1=3/2.

Next we compare the power laws for percolation to those
obtained in Sec. III for preferential growth. While preferen-
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tial growth and percolation are both described by randomly
filled or empty nodes at a fixed density, they produce differ-
ent power laws, in different quantities, and at different den-
sities. For percolation we measure the distribution of con-
nected cluster sizes on the interior of the tree, and power
laws occur with fixed exponent (independent of the coordi-
nation number), and extend across all length scales, with no
cutoffs, only at the critical density. Approaching p. from be-
low the critical density, power laws exist over a limited range
and retain the same exponent, a=3/2, up to a characteristic
size, at which the size distribution cuts off sharply (exponen-
tially). Above the critical density, there are power laws in the
finite clusters, again with the same exponent, but again over
a limited range, and percolating clusters also exist. Interest-
ingly, unlike the finite dimensional case where the percolat-
ing cluster is unique when it exists, the absence of loops on
the Bethe lattice leads to the existence of many percolating
clusters. These percolating clusters, extend to the boundary
sites on a Cayley tree, where the edge sites form the large
strains in the present generation. The distribution of sizes of
these strains is the quantity of greatest interest in preferential
growth.

Figure 6 illustrates numerical results for the cumulative
distributions of strain sizes and cluster sizes in preferential
growth and percolation, respectively. Results for Z=3, a lat-
tice with 26 levels, and a range of densities above and below
the critical density p.=1/2 are shown. We plot cumulative
results P(=s), obtained by summing the probability density
for sizes greater than or equal to size s. In (a) we show
results for the strain sizes in preferential growth. At high
densities (e.g., the results shown for p=0.85) the power law
is relatively shallow, compared to lower densities (e.g., p
=0.55), where the power law is relatively steep. As p de-
creases from near unity to p,. the slope of the corresponding
data decreases smoothly. At p, the power law ceases to exist,
although we can still measure strain sizes. In this case, the
strains are no longer associated with percolating clusters
(there are none). Instead they originate in recent generations,
and are associated with finite clusters which contact the lat-
tice boundary in percolation. Their sizes, like the cluster
sizes in percolation below p,, cut off sharply beyond a char-
acteristic size. Some strains also arise from finite clusters
above p.. However, compared to the strains associated with
percolating clusters, they are small, and do not contribute
significantly to the power laws. Of course on the Cayley tree
there is no sharp distinction in the thermodynamic sense,
because the lattice is finite. It is also of note that the power
laws in preferential growth are the result of mean behavior,
and may exist even if no randomness is present. By contrast,
the power law distribution of event sizes in percolation is the
result of stochastic deviation from mean behavior—if the
process of filling the lattice was nonrandom, clusters formed
would have a typical size, and the power law would be de-
stroyed.

Figure 6(b) illustrates the analytical results for the distri-
bution of finite cluster sizes in percolation for the same range
of densities. Note the dramatic change in scale compared to
Fig. 6(a). In this case, power laws are observed only for p
=p.. At lower densities, the same power law is observed for
small cluster sizes, but the distribution cuts off sharply at a
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FIG. 6. Distribution of sizes for preferential growth (a), perco-
lation on the Bethe lattice (b), and percolation on the Cayley tree (c)
for a lattice with Z=3 and 26 levels. Squares are slightly below
critical (p=0.45), circles are at critical (p=0.5), X’s are slightly
above critical (p=0.55), triangles are further above critical (p
=0.7), and asterisks are even higher (p=0.85).
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characteristic size which decreases with decreasing density.
At high densities (e.g., p=0.85), the finite-cluster size distri-
bution also cuts off at small sizes. In this case, a large portion
of the occupied sites are associated with infinite clusters.

In Fig. 6(c) we illustrate results for percolation for all
clusters on the Cayley tree (including both finite and perco-
lating clusters without distinction). Thus (c) illustrates the
cumulative distribution of sizes of all the clusters on the
Cayley tree, regardless of their interaction with the boundary.
At high densities (e.g., p=0.85), the percolating clusters
dominate the statistics, and our results resemble those ob-
tained for preferential growth. Note, however, that the largest
cluster sizes are somewhat larger than the largest strain sizes,
because the measure of size s in percolation includes the
interior sites as well as the boundary. For densities near p,
the percolating clusters continue to dominate the tail of the
distribution, and the distribution of sizes is a power law, with
exponent given by the strain size distribution. As the density
decreases below p,. the finite clusters dominate, and the size
distribution is described by percolation.

On the Bethe lattice, percolation exhibits power laws near
the critical point, where the percolating clusters are on the
verge of forming and the system is arguably at its most com-
plex; yet that is precisely where the power laws associated
with preferential growth on the Cayley tree cease to exist.
Another important distinction between the models is the
overall size scale associated with the clusters and strains. In
percolation, power laws are associated with finite clusters,
only at the critical point does the power law extend to the
size of the lattice, although even at criticality, the emergent
percolating clusters are fractal, and scale sublinearly with the
volume of the lattice (on the Bethe lattice, percolating clus-
ters scale sublinearly with volume provided the density is
less than 1). Note also that while the power law produced by
percolation is fixed, the exponent in preferential growth is
tunable. Other mechanisms (including HOT, as we will see)
also have tunable exponents.

V. HIGHLY OPTIMIZED TOLERANCE

Highly optimized tolerance is a mechanism for complex-
ity and power laws which incorporates a simplified notion of
robust design. HOT is motivated by advanced technological
systems and studied in that context using algorithms where
design tradeoffs are deliberately optimized [13]. It is also
motivated by biology and ecology, where algorithms based
on natural selection lead to similar states in simple models
[19,21].

