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Highly optimized tolerance: A mechanism for power laws in designed systems
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We introduce a mechanism for generating power law distributions, referred to ashighly optimized tolerance
~HOT!, which is motivated by biological organisms and advanced engineering technologies. Our focus is on
systems which are optimized, either through natural selection or engineering design, to provide robust perfor-
mance despite uncertain environments. We suggest that power laws in these systems are due to tradeoffs
between yield, cost of resources, and tolerance to risks. These tradeoffs lead to highly optimized designs that
allow for occasional large events. We investigate the mechanism in the context of percolation and sand pile
models in order to emphasize the sharp contrasts between HOT and self-organized criticality~SOC!, which has
been widely suggested as the origin for power laws in complex systems. Like SOC, HOT produces power laws.
However, compared to SOC, HOT states exist for densities which are higher than the critical density, and the
power laws are not restricted to special values of the density. The characteristic features of HOT systems
include:~1! high efficiency, performance, and robustness to designed-for uncertainties;~2! hypersensitivity to
design flaws and unanticipated perturbations;~3! nongeneric, specialized, structured configurations; and~4!
power laws. The first three of these are in contrast to the traditional hallmarks of criticality, and are obtained
by simply adding the element of design to percolation and sand pile models, which completely changes their
characteristics.@S1063-651X~99!05908-5#

PACS number~s!: 05.40.2a, 64.60.Ht, 05.65.1b, 87.17.Aa
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I. INTRODUCTION

One of the most pressing scientific and technologi
challenges we currently face is to develop a more comp
and rigorous understanding of the behaviors that can be
pected of complex, interconnected systems. While in m
cases properties of individual components can be well c
acterized in a laboratory, these isolated measurements
typically of relatively little use in predicting the behavior o
large scale interconnected systems or mitigating the cas
ing spread of damage due to the seemingly innocuous br
down of individual parts. These failures are of particular co
cern due to the enormous economic, environmental, an
social costs that often accompany them. This has motiva
an increasing intellectual investment in problems which
under the general heading of complex systems.

However, what a physicist refers to as a complex sys
is typically quite different from the complex systems whi
arise in engineering or biology. The complex systems stud
in physics@1# are typically homogeneous in their underlyin
physical properties or involve an ensemble average o
quenched disorder which is featureless on macrosc
scales. Complexity is associated with the emergence of
sipative structures in driven nonequilibrium system@2#. For a
physicist, complexity is most interesting when it is not put
by hand, but rather arises as a consequence of bifurcatio
dynamical instabilities, which lead to emergent phenom
on large length scales.

This perspective is the driving force behind the conce
of self-organized criticality~SOC!, introduced by Bak and
co-workers@3,4# and the edge of chaos~EOC! introduced by
Kauffman @5#, which have been the starting point for muc
PRE 601063-651X/99/60~2!/1412~16!/$15.00
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of the interdisciplinary work on complex systems develop
at the Santa Fe Institute and elsewhere. These theories b
with the idea that many complex systems naturally reside
a boundary between order and disorder, analogous to a
furcation point separating a simple predictable state fr
fully developed chaos, or a critical point in equilibrium st
tistical physics. In these scenarios, there is a key state pa
eter, or density, which characterizes the otherwise gene
random, underlying system. In model systems, the den
evolves self-consistently and without feedback to the spec
value associated with the transition. Once at this point, la
fluctuations inevitably emerge and recede as expected in
neighborhood of a second-order transition. This gives rise
self-similarity, power laws, universality classes, and oth
familiar signatures of criticality. The widespread observ
tions of power laws in geophysical, astrophysical, biologic
engineered, and cultural systems has been widely prom
as evidence for SOC and EOC@6–13#.

However, while power laws are pervasive in complex
terconnected systems, criticality is not the only possible o
gin of power law distributions. Furthermore, there is little,
any, compelling evidence which supports other aspects
this picture. In engineering and biology, complex syste
are almost always intrinsicallycomplicated, and involve a
great deal of built in or evolved structure and redundancy
order to make them behave in a reasonably predictable f
ion in spite of uncertainties in their environment. Doma
experts in areas such as biology and epidemiology, aero
tical and automotive design, forestry and environmen
studies, the Internet, traffic, and power systems, tend to re
the concept of universality, and instead favor descriptions
which the detailed structure and external conditions are
1412 © 1999 The American Physical Society
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PRE 60 1413HIGHLY OPTIMIZED TOLERANCE: A MECHANISM . . .
factors in determining the performance and reliability
their systems. The complexity in designed systems o
leads to apparently simple, predictable, robust behavior. A
result, designed complexity becomes increasingly hidden
that its role in determining the sensitivities of the syste
tends to be underestimated by nonexperts, even those s
tifically trained.

The Internet is one example of a system which may
perficially appear to be a candidate for the self-organiz
theory of complexity, as power laws are ubiquitous in Int
net statistics@14,15#. It certainly appears as though new u
ers, applications, workstations, PC’s, servers, routers,
whole subnetworks can be added and the entire system n
rally self-organizes into a new, robust configuration. Furth
more, once on line, users act as individual agents, sen
and receiving messages according to their needs. There
centralized control, and individual computers both ad
their transmission rates to the current level of congest
and recover from network failures, all without user interve
tion or even awareness. It is thus tempting to imagine t
Internet traffic patterns can be viewed as an emergent
nomena from a collection of independent agents who ad
tively self-organize into a complex state, balanced on
edge between order and chaos, with ubiquitous power l
as the classic hallmarks of criticality.

As appealing as this picture is, it has almost nothing to
with real networks. The reality is that modern internets u
sophisticated multilayer protocols@16# to create the illusion
of a robust and self-organizing network, despite substan
uncertainty in the user-created environment as well as
network itself. It is no accident that the Internet has su
remarkable robustness properties, as the Internet prot
suite ~TCP/IP! in current use was the result of decades
research into building a nationwide computer network t
could survive deliberate attack. The high throughput and
pandability of internets depend on these highly structu
protocols, as well as the specialized hardware~servers, rout-
ers, caches, and hierarchical physical links! on which they
are implemented. Yet it is an important design objective t
this complexity be hidden.

The core of the Internet, the Internet protocol~IP!, pre-
sents a carefully crafted illusion of a simple~but possibly
unreliable! datagram delivery service to the layer abo
~typically the transmission control protocol, or TCP! by hid-
ing an enormous amount of heterogeneity behind a sim
very well engineered abstraction. The TCP in turn create
carefully crafted illusion to the applications and users o
reliable and homogeneous network. The internal details
highly structured and nongeneric, creating apparent simp
ity, exactly the opposite from SOC and EOC. Furthermo
many power law statistics of the Internet are independen
density~congestion level!, which can vary enormously, sug
gesting that criticality may not be relevant.

Interestingly and importantly, the increase in robustne
productivity, and throughput created by the enormous in
nal complexity of the Internet and other complex system
accompanied by new hypersensitivities to perturbations
system was not designed to handle. Thus while the netw
is robust to even large variations in traffic, or loss of rout
and lines, it has become extremely sensitive to bugs in
work software, underscoring the importance of software
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liability and justifying the attention given to it. The infamou
Y2K bug, though not necessarily a direct consequence
network connectivity, is nevertheless the best-known
ample of the general risks of high connectivity for high pe
formance. There are many more less well-known examp
and indeed most modern large-scale network crashes ca
traced to software problems, as can the failures of m
systems and projects~e.g., the Ariane 5 crash or the Denv
Airport baggage handling system fiasco!. We will return to
the Internet and other examples at the end of the paper.

This ‘‘robust-yet-fragile’’ feature is characteristic of com
plex systems throughout engineering and biology. If we
cept the fact that most real complex systems are highly st
tured, dominated by design, and sensitive to details, it is
to ask whether there can be any meaningful theory of co
plex systems. In other words, are there common featu
other than power laws, that the complicated systems in e
neering and biology share that we might hope to capt
using simple models and general principles? If so, what r
can physics play in the development of the theory?

In this paper we introduce an alternative mechanism
complexity and power laws in designed systems which c
tures some of the fundamental contrasts between desig
and random systems mentioned above in simple settings.
mechanism leads to~1! high yields robust to designed-fo
uncertainty,~2! hypersensitivity to design flaws and unantic
pated perturbations,~3! stylized and structured configura
tions, and~4! power law distributions. These features arise
a consequence of optimizing a design objective in the p
ence of uncertainty and specified constraints. Unlike SOC
EOC, where the external forces serve only to initiate eve
and the mechanism which gives rise to complexity is ess
tially self-contained, our mechanism takes into account
fact that designs are developed and biological syste
evolve in a manner which rewards successful strategies
ject to a specific form of external stimulus. In our case u
certainty plays the pivotal role in generating a broad dis
bution of outcomes. We somewhat whimsically refer to o
mechanism ashighly optimized tolerance~HOT!, a terminol-
ogy intended to describe systems which are designed
high performance in an uncertain environment.

The specific models we introduce are not intended as
alistic representations of designed systems. Indeed, in
cific domain applications at each level of increased mo
sophistication, we expect to encounter a new structure wh
is crucial to the robustness and predictability of the syste
Our goal is to take the first step toward more complica
structure in the context of familiar models to illustrate ho
even a small amount of design leads to significant change
the nature of an interconnected system. We hope that
basic results will open up new directions for the study
complexity and cascading failure in biological and engine
ing systems.

To describe our models, we will often use terminolo
associated with a highly simplified model of a managed f
est which is designed to maximize timber yield in the pre
ence of fire risk. Suppose that in order to attain this goal,
forester constructs firebreaks at a certain cost per unit len
surrounding regions that are expected to be most vulner
~e.g., near roads and populated areas or tops of hills wh
lightning strikes are likely!. At best, this is remotely con
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1414 PRE 60J. M. CARLSON AND JOHN DOYLE
nected to real strategies used in forestry@17,18#. Our moti-
vation for using a ‘‘forest fire’’ example is the familiarity o
similar toy models in the study of phase transitions and S
@19#.

The optimal designed toy forest contains a highly styliz
pattern of firebreaks separating high density forested regi
The regions enclosed by breaks are tailored to the exte
environment and do not resemble the fractal percolation
clusters of the forest fire model which has been studied in
context of SOC. Furthermore, there is nothing in the
signed forest resembling a critical point. Nonetheless,
relationship between the frequency and size of fires in
signed systems is typically described by a power law. In
optimized design, firebreaks are concentrated in the reg
which are expected to be most vulnerable, leaving open
possibility of large events in less probable zones.

The forest fire example illustrates the basic ingredients
the mechanism for generating power laws which we desc
in more detail below. If the trees were randomly situat
with a comparable density to that of the designed syst
any fire, once initiated, would almost surely spread throu
out the forest generating a systemwide event. Designed
figurations represent very special choices and comprise a
of measure zero within the space of all possible arran
ments at a given density. Systems are tuned to highly st
tured and efficient operating states either by deliberate
sign or evolution by natural selection. In contrast, in SO
large connected regions emerge and recede in the dyn
cally evolving statistically steady state where no feedbac
incorporated to set the relative weights of different config
rations.

In the sections that follow, we use a variety of differe
model systems and optimization schemes to illustrate p
erties of the HOT state. These include a general argumen
power laws in optimized systems based on variational m
ods ~Sec. II!, as well as numerical and analytical studies
lattice models~Secs. III–VI!. In an effort to clarify the dis-
tinctions between HOT and criticality~summarized in Sec
V!, we introduce variants of familiar models from statistic
physics~Sec. III!—percolation with sparks and the origin
sand pile model introduced by Bak, Tang, and Wiesenf
@3#. Both models are modified to incorporate elementary
sign concepts, and are optimized for yieldY in the presence
of constraints. In percolation, yield is the number of occ
pied sites which remain after a spark hits the lattice a
burns all sites in the associated connected cluster. In
designed sand piles, yield is defined to be the sand untou
by an avalanche after a single grain is added to the sys
When we introduce design, these two problems become
sentially identical, and optimizing yield leads us to constr
barriers which minimize the expected size of the event ba
on a prescribed density for the spatial dependence of
probability of triggering events. In this way we mimic eng
neering and evolutionary processes which favor designs
maximize yield in the presence of an uncertain environme
We consider both a global optimization over a constrain
subclass of configurations~Sec. IV!, as well as a local, in-
cremental algorithm which develops barriers through evo
tion ~Sec. VI!. We conclude with a summary of our result
and a discussion of a few specific applications where
believe these ideas may apply.
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II. POWER LAWS AND DESIGN

If the power laws in designed systems arise due to mec
nisms entirely unlike those in critical phenomena, then
ubiquity of power laws needs a fresh look. If engineeri
systems could be constructed in a self-similar manne
would certainly simplify the design process. However, se
similar structures seldom satisfy sophisticated design ob
tives. With the exception of distribution networks which a
inherently treelike and often fractal, hierarchies of su
systems in complex biological and engineering systems h
a self-dissimilar structure. For example, organisms, orga
cells, organelles, and macromolecules all have entirely
ferent structures@20#. The hundreds of thousands of su
systems in a modern commercial aircraft do not themse
resemble the full aircraft in form or function, nor do the
subsystems, and so on. Thus if power laws arise in biolog
and engineering systems, we would not necessarily ex
that they would be connected with self-similar structur
and our idealized designed systems in fact turn out to
self-dissimilar.