HOT was initially introduced in the context of modified
percolation forest fire models [14,15,20,36]. The simplest
percolation forest fire model is obtained by adding the notion
of “sparks” and “fires” to percolation. Occupied sites corre-
spond to trees, and vacant sites correspond to fire breaks.
When a spark lands on a vacant site, nothing happens. When
a spark lands on an occupied site, a fire burns the tree on that
site, as well as all sites in the corresponding nearest neighbor
connected cluster.

These are the same clusters studied in the previous sec-
tion. However, because there are more sites in the larger
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clusters, they are more likely to be hit. As a result, the critical
exponent for the power law describing the fire size distribu-
tion at criticality differs (by unity) compared to the exponent
for the cluster size distribution. Specifically, on the Bethe
lattice, where the probability P(s) of a cluster of size s scales
as P(s)~s~7, with 7=5/2 for p=p,, and the cumulative dis-
tribution is P(=s) ~s ™! (see Sec. IV), then the probability
F(s) of a fire of size s scales as F(s) ~sP(s) ~s~™!, with
corresponding cumulative distribution F(=s)~ s~ ™2~ s,
This defines the exponent « for fires. On the Bethe lattice,
this results in the exponent a=1/2 for the cumulative distri-
bution of fires of size greater than or equal to size s at the
critical point p=p,.

Note that for this simple percolation forest fire model, the
result is largely independent of the spatial distribution of
sparks—they could always fall on the same lattice site, be
completely random, or anything in between, and it would not
change the result (one exception to this would be changing
the distribution to be very near the lattice edge versus near
the middle, as clusters near the edge tend to be somewhat
truncated). This is because the random ensemble of configu-
rations at any given density p is translationally invariant. In
the HOT version of this model, the detailed configuration on
the lattice is optimized (subject to constraints) to maximize
the number of trees remaining after a single fire, based on a
given distribution of sparks. This results in special, robust
configurations, which on average retain many more trees
than their random counterparts. However, in HOT the lattice
layout is also sensitive to the assumptions about (or history
of) sparks. If a lattice is designed for a particular distribution
of sparks, and the distribution of sparks changes or there
were errors in the assumed distribution, then the performance
of the designed lattice may deteriorate significantly. This is a
fragility which is not present in the random case. This robust,
vet fragile behavior is a key signature of the HOT mecha-
nism. We compare the results for HOT configurations with
the corresponding percolation forest fire model in Sec. VI.

To optimize the HOT lattice, we return to the Cayley tree
for two reasons. First, working on a finite lattice allows us to
work with finite quantities (e.g., cluster size s is always fi-
nite), making both analytic calculations conceptually sim-
pler, and numerical computation feasible with few approxi-
mations. Second, as we will see, loss grows sublinearly in
lattice volume (this is true for percolation and HOT on the
Cayley tree) which introduces subtleties in the thermody-
namic limit. In particular, in the limit of infinite lattice sizes,
both percolation and HOT have no macroscopic loss. None-
theless, many of the essential differences remain well illus-
trated on the Cayley tree.

To set up the optimization problem, we define a function
which reflects the performance or fitness of a configuration.
Typically, this is the fractional yield ) which is the average
density of trees remaining after a single spark hits the lattice
and burns through the corresponding connected cluster. The
average loss associated with a given configuration is com-
puted over a prespecified distribution of sparks. For the ini-
tial calculations performed in this section, we take the spark
distribution to be peaked at the center of the lattice, decaying
exponentially approaching the edge. This choice has the ad-
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FIG. 7. A typical HOT configuration for a tree with Z=3. The
empty circles are barriers.

vantage of making the calculations analytically tractable, and
illustrating the connection between the power laws which
arise from the HOT mechanism and the functional “exponen-
tials of exponentials” mechanism which arose previously in
the context of preferential growth. After that we will con-
sider other spark distributions, which also produce power
laws, and suggest a generalization of exponentials of expo-
nentials mechanism to other functional forms.

We assume the probability that the spark lands on a node
in the nth level is given by (n) ~ e *". (This choice makes
analytic solutions tractable.) Because of the radial symmetry
of the spark distribution, the lattice layout which optimizes
yield (defining the HOT configuration) consists of a series of
concentric rings of vacant nodes at particular distances from
the origin (the center node), on an otherwise fully occupied
lattice. Each pair of consecutive fire break rings (vacancies)
defines a family of connected clusters, all of equal size, be-
tween the inner and outer ring. Moving from the origin out-
ward, the cluster sizes become progressively larger, as the
probability of a spark becomes less likely. Figure 7 illustrates
a sample configuration with rings at n=1 and 4. What re-
mains is to calculate the specific positions of the concentric
fire break rings, given a particular ¢(n).

Suppose the Cayley tree has N+1 levels (labeled O to N),
where N is large. Suppose M of the levels are empty (call the
empty levels {c;}) and fill the rest. Then the net yield Y can
be written in terms of the {c;} as

— N_ o
[(Z-D)7-1] 2 2AzZ-1)=(L),  (30)

Y=1+Z
(z-2)

i=1

where the first two terms count the total number of sites in
the Cayley tree, the sum over i subtracts the vacant sites, and
the average loss (L) remains to be computed. Note: here we
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TABLE I. Probabilities and losses from sparks landing in vari-
ous annuli of a Cayley tree with M cuts. The regions are labeled by
n from 0 to M (i.e., s, is the loss in the third region) with regions 0
and M listed separately because their formulas are slightly different.
For this table, ¥(n) ~exp(—«n).