We begin our analysis with a general argument for
presence of heavy tails in the distribution of events wh
applies to a broad class of designed systems. Conside
abstractd-dimensional space denoted byX which acts as a
substrate for events in our system. This can be though
concretely as a forest, where the coordinates of the tr
firebreaks, and sparks which initiate fires are defined inX.
Alternately,X could correspond to an abstract map of inte
connected events in which a failure at one node may trig
failures at connected nodes. We assume there is some kn
edge of the spatial distribution of probabilities of initiatin
events~sparks!, and some resource~firebreaks! which can be
used to limit the size of events~fires!. There is some cost o
constraint associated with use of the resource, and an
nomic gain~i.e., increased yield! associated with limiting the
sizes of events.

We definep(x) to be the probability distribution for ini-
tiating events;xPX. Let A(x) denote the size of the regio
which experiences the event initiated atx, and let costC(x)
scale asAa(x). In general,a will be a positive number
which sets the relative weight of events of different sizes
we are simply interested in the area of the region thena
51. For cases in whichX is continuous, the expected cost
the avalanche is given by

E~Aa!5E
X
p~x!Aa~x!dx. ~1!

Let R(x) denote the resource which restricts the sizes
the events. Constraints onR(x) can take a variety of forms
Here we consider the simplest case which corresponds
limitation on the total quantity of the resource,

E
X
R~x!dx5k, ~2!

wherek is a constant. Alternatively, the constraint onR(x)
could be posed in terms of a fixed total number of regio
within X, or a cost benefit functionQ could be introduced
balancing the benefit of a small expected size@Eq. ~1!# with
the cost associated with use of the resource.
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PRE 60 1415HIGHLY OPTIMIZED TOLERANCE: A MECHANISM . . .
We will assume that the local event size is inversely
lated to the local density or cost of the resource, so t
A(x)5R2b(x), where typicallyb is positive. This relation-
ship arises naturally in systems with spatial geometry~e.g.,
in the forest fire analogy!, where ind dimensions we can
think of R(x) as being (d21)-dimensional separating barr
ers. In that caseA(x);R2d(x). In some systems the rela
tionship betweenA(x) and R(x) is difficult to define
uniquely, and in some cases reduces to a value judgem
Here our spatially motivated assumption thatA(x)
5R2b(x) is important for obtaining power law distributions
If we assume an exponential relationship between the siz
an event and its cost@e.g., A; ln(R)#, we obtain a sharp
cutoff in the distribution of events. In essence, this is beca
it becomes extremely inexpensive to restrict large events
cause the cost of resources decreases faster than the s
the event to any power. Alternately, one could define a c
function for cases in which there is a large social or ethi
premium~e.g., loss of life! associated with large events. Th
could lead to a cutoff in the distribution due to a rapid rise
the total allocation of resources to prevent large events
this case, the heavy tails would occur in the costC and not in
the event sizeA.

To obtain the HOT state we simply minimize the e
pected cost@Eq. ~1!# subject to the constraint@Eq. ~2!#. Sub-
stituting the relationshipA(x)5R2b(x) into Eq. ~1!, we ob-
tain

E~Aa!5E
X
p~x!R2ab~x!dx. ~3!

Combining this with Eq.~2!, we minimizeE(Aa) using the
variational principle by solving

dE
X
@p~x!R2ab~x!2lR~x!#dx50. ~4!

Thus the optimal relationship between the local probabi
and constrained resource is given by

p~x!R2ab21~x!5const. ~5!

From this we obtain

p~x!;Rab11~x!;A2~a11/b!~x!;A2g~x!, ~6!

where g5a11/b. This relation should be viewed as th
local rule which sets the best placements of the resource
expected, greater resources are devoted to regions of
probability.

As function ofx, Eq. ~6! shows thatp(x) andA(x) scale
as a power law. However, we want to obtain the distribut
P(A) as a function of the areaA rather than the local coor
dinatex. It is convenient to focus on cumulative distributio
Pcum(A), which is the sum ofP(A) for regions of size
greater than or equal toA. We express the tails ofPcum(A) as

Pcum~A!5E
A~x!.A

p~x!dx5E
p~x!,A2g

p~x!dx, ~7!

where the integral is evaluated over the subset ofx in which
the local valueA(x) is greater than the specified valueA.
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Under what conditions does this relationship lead
heavy tails? Certainly not allp(x) lead to power laws in
P(A) @equivalently,Pcum(A), which has power law tails if
P(A) has power law tails, with one power higher in th
exponent#. For example, ifp(x) is concentrated within a fi-
nite region, then the resource would optimally be conc
trated within that region, and the distributionP(A) would a
priori have zero weight for events greater than the area
sociated with the mass concentration ofp(x). Here the most
extreme case is a point mass at a particular location,p(x)
5d(x2x* ), which could be enclosed by a high density
the resource, so that all activity is confined tox* . Alter-
nately, if p(x) is spatially uniform, thenR(x) and A(x)
would be uniformly distributed, andP(A) would be a point
mass at a fixed area determined by the resource const
and the system size.

While counterexamples such as those we have just
scribed can be constructed, a broad class of distributi
p(x) leads to heavy tails inP(A). The case ford51 with
monotonic p(x) and restrictingX to x.0 is particularly
simple ~and forms the basis for the more general case!. In
this special case, the change of variables fromp(x) to P(A)
is straightforward, and we obtain

Pcum~A!5E
p21~A2g!

`

p~x!dx5pcum„p
21~A2g!… , ~8!

wherepcum(x) is the tail of the cumulative distribution fo
the probability of hits andp21 is the inverse function ofp, so
that p21(A2g) is the value ofx for which p(x)5A2g.

We can use Eq.~8! to directly compute the tail of
Pcum(A) for standardp(x), such as power laws, exponen
tials, and Gaussians. Table I summarizes the results, w
we look only at tails in the distributions ofx andA, and drop
constants. We obtain a power distribution forPcum(A) in
each case, with a logarithmic correction for the Gaussian

For higher dimensions, suppose that the tails ofp(x) can
be bounded above and below by

pl~ uxu!<p~x!<pu~ uxu!, ~9!

where uxu denotes the magnitude ofx. The specific form of
Eq. ~9! effectively reduces the change of variables to qua
one-dimensional computations. With this assumption, Eq.~7!
can be bounded below by

TABLE I. In the HOT state, power law distributions of th
region sizesPcum(A) are obtained for a broad class of probabili
distributions of the hitsp(x), including power law, exponential, an
Gaussian distributions as shown here.

p(x) pcum(x) Pcum(A)

x2(q11) x2q A2g(121/q)

e2x e2x A2g

e2x2
x21e2x2 A2g@ log(A)#21/2
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1416 PRE 60J. M. CARLSON AND JOHN DOYLE
Pcum~A!>DE
pl ~x!,A2g

pl~r !r d21dr ~10!

>DE
pl ~x!,A2g

pl~r !dr, ~11!

whereD is a constant and the last inequality holds in the ta
where r .1. Providedpu and pl are asymptotically of the
same order, this implies that the case ofd.1 simply adds
additional weight to the tail. More detailed computations c
be made to compute exactly what thed.1 correction terms
are for various distributions.

While this analysis is fairly abstract, the underlying co
cepts are highly intuitive, and the basic results should ca
over to a wide variety of spaces, resources, and constra
In essence we contend that optimizing yield will cause
design to concentrate protective resources where the ris
failures are high, and to allow for the possibility of large ra
events elsewhere.

III. LATTICE MODELS

In this section we consider two familiar lattice mode
from statistical physics, first as traditionally defined and th
incorporating design. These include percolation@21#, the
simplest model which exhibits a second order phase tra
tion, and the original sand pile model introduced by Ba
Tang, and Wiesenfeld@3#. In the context of optimization and
design these two models become essentially identical, so
consider them together.

A. Percolation

We begin with site percolation on a two-dimensionalN
3N square lattice. In the random case, sites are occu
with probability p and vacant with probability 12p. For a
given densityr5p all configurations are equally likely
Typical configurations have a random, unstructured app
ance, as illustrated in Fig. 1~a!. At low densities, neares
neighbor occupied sites form isolated clusters. The distri
tion of cluster sizes cuts off sharply at a characteristic s
which depends on density. The critical densitypc marks the
divergence of the characteristic cluster size, and atpc the
cluster size distribution is given by a power law. Abovepc
there is an infinite cluster which corresponds to a finite fr
tion of the system. Atpc the infinite cluster exists but is
sparse, with a nontrivial fractal dimension. The percolat
order parameterP`(p) is the probability that any particula
site is connected to the infinite cluster. Forp,pc , P`(p)
50. At p5pc , P`(p) begins to increase monotonical
from zero to unity atp51. In the neighborhood of the tran
sition, the critical exponentb describes the onset of percol
tion: P`(p);(p2pc)

b. An extensive discussion of percola
tion can be found in Ref.@21#.

In order to introduce risk and compute yield, we define
very primitive dynamics in which, for a given assignment
vacant and occupied sites, a single spark is dropped on
lattice initiating a fire. In the standard forest analogy, oc
pied sites correspond to trees, and risk is associated
fires. The yieldY is defined to be the average density of tre
left unburnt after the spark hits. If a spark hits an unoccup
s
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site, nothing burns. When the spark hits an occupied site
fire spreads throughout the associated cluster, defined t
the connected set ofA nearest-neighbor occupied sites.

We let P(A) denote the distribution of events of sizeA,
and letPcum(A) denote the cumulative distribution of even
greater than or equal toA. The yield is thenY(r)5r
2^P&, where the averagêP& is computed with respect to
both the ensembles of configurations and the spatial distr
tion p( i , j ) of sparks. By translation invariance, results f
the random case are independent of the distribution
sparks.

In Fig. 2~a! we plot yieldY as function of the initial den-
sity r for a variety of different scenarios including both ra
dom percolation and design. The maximum possible yi
corresponds to the diagonal line,Y5r, which is obtained if
a vanishing fraction of the sites are burned after the sp
lands. The yield curve for the random case is depicted by

FIG. 1. Sample percolation configurations on a 32332 lattice
for ~a! the random case nearpc , ~b! a HOT grid, and HOT states
obtained by evolution at~c! optimal yield, and~d! a somewhat
lower density. Unoccupied sites are black, and clusters are g
where darker shades indicate larger clusters. The designed sys
are generated for an asymmetric distribution of hitting probabilit
with Gaussian tails, peaked at the upper left corner of the lattic

FIG. 2. Comparison between HOT states and random system
criticality for the percolation model.~a! Yield vs density:Y(r). ~b!
Cumulative distributions of eventsPcum(A) for cases~a!–~d! in
Fig. 1.
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dashed line in Fig. 2~a!. At low densities the results coincid
with the maximum yield. Nearr5pc there is a crossover
and Y(r) begins to decrease monotonically withr, ap-
proaching zero at high density.

The crossover becomes sharp asN˜` and is an imme-
diate consequence of the percolation transition. In the th
modynamic limit only events involving the infinite cluste
result in a macroscopic event. Yield is computed as the s
of contributions associated with cases in which~i! the spark
misses the infinite cluster and the full density is retained,
~ii ! the spark hits the infinite cluster, so that compared w
the starting density the yield is reduced by the fraction as
ciated with the infinite cluster:

Y~r!5@12P`~r!#r1P`~r!@r2P`~r!#5r2P`
2 ~p!.

~12!

Thus yield is simply related to the percolation order para
eter, and the exponent which describes the departure of y
from the maximum yield curve in the neighborhood of t
transition is 2b. In random percolation, where the only tu
able parameter is the density, the optimal yield coincid
with the critical point.