Loss
Z-1)t 1
PRSRCAt )
zZ-2
(Z_ 1)"‘/”]_611_1 -1
Sy=————————
zZ-2
_(z- 1)N-em — 1
METTL
Probability
1 _e*CIK

Py= [ = oWk

1- e_(cn-ﬁ-]_“u_] )K
K

P,=e 1 — o~ (V+Dx

ORI e New

PM: € 1- e—(N+1)K

measure Y in terms of the total number of trees after a single
spark, not the tree density Y=Y/V, i.e., we have not yet
divided by the number of sites on the lattice.

To compute the expected loss (L), define PizE,‘;";cl;rll P(n)
to be the probability of a spark landing between c; and c;,,
and s; to be the size of the clusters between c; and c¢;,;. Then
s; is the loss if a spark lands anywhere in that region, and

maximizing yield is the same as minimizing the cost function

M M
J=2, Ps;j+ >, Z(Z— 1), (31)
i=0 i=1

Table I summarizes the values of s; and P; for the exponen-
tial spark distribution, in terms of the cut positions (which
remain to be determined).

Next we determine the locations of the fire breaks, which
we can then use to determine the relationship between event
probabilities and event sizes. We set dJ/dc;=0, and take c; to
be large. After a bit of algebra, the result is

P i
¢~ <2+ m) . (32)

This allows us to relate ¢;,; to ¢; to obtain a simple expres-
sion for s; and P;,
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FIG. 8. HOT power law for Z=3 and «=0.5, with a 22 500-level
lattice. In this case the distribution is discrete. We show a line
connecting the optimized event sizes (rather than steps) to illustrate
the power law decay.

Ins; ~[k+1In(Z-1)]c;, (33)
and
In P; ~ - kc;. (34)
Therefore
InP;~ (m>ln s; (35)
and

Pi - S;K/[Kﬂn(z_l)]. (36)

Figure 8 shows a plot of event sizes produced numerically
with the calculated power law overlaid.

As in other cases, we are interested in the cumulative
distribution P(=s). In this case, the optimized values of s,
{s;} grow so quickly that the sum rapidly becomes trivial:

Pi1=exp(= ki), (37)
and using Eq. (32),
Pi+1=exp{— KCi<2+;):|, (38)
In(Z-1)
and thus
Pii= Pl‘2+K/1n(Z_1)- (39)

Successive P; values decrease so rapidly that for large i, P;
~2,=;P;. Thus, the cumulative distribution is asymptotically
the same as the noncumulative density

P(=s) ~ P(s;), (40)

where i is the largest integer so that s;<s.

These calculations show that power laws in the HOT
mechanism can arise from the functional mechanism involv-
ing exponentials of an exponentially distributed random vari-
able which arose previously in preferential growth. The like-
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slope ~ -2.9 x 1073
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FIG. 9. HOT power law produced by a spark distribution with
Y(n) ~n%% on lattice with Z=3.

lihood of a spark landing decreases exponentially with level,
but the breaks are chosen by the optimization so that loss (a
function of the randomly chosen level n) increases exponen-
tially with level. Here again we have competing exponential
growth and decay processes. Loss is the exponential of an
exponentially distributed random variable; and thus has a
power law distribution.

Furthermore, for HOT this basic functional mechanism
appears to extend beyond the specific case of exponentials of
exponentials. Indeed, a wide variety of spark distributions
(not just exponentials) on a wide variety of lattices (not just
the Cayley tree with its exponentially expanding boundary)
lead to power law statistics for the HOT configuration [37].
For example, Fig. 9 shows a power law produced by HOT
with a nonexponential spark distribution. In this case, the
probability of sparks landing on the nth level, (n) was itself
chosen to have a power law distribution:

Pn) ~n"%, (41)

In this case the distribution rounds up somewhat at smaller
sizes. The exponent a describing the tail is roughly a=3
X 1073. The reason for such a shallow slope is twofold. First,
power laws decay more slowly than exponentials, so more
events take place farther from the origin of the lattice. Sec-
ond, a very flat power law was chosen for the spark distri-
bution so as to increase the number of barriers and better
illustrate the distribution of events; however this also in-
creases the number of events far from the origin. Having
many events far from the origin makes containing them more
difficult, and thus increases the probability of large events.
More reasonable (steeper) spark distributions also result in
steeper power law event distributions but give few data
points with the computational resources we possess. Thus
such spark distributions are somewhat less useful as ex-
amples for exhibiting the asymptotic power law in the distri-
bution of event sizes.

The presence of a power law for a decaying but nonexpo-
nential distribution of sparks suggests a possible generaliza-
tion of the function exponentials of exponentials mechanism.
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Let X be a random variable with cumulative probability dis-
tribution

P(X=x)=F(x), (42)

and let the random variable Y be a monotonically increasing
function of X

Y = H(X). (43)
Formally, we can determine the distribution for Y:
P(r=y)=PHX)=y)=PX=H'(y), (44
so that
P(Y =y)=F(H (). (45)

In HOT, F(x) is the specified spark distribution and H(X)
results from optimization. Numerical results on the Cayley
tree [and on (d=1,2)-dimensional lattices and with a variety
of choices of ] suggest that through optimization, HOT
picks an H(X) that will produce a power law for P(Y =y). Of
course, this is not always possible. Two simple examples
where HOT cannot produce power laws are the following.

(1) F(x) constrained to a region of the lattice near the
origin (a & function or step function). Clearly there is no
H(X) so that F(H™'(y)) is a power law. When fires are nearly
always ignited from a particular site or within a constrained
region, optimal solutions simply isolate the region or fill it
with vacancies. HOT optimization then essentially focuses
resources on only one ignition site or local region, and hence
no power law will be observed.

(2) F(x) ~ 1 =x/x,,,,, which arises in the case of a uniform
probability density (i.e., all ignition sites equally likely).
Again, there is no H(X) that can create a power law. Al-
though there may be many different possible events, they are
all equally likely, and hence optimization will assign each
exactly the same loss. Thus there is only one event size.

However, our numerical results for exponential, power
law, and other spark distributions, which peak at the origin,
and decay approaching the boundary of the Cayley tree, sug-
gest that optimization for yield Y often leads to power laws
in the distribution of events. While this is not a proof, it
suggests that the HOT optimization process may pick a par-
ticular H for a given F in a manner which leads to power
laws. In the exponential case described above, F(x)~e™**
and H(x)~[In(Z-1)+«]x producing the power law for
P(Y=y), which is the familiar exponentials of exponentials
mechanism. We expect the more general mechanism in Eq.
(45) occurs when F(x) is not an exponential.

VI. COMPARISON OF HOT AND RANDOMLY FILLED
LATTICES

How do the specialized HOT configurations compare with
the randomly generated configurations at fixed density which
describe percolation and preferential growth? Clearly HOT
configurations are highly specialized, with a high density of
vacancies (fire breaks) in regions where sparks are common,
and low densities in regions where sparks are rare. Compared
to the other models, where all configurations at a given den-
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FIG. 10. Graph of fractional yield vs density for percolation on
lattices with Z=3 and «=1. The percolation data are for lattices
with six (X’s), 14 (circles), and 20 levels (dots). HOT data are
represented with diamonds. The 14- and 20-level HOT lattices are
both essentially at Y=p=1, the six-level HOT lattice is at slightly
lower Y and p. The critical point is at a density of p=1/2. Note that
the axes extend slightly beyond Y=1 and p=1 for clarity.

sity are a priori equally likely, HOT configurations are rare
and specialized, and extremely sensitive to changes in the
distribution of sparks.

In order to make a quantitative comparison of the perfor-
mance of the models, it is useful to consider random lattices
subject to sparks, and compute the yield in a manner analo-
gous to HOT. This defines a percolation forest fire model,
where yield can be calculated as a function of density. For a
given lattice and a particular spark, fractional yield ) is the
fraction of occupied sites which remain after the spark lands
on the lattice and burns through the corresponding connected
cluster. The average yield is computed by averaging over the
distribution of sparks and the ensemble of random lattices at
a given density. The results are shown in Fig. 10.

For the random lattices at low densities, most of the clus-
ters are small (the average cluster size scales sublinearly with
the system size), and the loss is insignificant. Thus fractional
yield is essentially equal to the average density in this re-
gime. Percolating clusters which span the system size first
emerge at the percolation critical point. For finite-
dimensional lattices, this also defines the maximum yield
point for random configurations (this is not the case for the
Bethe lattice), and yield is simply related to the percolation
order parameter P.(p) (Fig. 5), which is the probability a
given site is in the percolating cluster (which is unique):

Vp) =[1=P.(p)lp+ P(p)lp - P(p)]. (46)

At the critical density (in finite dimensions) the percolating
cluster is a fractal. When a spark lands on the percolating
cluster it results in a fire which spans the system, but with no
net loss in tree density in the forest. Above the critical den-
sity, the percolating cluster comprises a finite fraction of the
total density.
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This is not the case for the Bethe lattice. Unlike finite-
dimensional lattices, the Bethe lattice has no closed loops.
Above the critical density for percolation, this results in not
one (as in finite dimensions) but many percolating clusters.
None of these clusters contains a finite fraction of the mass
of the lattice.

To see this, consider a Cayley tree with n levels, and
increase n in steps. As we saw in Sec. III on preferential
growth, on the Cayley tree above the critical point, typical
strains grow like

s() ~[p(Z-D]". (47)

Strains are the boundaries of percolating clusters, hence on
average clusters grow at the same rate. However, the number
of nodes in the whole lattice grows like

N(@) ~(Z-1)". (48)

Thus, the fraction of the lattice occupied by any particular
percolating cluster decays as

st _[pz-1r _ o)
N@  (Z-1)"

Note that the fraction of sites that are in percolating clusters
remains constant [see Eq. (20)] but the fraction of sites that
are in one particular percolating cluster approaches zero as n
goes to infinity. Percolating clusters on the Bethe lattice and
Cayley tree do not inevitably merge, as they do in finite
dimensions, because of the lack of loops.

This is reflected in the fact that the fractional yield for
random lattices in Fig. 10 does not show a significant drop
off or decrease at the critical density p.=1/2. On a finite-
dimensional lattice, above the critical point there is a non-
zero chance of macroscopic loss when a spark hits the per-
colating cluster. On the Bethe lattice, even if a percolating
cluster is hit, the resulting loss is infinitesimal in the limit of
infinite lattice sizes. Thus the observed drop off in yield in
Fig. 10 is a consequence of the finite size of the lattice, and
in the limit of infinite lattice sizes, the maximum fractional
yield approaches the limiting value of unity.

Nonetheless, for finite-sized lattices, at very high densities
the yield does drop off. The yields from percolation and
HOT are compared in Fig. 10. For HOT, the fractional yield
is essentially unity (note the slight offset in the boundary of
the figure—results for lattice sizes 14 and 20 are both essen-
tially at Y=p=1), which is the same as in the finite-
dimensional case. In both cases, high density configurations
are achieved, with minimal losses due to optimal placement
of fire breaks. On finite-dimensional lattices, the fire breaks
consist of (d—1)-dimensional perimeters surrounding com-
pact, contiguous, modular clusters that scale with the
d-dimensional volume.

How does HOT achieve optimality? The HOT system
places its largest clusters near the edge—where there are the
most clusters, and where they are least likely to be sparked.
Thus the typical cluster size is nearly as large as the maxi-
mum cluster size, yet the typical event size is much smaller.
The sparks predominantly land near the center of the lattice,
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TABLE II. Characteristics of the three mechanisms: preferential growth, criticality, and HOT.