B. Sand piles

Now we turn to the sand pile model, which was intr
duced by Bak, Tang, and Wiesenfeld~BTW! as the proto-
typical example of SOC. Unlike percolation, the sand p
model is explicitly dynamical. It is an open driven syste
which evolves to the critical density upon repeated iterat
of the local rules.

The model is defined on anN3N integer lattice. The
number of grains of ‘‘sand’’ on each site is given byh( i , j ).
The algorithm which defines the model consists of the in
vidual addition of grains to randomly selected sites,

h~ i , j !˜h~ i , j !11, ~13!

such that the site~i,j! topples if the height exceeds a pr
scribed thresholdhc . As a resulth( i , j ) is reduced by a fixed
amount which is subsequently redistributed among nea
neighbor siteshnn . We takehc54 and the toppling rule

h~ i , j !>hc : h~ i , j !˜h~ i , j !24,
~14!

hnn˜hnn11.

Sand leaves the system when a toppling site is adjacent to
boundary. The toppling rule is iterated until all sites are b
low threshold, at which point the next grain is added.

Despite the apparent simplicity of the algorithm, this a
related SOC models exhibit rich dynamics. The BTW mo
does not exhibit long range height correlations@25# @Fig. 3~a!
illustrates a typical height configuration#, but it still exhibits
power laws in the distribution of sizes of the avalanch
Here size is defined to be the number of sites which toppl
the result of the addition of a single grain to the pile@see Fig.
4~a!#. In addition, the model exhibits self-similarity in certa
spatial and temporal features such as fractal shapes o
individual regions which exhibit avalanches@see Fig. 3~b!#,
and power law power spectra of the time series of event
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FIG. 3. Typical SOC configuration vs the HOT state on a
364 lattice. The gray scale ranges from black~for height 0! to
white ~for height 3!. The toppling threshold is taken to be 4.~a! is a
snapshot of the height configuration of a BTW sand pile mod
where the instantaneous density,^h&52.1, is near the critical den
sity of 2.125. The configuration has a ‘‘salt and pepper’’ appeara
with no obvious correlations between heights of neighboring s
@25#. The average event involves 247 sites.~b! illustrates~in white!
the area swept out by a typical large event for the BTW sand p
The area has a fractal appearance. In this case the event invo
1132 sites of the lattice.~c! illustrates the HOT state for a grid
design with four horizontal and vertical cuts, and a symme
Gaussian distribution of hitting probabilities, centered in the mid
of the lattice, with a standard deviation of ten sites. Here there
very regular appearance to the pattern. The average density is^h&
52.63, well above the critical density, while the average ev
involves far fewer sites~70 in this case!. In the designed system
events sweep out the regular rectangular regions separated b
cuts.



s of hits
f
d

1418 PRE 60J. M. CARLSON AND JOHN DOYLE
FIG. 4. Both SOC and HOT states exhibit power laws in the avalanche distributions. In~a!, ~c!, and~d! we plot the distributions for the
probability Pcum(A) of observing an event of size greater than or equal toA. ~a! illustrates results for the 1283128 BTW sand pile.~b!–~d!
illustrate results for the HOT state in the continuum limit. Results are obtained for Cauchy, exponential, and Gaussian distribution
~see text!. ~b! illustratesP(L) vs L for d51. ~c! shows the corresponding cumulative distributions.~d! shows the cumulative distribution o
areas ford52, obtained by overlaying thed51 solutions. Numerical results for a 5123512 discrete lattice with four horizontal cuts an
four vertical cuts are included for comparison with the Gaussian case.
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Like equilibrium systems, such as the random percolat
model in the neighborhood of a critical point, SOC syste
exhibit no intrinsic scale. The power law describing the d
tribution of sizes of events extends from the microsco
scale of individual sites out to the system size@see Fig. 4~a!#.
Indeed, for some SOC models concrete mappings to equ
rium critical points have been obtained@22–24#. In the BTW
sand pile model, the critical point is associated with a criti
density~average height! of sand on the pile of roughlŷh&c
52.125.

We define yield for the sand pile model to be the num
of grains left untouched by an avalanche following the ad
tion of a single grain. That is, once the system has reach
statistically steady state, we compute yield for a given c
figuration after one complete iteration of the addition@Eq.
~13!# and toppling@Eq. ~14!# rules, as the sum of height
over the subset of sitesU which are not hit during that par
ticular event, and then average the result over time:

Y~r!5K N22(
U

h~ i , j !L . ~15!
n
s
-
c

b-

l

r
i-

a
-

The result is illustrated in Fig. 5. For the SOC system, co
puting yield as a time average of iterative dynamics
equivalent to computing an ensemble average over diffe
realizations of the randomness. The results are insensitiv
changes in the spatial distribution of addition sites. Ess
tially the same event size distributions are obtained rega
less of whether grains are added at a particular site, a su
of sites, or randomly throughout the system.

Unlike random percolation, in which we obtained a on
parameter curve describing yield as a function of density,
result for the sand pile model corresponds to a single p
because the mean density^hc& reaches a steady state. How
ever, it is possible to make a more direct connection betw
our results for the sand pile model and percolation, by c
sidering a modified sand pile model in which the density
an adjustable parameter. Aside from a few technical deta
this coincides with the closed, equilibrium analog of the sa
pile model mentioned above. Alternately, it can be thou
of as a primitive, one parameter, probabilistic design.

Suppose we can manipulate a single degree of freed
the density of the initial state. That is, we begin with
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empty lattice, and add grains randomly until the systemw
density achieves the value we prescribe. We also restric
initial heights to be below threshold. This results in a tru
cated binomial distribution of heights, restricted to valu
h( i , j )P@0,1,2,3#, where the mean is adjusted to produce
prescribed density. In Fig. 5 we compute the mean yield
density of this system after one grain is added, as an ave
over both the initial states and the random perturbation s
As in percolation, densities near the critical point produ
the maximum yield. Systems which are designed at low d
sities are poor performers in terms of the number of gra
left on the system after an avalanche because so few g
were there in the first place. At the critical density, the ch
acteristic size of the avalanche triggered by the perturba
becomes of the order of the system size. Densities bey
the critical density often lead to systemwide events, caus
the yield to drop. In fact, both the peak density and yield
the primitive design are nearly equal to the time avera
yield and density of the SOC state@25#, where for each even
the yield is the total number of grains left on sites which
not topple.