Preferential growth Criticality HOT
Configuration Random Random Optimized
Connectivity Time Space Space
Correlations Random Scale-free Modular
Power laws Strains Clusters Fires
At densities p.<p<l Pe p=1
Exponent Variable Fixed Variable
Sensitivity Low Low High
Functional Deterministic or stochastic Intrinsically stochastic Deterministic or stochastic
origin (growth vs decay) (fluctuations) (optimization)

on smaller clusters. Relatively few nodes are empty, so the
system is close to a density of one and a fractional yield of
one.

The HOT optimality comes with a price: potentially ex-
treme sensitivity to the distribution of sparks. The yield from
percolation will not change substantially if the parameter «
changes, or even if the general shape of the distribution ¢(n)
is changed (say, to make all the sparks land near the outside
edge). However, the spacing of the barriers in HOT depends
sensitively on the parameters of the spark distribution. If the
distribution was changed to make the sparks land near the
edge, the HOT scheme would be completely foiled. This is a
common theme with HOT systems: robustness to designed-
for uncertainty increases fragility to rare events, and changes
in the disturbance pattern.

VII. CONCLUSIONS

In this paper, we examine three mechanisms for power
laws in parallel using one lattice model: a Cayley tree with
nodes that are filled or empty. The Cayley tree allows us to
consider the models in a unified format, where concepts and
calculations are (relatively) straightforward. Additionally,
presenting the mechanisms in parallel emphasizes the intrin-
sic similarities and differences. In this paper, we primarily
show plots for coordination number Z=3 to aid in compari-
sons; however, most of the derived equations generalize to
arbitrary Z. HOT arises when the lattice is deliberately opti-
mized for high yields, which leads to a specific, nongeneric,
modular lattice layout, which has high performance, but is
also sensitive to any change in the details of the optimization
problem which it is designed to solve (e.g., the particular
spark distribution). Percolation and preferential growth are
both defined using random lattices, so their properties and
statistics are representative of generic ensembles of lattices at
a given density. As a result they are much less sensitive to
changes in model details, but they are also far from optimal
in the context of almost any optimization problem. The dif-
ference between percolation and preferential growth lies not
in the specific configurations which are studied, but rather in
the quantities examined and the interpretation of the lattice
geometry in terms of space vs time. A summary of these and
other distinguishing characteristics is given in Table II.

Of course, there are many purely statistical mechanisms
that robustly produce power laws (see Appendix A). The
discovery in data of high variability or scaling by itself is not
a priori suggestive of or a signature for any particular
mechanism. As a result, it is important to understand the full
range of mechanisms that may be responsible for high versus
low variability in real data, or the presence or absence of
length scales in real processes.

Some mechanisms predict a particular exponent « for the
power law P(=x)~x~% For example, return times of ran-
dom walks are power laws with a=1/2. Another example,
P(Y=y) for Y=1/X and nontrivial support for P(X<e¢) for
small €, gives a=1. In the cases we have considered, criti-
cality leads to a specific, fixed exponent (which in general
depends only on long wavelength features of the system,
such as lattice dimensionality, dimension of the order param-
eter, and range of interaction), while preferential growth and
HOT have variable exponents which can be tuned by varying
the density or branching ratio (preferential growth) or the
spark distribution (HOT).

By far the simplest and most versatile mechanism for gen-
erating arbitrary « is the “exponentials of exponentials” we
have discussed in the context of preferential growth and
HOT. Written abstractly as a functional mechanism, it simply
states that if Y=¢%X and P(X=x)=¢"*, then P(Y=y)=P(X
=1n(y)/a)=y""%. This need not involve probability distri-
butions but can be purely deterministic. For example, if we
have two exponential functions of a common variable, such
as x(f)=e® and y(f)=e™", then eliminating ¢ gives a power
law x=y~* with a=a/b. Given that exponential functions
and distributions are readily generated with diverse models,
such as solutions of linear differential equations, it is easy for
these elements to combine and produce a large variety of
models with power law statistics. Add to this the strong sta-
tistical invariance properties of power laws, it is then pos-
sible to incorporate stochastic elements that preserve power
laws.

One long standing and frequently used “exponentials of
exponentials” model is the preferential growth model, a vari-
ant of which we have solved here. As presented by Mandel-
brot [33], one early example of research in this area was the
work of Yule [22], who in 1925 developed power law models
to explain the observed distribution of species within plant
genera. Luria and Delbriick in 1943 developed a model and

056120-13



BROOKINGS, CARLSON, AND DOYLE

supporting mathematics for the explicit generation of scaling
relationships in the number of mutants in old bacterial popu-
lations [7]. A more general model of preferential attachment
was developed by Simon [38] in 1955 to explain the ob-
served presence of power laws within a variety of fields,
including economics (income distributions, city populations),
linguistics (word frequencies), and biology (distribution of
mutants in bacterial cultures). Substantial controversy and
attention surrounded these models in the 1950s and 1960s
[33]. A recent review of this history can also be found in
[39].

Note that in preferential growth on the Cayley tree, the
value of the exponent « in the power law is determined by
the coordination number Z of the tree, and the probability p
that the offspring is identical to the parent. The power law
arises from the competition between the exponential produc-
tion of new strains, and the exponential growth of existing
strains. Preferential growth can be defined in the context of
this exponentials of exponentials mechanism without specific
reference to the Cayley tree as follows.

Consider a cell population, in which the number of clones
in each strain is growing at a rate which depends on the
current population size, and new strains are created during
this growth process through mutation. The growth process is
defined by the following rules.

(1) An index i defines each strain, with 1 <<i<N, and N
defines the total number of strains at a given time.

(2) There is an ordered list of strain sizes {s;}.

(3) At time =0, there is a single cell, indexed as i=1 with
s;=1.

(4) In each subsequent time step, all existing strain sizes
grow, s;—s; X G, with G an integer.

(5) At the same time as the growth occurs, there is an
increase in the number of strains (representing mutation):
N—NXM, with M an integer. All new strains are initiated
with population size equal to 1, i.e., s;,=1 for N<i<MN.

As with preferential growth on the Cayley tree, this gen-
erates a process which can be described by exponentials of
exponentially distributed variables. The probability that a
randomly selected strain has a size at least s can be derived
as follows:

P(=s)=P(G"™r =35), (50)
where 1, is the time at which the strain was first created

(through mutation). Equivalently,

Ins
P(=s)=P\t,<t———|. 51
(=) <b lnG) (51)

The number created at time ¢ is M’, so

Mt—ln s/ln G
P(=s)= = — (52)
so that
P(ZS) - M—ln S/ln G - S—ln M/1n G' (53)

Since M and G are arbitrary integers, the resultant power law
has an exponent that can be tuned to any rational number.
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(To see this, consider G=27 and M =27 with p and ¢ inte-
gers.)

This abstract example shows how power law statistics can
arise simply from having an exponentially growing number
of objects, each of which is growing exponentially in size.
No further details, such as geometry, graphs, or specially
tuned rates, are necessary. These features may constrain
the specific exponent in the power law. If strains grow like
s~ G" and the number of strains grows like N~ M’ then the
strain size distribution will be a power law with exponent
a=-InM/In G. This deterministic growth process also
shows that random fluctuations are not a necessary feature to
obtain power laws. Furthermore, even completely discrete
growth can result in arbitrary power laws (obviously smooth,
continuous growth can as well).

For researchers unfamiliar with these mathematical, sta-
tistical, and data analytic issues regarding high variability in
data, the ubiquity of power laws may be unexpected. Indeed,
the discovery of such properties of complex systems and the
ability to describe them with power law type relationships or
scaling distributions has been a central theme underlying the
attempts by researchers to understand and explain complex-
ity [5,11,40]. One result is that in the 1990s, much of the
science literature on complex systems focused on models
based on critical phenomena from statistical physics [5].

Systems with phase transitions have a critical point where
some average length scale goes to infinity, giving rise to
scale free statistics and power laws. At other densities, the
statistics exhibit an exponential cut off (independent of sys-
tem size). However, at the critical point, the system looks
statistically identical on all scales. For instance in percola-
tion, if one were to look at one section of the lattice, then
“zoom out” and view a larger portion, the two would be
(statistically) indistinguishable at the critical point. This is
because at the critical point, the system has no average size
for clusters. Thus, the probability distribution of clusters
must allow for clusters of arbitrarily large size, and it must
have an infinite average size—in short, a diverging correla-
tion length and a scale-free power law. This is a generic
property of critical systems; a length scale that goes to infin-
ity at a critical point, which gives rise to scale-free power
laws. An infinite event size implies infinite variance as well,
thus fluctuations in event sizes are also large. In some sys-
tems, these fluctuations can be observed directly, for ex-
ample, through the phenomenon of critical opalescence.
Note that unlike the other two mechanisms we consider,
power laws at criticality are specifically associated with fluc-
tuations and randomness. They cannot be approximated us-
ing a deterministic, functional mechanism based on the av-
erage density of occupied sites on the lattice, which would
predict clusters all of equal size.

Critical phenomena only exhibit power laws over a nar-
row range of phase space near the critical point; but if the
length scale or order parameter is not free, but governed by
the evolution of the system, the power laws may be broadly
observable—this is called self-organized criticality [5]. A
simple example is the SOC forest fire model. “Trees” are
periodically randomly placed on a lattice, and “sparks” strike
the lattice randomly. If a spark strikes a tree, that tree and the
cluster of trees connected to it “burn” and are removed from
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the lattice. This is like percolation but with dynamics that
control the density of filled sites. In a typical SOC model
(e.g., on a finite-dimensional lattice), if the density were
above the critical point, loss would be a finite fraction of the
lattice size. So if the density were above critical, it would (on
average) decrease. Below the critical point there are no large
clusters that scale with the system volume, so loss would be
infinitesimal, and thus the density would (on average) in-
crease. Thus the system tends toward the critical density,
where the distribution of cluster sizes is a scale-free power
law. This leads the distribution of fires to be a power law as
well.

Preferential growth as a mechanism for power laws resur-
faced recently in the scientific literature in the context of
scale free networks [12]. Modifications to the original
Barabasi-Albert construction have also been proposed and
have resulted in scale free network models that reproduce
power law degree distributions with any a € [1,2], a feature
that is claimed to agree empirically with many observed net-
works [27]. In this paper, we focus on the original models of
preferential growth in branching processes such as bacterial
populations using a simple model of percolation on a Cayley
tree. Here the population is “grown” by simple branching
with some small probability of mutation into a new strain,
assumed to have the same growth rate. Then the strain sizes
are the boundary sizes at large radii of the clusters in perco-
lation. For all sufficiently small mutation rates, this distribu-
tion is scaling as the radius goes to infinity. This appears to
be a more robust mechanism for generating power laws than
criticality in the sense that it applies to a broad range of
lattice densities. Note that in this case, there is no special role
played by a diverging correlation length. While the largest
strains naturally encompass a broader span (e.g., left to right)
on the boundary, there is no special interpretation to (left vs
right) spatial position for preferential growth. The lattice can
be left out of the problem entirely [as in Egs. (50)—(53)
above, which make no reference to the relative position of
the cells].