It is important to note that the primitive design is n
equivalent to SOC. The mechanisms which lead the sys
to the critical density are entirely different in the two cas
In SOC the critical density is the global attractor of the d
namics, which follows from the fact that the system is driv
at an infinitesimal rate. In contrast, the primitive design
tuned ~by varying the density! to obtain maximum yield.
Consequently, the primitive design has statistics wh
mimic SOC in detail, but without any ‘‘self-organization.
Thus it would be difficult to distinguish on the basis of st
tistics alone whether a system exhibits SOC or is mere
manifestation of a primitive design process.

FIG. 5. Yield vs density. We compare the yield~defined to be
the number of grains left on those sites of the system which w
unaffected by the avalanche! for different ways of preparing the
system. Results are shown for randomly generated stable in
conditions, which are subject to a single addition~solid line! for a
1283128 sand pile model, and the corresponding SOC state an
HOT state. Clearly the HOT state outperforms the other syste
exhibiting a greater yield at higher density. Yield in the HOT sta
can be made arbitrarily close to the maximum value of 3 for la
systems with a sufficient number of cuts, while increasing the s
tem size does not significantly alter the yield in the other two ca
e
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-
s
e
s
ge
s.
e
n-
s
ins
-
n

nd
g
f
d

m
.
-

h

a

C. HOT states

In this subsection we show that it is possible to reta
maximum yields well beyond the critical point, and up to t
maximum density asN˜`. This is made possible by selec
ing a measure zero subset oftolerantstates. We refer to thes
sophisticated designs as HOT states, because we fix the e
configuration of the system, laying out a high density patt
which is robust to sparks or the addition of grains of san

In our designed configurations, in most respects there
be no distinction between a designed percolation configu
tion and a designed sand pile. In percolation, densities w
above the critical density are achieved by selecting confi
rations in which clusters of occupied sites are compact
the sand pile model we construct analogous compact reg
in which most sites are chosen to be one notch below thre
old: h( i , j )5hc2153, which are analogous to the occupie
sites in percolation. In each case to limit the size of t
avalanches, barriers of unoccupied sites, or sites w
h( i , j )50 are constructed, which, as discussed in Sec. II,
subject to a constraint.

As stated previously in Sec. II, the key ingredients f
identifying HOT states are the probability distribution of pe
turbations, or sparks,p( i , j ), and a specification of con
straints on the optimization or construction of barriers. W
will begin by considering a global optimization over a r
stricted subclass of configurations. Numerical and analyt
results for this case are obtained in Sec. IV. In Sec. V,
introduce a local incremental optimization scheme, which
reminiscent of evolution by natural selection. Sample HO
states are illustrated in Figs. 1 and 3.

In the grid design, we define our constraint such that
boundaries are composed of horizontal and vertical cuts.
percolation, the cuts correspond to lines comprised of un
cupied sites. In the sand pile model the cuts correspon
lines along whichh( i , j )50. In the sand pile model, some
what higher yields are obtained if the cuts are defined to h
height 2, and contiguous barriers of height two are also s
ficient to terminate an avalanche when the BTW toppli
rule is iterated. However, the difference in density betwee
grid formed with cuts of height zero and 2 is a finite si
effect which does not alter the event size distribution, a
leads to a system which is less robust to multiple hits.

A set of 2(n21) cuts$ i 1 ,i 2 ,...,i n21 , j 1 , j 2 ,...,j n21% de-
fines a grid ofn2 regions on the lattice. For a given configu
ration ~set of cuts!, the distribution of events sizes and ult
mately the yield are obtained as an ensemble average.
system is always initialized in the designed state. Event s
are determined by the enclosed area and contribute to
distribution with a weight determined by the sum of the e
closed probabilityp( i , j ).

IV. OPTIMIZATION OF THE GRID DESIGN

For the grid configurations@Figs. 1~b! and 3~c!#, the de-
sign problem involves choosing the optimal set of cuts wh
minimizes the expected size of the avalanche. First we c
sider two simple cases. Suppose you know exactly which
~i,j! will receive the next grain. Then, clearly, the best str
egy is to define one of the cuts to coincide with that site,
that when a grain is added to the system the site rem
subthreshold and no avalanche occurs. Alternatively,
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1420 PRE 60J. M. CARLSON AND JOHN DOYLE
p( i , j ) is spatially uniform, then the best design strategy is
define equally spaced cuts:i 15N/n, i 252N/n,...,i n21
5(n21)N/n, j 15N/n,...,j n215(n21)N/n, so that the
system is divided inton2 regions of equal area. In this cas
all avalanches are of size (N/n)2. Already we see that the
avalanche size is considerably less than that which would
obtained in the SOC or percolation models at the same d
sity ~the SOC system will never attain the high densities
the HOT state!.

The more interesting case arises when you have s
knowledge of the spatial distribution of hitting probabilitie
For a specified set of cuts the expected size of the avala
~defined to be the number of toppling sites! is given by

E~A!5(R P~R!A~R!, ~16!

where for a given set of horizontal and vertical cuts the s
is over the rectangular regionsR of the grid, andP~R! and
A(R) represent the cumulative probability and total area
regionR defined generally on ad-dimensional spaceX as

P~R!5E
R

p~x!dx and A~R!5E
R

dx. ~17!

Equation~16! can be written in terms of the hitting prob
ability distributionp( i , j ) and the positions of thei andj cuts
as

E~A!5 (
s50

n21

(
t50

n21 F S (
i 5 i s

i s11

(
j 5 j t

j t11

p~ i , j !D S (
i 5 i s

i s11

(
j 5 j t

j t11

1D G ,

~18!

where in the outer sums it is understood that the zeroth
nth cuts correspond to the boundaries.

For simplicity we specialize to the subclass of distrib
tions of hitting probabilities for which thei andj dependence
factors:p( i , j )5p( i )p( j ). In this case Eq.~18! can be writ-
ten as the product of quantities which depend separatel
the positions of thei and j cuts:

E~A!5F (
s50

n21 S (
i 5 i s

i s11

p~ i !D S (
i 5 i s

i s11

1D G
3F (

t50

n21 S (
j 5 j t

j t11

p~ j !D S (
j 5 j t

j t11

1D G . ~19!

The optimal configuration minimizesE(A) with respect to
the position of the 2(n21) cuts. The factorization allows u
to solve for the positions of thei andj cuts separately. When
the distributionp( i , j ) is centered at a pointi 5 j , the i and j
solutions are identical. When the distributionp( i , j ) is cen-
tered at the origin, the solution is symmetric around the o
gin.

We obtain an explicit numerical solution by minimizin
the expected event size with respect to all possible pla
ments of the cuts. Our result for an optimal grid subject t
Gaussian distribution of hits centered at the origin is illu
trated in Fig. 3~c! @where the system size is taken to
relatively small to allow a visual comparison with the SO
state in Fig. 3~a!#. Figure 1~b! illustrates analogous result
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for an asymmetric distribution with Gaussian tails, which
peaked at the upper left corner of the lattice. The correspo
ing distribution of event sizes is included in Fig. 2~b!. The
distribution of event sizes for the symmetric case in a som
what larger system is included in Fig. 4~d!. The cumulative
distribution of events is reasonably well fit by a power la
with Pcum(A);A2g, with g'3/2.

Sharper estimates for the exponents can be obtained in
continuum limit, where we rescale the lattice into the u
interval (x5 i /N, y5 j /N) and take the number of lattic
sites N to infinity. In the limit, the cuts become infinitesi
mally thin (d21)-dimensional dividers between continuo
connected regions of high density. We begin by solving
problem for d51 since the solution to our grid problem
factors into two one-dimensional problems. In each case,
adjust the positions ofn21 dividers to definen total regions,
such that the minimum expected event size is obtained. H
the event size is associated with the lengthL(R) of each of
the regions.

To locate the positions of the cuts which yield the min
mum expected size, we apply the variational method@26#
separately to each bracketed term on the right hand sid
Eq. ~19!. Determination of the stationary point with respe
to the positions of each of the (n21) cuts yields an iterative
solution for the cut positions:

P~Ri !1L~Ri !p~xi !2P~Ri 11!2L~Ri 11!p~xi !50.
~20!

The cut positions beginning at the origin are obtained
solving Eq.~20! numerically. In Fig. 4~b! we illustrateP(L)
for cases in whichp(x) is described by Cauchy@p(x)
5(a/p)(a21x2)21 with a51#, exponential @p(x)
5s21 exp(2uxu/s), with s510#, and Gaussian@p(x)
5(2ps2)21/2exp(2x2/2s2), with s515# distributions. The
parameters are chosen so that the optimal solution obta
from Eq. ~20!, involves a cut at the origin, followed ten cu
in the half space ranging fromxP@0,104#.

For the Gaussian and exponential cases, even on a l
rithmic scale regions of smallL are heavily clustered near th
origin. For larger values ofx consecutive region sizes grow
rapidly with x, and the effect is most pronounced for th
distributions in which the rate of decay ofp(x) is greatest. In
the Gaussian case, the final region encompasses most o
system (L1059950 out of the total length of 104, while the
first nine regions are clustered within a total length of 5!.
The next valueL11 is sufficiently large that it cannot be
represented as a floating point number on most machi
For the Cauchy distribution, the lengths do not spread ou
a logarithmic scale.

Like the more general case discussed Sec. II, the solu
for the grid design yields power laws for a broad class
p(x). Unlike the results in Sec. II, where the scaling exp
nents were sensitive to the specific choice ofp(x), for this
case we find that asymptoticallyP(L);1/L for the Cauchy,
exponential, and Gaussian distributions. In all three ca
the slope of ln@P(L)# vs ln(L) never gets steeper than22.

A simple argument will help us see why the numeric
observation that asymptoticallyP(L);1/L is plausible. Note
that in each case the decay ofp(x) is monotonic, so there are
no repeated region sizes. Thus consecutive points in the
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tribution of event sizesP(L) vs L are obtained directly from
consecutive terms in Eq.~20!, namely,P(Ri) vs L(Ri). If
P(L);L21 then the slope on a logarithmic plot,

D ln~P!

D ln~L !
5

ln@P~Ri 11!#2 ln@P~Ri !#

ln@L~Ri 11!#2 ln@L~Ri !#

5
ln@P~Ri 11!/p~xi !#2 ln@P~Ri !/p~xi !#

ln@L~Ri 11!# ln@L~Ri !#
,

~21!

will asymptotically approach21. The second term in the
denominator is asymptotically negligible compared to
first since the regions sizes are large and grow rapidly w
increasingx. Combining this with Eq.~20!, a slope of21 is
obtained as long as the first term in the numerator of Eq.~21!
is negligible compared to the second. Asymptotically,
can extend the upper limit of the integral representation
P~R! in Eq. ~17! to infinity. Then clearly P(Ri)
@P(Ri 11). If p(x) decays too rapidly~e.g., double expo-
nentially!, the first term becomes negatively divergent wh
the logarithm is evaluated. However, this does not occur
distributions which the decay less sharp. Indeed, for
Cauchy, exponential, and Gaussian distributions we cons
that the first term in the numerator of Eq.~21! is negligible
compared to the second, so that in each case asymptoti
P(L);1/L. For the Gaussian and exponential cases the
merics blows up before we reach the asymptotic limit. F
the Cauchy distribution, the fit to the asymptotic result
excellent.

The cumulative distributionsPcum(L) are illustrated in
Fig. 4~c!. These are obtained from Fig. 4~b! by summing
probabilities of events of size greater than or equal toL. The
solution for thed52 grid is obtained by overlapping the tw
one-dimensional solutions. The areas of the individual
gions are given byA(R)5Lx(R)Ly(R), and the probabili-
ties enclosed in each region is simplyP(R)
5Px(R)Py(R). The results for power law, exponential, an
Gaussian distributions of hitting probabilities are illustrat
in Fig. 4~d!. In each case, the resulting distribution of eve
sizes exhibits a heavy tails, and is reasonably well fit b
power law. For comparison, in Fig. 4~d! we include the re-
sults for the Gaussian case on the discrete lattice, num
cally optimized with far fewer cuts. We obtain surprising
good agreement with the continuum results for the expon
in the power law in spite of the sparse data and the finite g
effects which prevents us from obtaining an exact solution
Eq. ~20! for the discrete lattice. Discrete numerical resu
are expected to converge exactly to the continuum cas
the limit asn, N˜` with n/N˜0.