The final mechanism we have considered that produces
power laws is HOT. A HOT system is subject to a variety of
uncertain stresses, and attempts to optimally respond to them
with limited resources. The tradeoffs from prioritizing allo-
cation of resources typically result in power law statistics. It
should be emphasized that these statistics do not result from
an absence of scale in HOT. HOT systems are scale rich.
“Zooming out” on a HOT system typically results in a very
different appearance, revealing structures which were not
visible on smaller scales. Correlations within the system are
characterized by modular structures, isolating or compart-
mentalizing the system into separate regions using efficient
barriers, which protect the system by limiting losses. These
barriers may either be physical barriers like the fire breaks in
the HOT forest fire model, or dynamical barriers (e.g.,
switches) in the state space of a system [19].

Optimality of HOT systems can sometimes be deduced by
directly observing the process or algorithm which selects the
system as a best solution to some biological or technological
design problem. However, in complicated systems it is often
difficult to determine exactly what is being optimized or
why. One result of optimization should be observable: order.
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However, unlike the traditional order associated with phase
transitions (e.g., percolation) in statistical physics, order in
HOT is perhaps more appropriately referred to as organiza-
tion, and corresponds to typically heterogeneously struc-
tured, extreme low entropy states, comprising to a set of
measure zero within the ensemble of all possible configura-
tions at a given density.

A HOT system is optimal, and therefore the best (or
nearly the best) at solving some problem. Randomly rear-
ranging a HOT configuration results in dramatic drops in
performance. This is in sharp contrast with criticality or pref-
erential growth configurations which are randomly gener-
ated. Randomly rearranging a percolation lattice results in no
change in its statistics. The only time that a percolating lat-
tice could be said to be ordered in the sense that HOT con-
figurations are ordered is in the trivial cases where it is com-
pletely full or completely empty.

This order or organization is always defined in relation-
ship to some external condition. A HOT configuration is op-
timal for a system coupled to an uncertain, perturbing envi-
ronment (here a specific spark distribution). Tradeoffs are
made in a manner that maximizes robustness for the spec-
trum of uncertainty, whether the uncertainty is directly speci-
fied, estimated, or experienced on evolutionary time scales.
As a result, the performance of a HOT system deteriorates
dramatically if the problem (e.g., rules or external condi-
tions) are changed. In this way, HOT systems are extremely
sensitive, or fragile to changes or uncertainties in model as-
sumptions. For example, the HOT forest fire model estab-
lished concentric rings around the most likely spark loca-
tions. If the distribution of sparks were to change, the yield
for that design would degrade considerably. In contrast, a
randomly filled lattice would be unaffected by such a change.

Often it is not immediately obvious which of these
mechanisms, if any, are responsible for an observed power
law. Both SOC and HOT have been proposed as explanations
of statistics in forest fires; and all have been used to model
web and Internet traffic. Both HOT and preferential growth
invoke some sort of design or evolution, which can be rep-
resented or approximated as deterministic processes, but also
allow for (somewhat) random growth. Only careful analysis
can reveal which aspects are driving observed statistics.
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APPENDIX A: STATISTICAL PROPERTIES OF POWER
LAWS

In this appendix we provide some background on the sta-
tistics of power law distributions. The interested reader is
referred to [41] for more complete discussion of their prop-
erties.
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1. Definitions of scaling or power laws

Suppose we have data with n points {x;,x,,...,x,} as-
sumed without loss of generality always to be ordered x;
=x,=-=x, We will say the data are scaling if for all 1
<ksn,<n, {x;} satisfies a power law rank vs size relation-
ship of the form

kxi =c, (A1)

where ¢>0 and «>0 are constants, and where n, deter-
mines the range of scaling [33].

Note that this description of scaling is general, in the
sense that it applies to any data without regard to how it is
generated and without reference to any underlying probabil-
ity distributions or ensembles. A random variable X or its
corresponding distribution function F(x) is said to follow a
power law (or is scaling) with index >0 if, as x— oo,

P X=x]=1-F(x) = cx™?, (A2)

for some constant 0 <c¢<<co and a tail index a>0. That is,
the cumulative probability P[X=x] of observing events
greater than a given size x is given by P[X=x]~=~cx™ % All
moments of F of order = « are infinite. Since relationship
(A2) implies In(P[X=x]) =In(c)—a In(x), log-log plots of x
versus 1—F(x) yield approximately straight lines of slope
—a, at least for large x. Well known examples of power law
distributions include the Pareto distributions of the first and
second kind [42]. In contrast, exponential distributions (i.e.,
P[X=x]=¢"™ result in approximately straight lines on semi-
logarithmic plots.

Power law distributions are called scaling distributions
because the sole response to conditioning is a change in
scale; that is, if X follows a power law with index a and x
=w, the conditional distribution of X given that X=w satis-
fies

P X=x
P[X=x|X>w]= PIX=x] X%,

PIX=w] (a3)

which—at least for large values of x—is identical to the
(unconditional) distribution P[X = x], except for a change in
scale. In contrast, the exponential distribution gives

P(X=x[X=w)=e ), (A4)
That is, the conditional distribution is also identical to the

(unconditional) distribution, except for a change of location
rather than scale.

2. More normal than “normal”

Gaussian distributions are universally viewed as “nor-
mal,” mainly due to the well known central limit theorem
(CLT). In particular, the ubiquity of Gaussians is largely at-
tributed to the fact that they are invariant and attractors under
aggregation of summands, required only to be independent
and identically distributed and have finite variance [43]. An-
other convenient aspect of Gaussians is that they are com-
pletely specified by mean and variance, and the CLT justifies
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using these statistics whenever their estimates robustly con-
verge, even when the data could not possibly be Gaussian.
For example, much data can only take positive values (e.g.,
node degrees) or have hard upper bounds but can still be
treated as Gaussian. It is understood that this approximation
would need refinement if additional statistics or tail behav-
iors are of interest. Exponential distributions have their own
set of invariance properties (e.g., conditional expectation)
that make them attractive models in some cases.

Mathematically, perhaps the key result is that the CLT has
a generalization that relaxes the finite variance (e.g., finite
CV) assumption, allows for high variability data, and yields
stable laws in the limit [41]. Stable laws are always scaling,
with 0<a <2, except for the special case of a=2 which
gives Gaussians and corresponds to the finite variance or low
variability case. From an unbiased mathematical view, the
most salient features of scaling are this and additional strong
invariance properties (e.g., to marginalization, mixtures,
maximization), and the ease with which scaling is generated
by a variety of mechanisms [33,44]. Combined with the
abundant high variability in real world data, these features
suggest that scaling distributions are in a sense more ‘“nor-
mal” than Gaussians and that they are convenient and parsi-
monious models for high variability data in as strong a sense
as Gaussians or exponentials are for low variability data.

APPENDIX B: A DERIVATION OF LATTICE ANIMAL
NUMBERS g, FOR PERCOLATION

For notational purposes define As; as follows:

As;=s—-1s,
Asy=As|—s,=5—5,— 53,
Asj=Asj_1—s;=5—5 =85~ "= 5.
Now define A, as the number of ways to make a cluster

sub-branch of size s on a Bethe lattice of coordination num-
ber Z. Then h, satisfies the recursion relation

s Asy Asz_ 3
hyi=2 20 2 hyhgrhy hy, (BI)
51=0 s,=0 57.0=0

with hg=1. Define g, as the number of ways to make a
whole cluster of size s. g; is related to i, by

s Asy Asz o
Zu=2 2 o 2 hyhyorhy hy o (B2)
51=0 5,=0 s7_1=0

Note that g, is not exactly what we want because it is not
translation invariant. For example, in calculating g,, we
counted a cluster with one sub-branch of size 2 as being
distinct from a cluster with two sub-branches of size 1. How-
ever, the only difference is that in the first case the “origin” is
on one side of the cluster, and in the second case it is in the
middle. This is easily resolved by dividing by the number of
possible origins:
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8s=8yls. (B3)

To solve these equations, define the generating functions

H(x)= 2, hx* (B4)
5=0
and
Glx) =2 g (B5)
s=0

The idea is to use the generating functions to get rid of the
sums. The resulting equations will be algebraic, and much
easier to analyze and solve. To do this, recursively make use
of the following convolution:

R -

s=0 s=0

where

o= E ag by, (B7)

In particular, note that

o 2
(E ax‘) (B8)

5s=0

has a convolved series of

2 aslas s 2 aslaAsl (Bg)

51=0 s1=0

% 3 o ©
(Eaéx“) =<Easx¥)<2cz,bx‘) (B10)
5=0 s=0 s=0

has a convolved series of

and

s s=s)
2 aSICZS s1 2 E asl As—s1-52
51=0 51=0 5,=0
s Asy
= E E ax]aszanz (Bl 1)
51=0 5,=0

etc. Using this, we can simplify Eq. (B1). First multiply Eq.
(B1) by x* and sum over s:

s Asy Asy 3
E hs+1x _E E E E hslhsz sZ zhAsZ ) x
5=0 5,=0 5,=0 57.=0
(B12)

Now notice that the right hand side is exactly the same form
as the previous convolved series, i.e.,
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s Asy Asy 5 o 7-1
.. S _ s
2 22 X hghgchy, by, X = 2k
5=0 5,=0 5,=0 57_2=0 5=0

(B13)

Remembering that hy=1, the left side is a simple scaling:

o0 1 e
Ehs+1x3=—(—1+2hrx$). (B14)
s=0 X s=0

So substituting in the definition of H(x),
1
—[H(x) - 1]=H(x)*" (B15)
X

and similarly, from Eq. (B2),
1 ~
—[G(x) - 1]= H(x)*. (B16)
X

This can be arranged into the following convenient form:

H(x)=w+x®P(H(x)), (B17)
where ®(H)=H?%" and w=1. Then
G(x)=1+xH(x)?=1+H(x)xHx)*"'.  (B18)
Substituting Eq. (B15),
Glx)=1+ H(x)x)l—C[H(x) -1]. (B19)
Thus we can write
G(x) = F(H(x)) where F(H)=1+H(H-1).
(B20)

From this, we could easily find a Taylor series for x in
powers of H(x), but we want to go the other way—we want
a Taylor series for H(x) in powers of x. Fortunately, the
Lagrange inversion theorem [45] can do even better: it pro-

vides the following Taylor series for G(x):

s—1

G(x) = F(w)+2x1 d

[D(H)F' ()] =

s=1 stdH™ !
(B21)
Since g are the coefficients of x* in G(x),
_ 1 45 1
8s= S!dHS 1 H)]|H=W' (B22)
Substituting the values of ® and F,
~ 1 d’” : (Z-1)s
8s= 'dHA r— [H X (ZH_ 1)]|H-u 1- (B23)
Using the product rule repeatedly,
1 a! 2(s—1) &7
g =—0RH-1 H(Z—l)s _ H(Z—l)s .
8s S'( )dHY 1 d §—2 |H_l
(B24)
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Taking the derivatives and substituting H=1,

2(s=1) [(Z-1Ds]!
[(Z-1)s+2]"

1 [(Zz-1)s]!
THZ-Ds+1] T o

(B25)

and a bit of algebra yields
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