Finally, we emphasize that neither our choice to use a g
in the optimization problem nor our use of a factorizab
distributions of hitting probabilities are required to obta
power laws tails for the distribution of events. We have ve
fied that similar results are obtained for concentric circu
and square regions, and for different choices ofp( i , j ). The
generality of our results suggests that heavy tails in the
tribution of events follow generically from optimization of
design objective and minimizing hazards in the presence
resource constraints.
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V. EVOLUTION TO THE HOT STATE

Most systems in engineering and biology are not desig
by global optimization, but instead evolve by exploring loc
variations on top of occasional structural changes. Biolog
evolution makes use of a genotype, which can be dis
guished, at least abstractly, from the phenotype. In engin
ing the distinction is cleaner, as the design specificati
exist completely independently of any specific physical
stance of the design. In both cases, the genotype can ev
due to some form of natural selection on yield.

For both the primitive design and sophisticated grid d
sign discussed in Sec. III, we can view the design parame
as the genotype and the resulting configuration as the ph
type. In the primitive design the density is the only desi
parameter. In the advanced design, the design paramet
the locations of the cuts.

By introducing a simple evolutionary algorithm on th
parameters, we can generalize the models so that they ev
to an optimal state for either the primitive or sophisticat
design. The simplest scenario would involve a large
semble of systems that evolve by natural selection base
yield. This is a trivial type of evolution, but it is obvious tha
such a brute force approach will be globally convergent
these special cases because the search space of cuts is
structured. Interestingly, both cases evolve to a state wh
exhibits power law distributions, while all other aspects
the optimal state are determined by the design constra
Even in the case of primitive design, the evolution procee
by selecting states with high yield, and which differs fro
the internal mechanism by which SOC systems evolve to
critical point. With more design structure, systems w
evolve to densities far above criticality.

Alternatively, in the context of percolation, we can co
sider a local and incremental algorithm for generating c
figurations which is reminiscent of evolution by natural s
lection. We begin with an empty lattice, and occupy sites o
at a time in a manner which maximizes expected yield
each step. We choose an asymmetricp( i , j ):

p~ i , j !5p~ i !p~ j !p~x!}22@„mx1~x/N!…/sx#2
, ~22!

wheremi51, s i50.4, mj50.5, ands j50.2, for which the
algorithm is deterministic. We choose the tail of a Gauss
to dramatize that power laws emerge through design e
when the external distribution is far from a power law. Ot
erwise Eq.~22! is chosen somewhat arbitrarily to avoid ar
ficial symmetries in the HOT configurations.

Implementing this algorithm, we obtain a sequence
configurations of monotonically increasing density, whi
passes through the critical densitypc unobstructed. Herepc
plays no special role. At much higher densities there i
maximum yield point followed by a drop in the yield. Th
yield curveY(r) is plotted in Fig. 2~a! for the p( i , j ) given
in Eq. ~22!.

This optimization explores only a small fraction of th
configurations at each densityr. Specifically, (12r)N2 of

the ((12r)N2
N2

) possible configurations are searched. Nonet
less, yields above 0.9 are obtained on a 32332 lattice, and in
the thermodynamic limit the peak yield approaches the ma
mum value of unity. While the clusters are not perfec
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1422 PRE 60J. M. CARLSON AND JOHN DOYLE
regular, the configuration has a clear cellular pattern, con
ing of compact regions enclosed by well defined barriers.
shown in Fig. 2~b!, the distribution of eventsP(A) exhibits a
power law tail whenp( i , j ) is given by Eq.~22!. This is the
case for a broad class ofp( i , j ), including Gaussian, expo
nential, and Cauchy.

Interestingly, in the tolerant regime our algorithm pr
duces power law tails for a range of densities below
maximum yield, and without ever passing through a st
that resembles the~fractal! critical state. This is illustrated in
Figs. 1~d! and 2~b! where we plot the event size distributio
P(A) ~lower of the ‘‘evolved’’ curves! for a density which
lies below that associated with the peak yield. Note that
configuration has many clusters of unit sizeA51 in check-
erboard patterns in the region of highp( i , j ) in the upper left
corner.

VI. CONTRASTS BETWEEN CRITICALITY AND HOT

Our primary result is that the designed sand piles a
percolation model produce power law distributions by
mechanism which is quite different from criticality. The fa
that power laws are not a special feature associated wi
single density in the HOT state is in sharp contrast to
traditional critical phenomena.

It is interesting to contrast the kind of universality w
obtain for the HOT state with that of criticality. For critica
points, the exponents which describe the power laws dep
on a limited number of characteristics of a model: the dim
sionality of the system, the dimensionality of the order p
rameter, and the range of the interactions. In the case
nonequilibrium systems, and particularly for SOC, the co
cept of universality is less clear. There are numerous
amples of sand pile models in which a seemingly very mi
change in the toppling rule results in a change in the val
of the scaling exponents@22,27#.

As discussed in Sec. II, for the HOT state we return t
case in which only a few factors influence the scaling ex
nent for the distribution of events. These include the ex
nent a, which characterizes how the measure of size sc
with the area impacted by an event;b, which relates the area
of an event to the resource density, and most importantly
tails of the distribution of perturbations,p(x). In this sense,
many models of cascading failure yield the same scaling
ponents, and thus may be said to fall into the sameoptimality
class.

To illustrate the differences further, we now consid
quantities other than the distribution of events. For exam
the fractal regions characteristic of events at criticality
replaced by regular, stylized, regions in the HOT state.
deed, our sophisticated designs are a highly simplified
ample of self-dissimilarity, in sharp contrast to the se
similarity of criticality. Although this concept has bee
suggested in the context of hierarchical systems, the b
notion that the system characteristics change dramatic
and fundamentally when viewed on different scales clea
holds in our case. Put another way, renormalizing the sop
ticated designs completely destroy their structure. Wh
some statistics of the HOT state, such as time historie
repeated trials, may exhibit some self-similar characteris
simply because of the power law distribution, the connect
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with an underlying critical phenomenon and emergent la
length scales which are central features in SOC are
present in the HOT state.

One of the most interesting differences arises when
consider the sensitivity of the HOT state to changes in
hitting probability densityp( i , j ). In random systems, quali
tatively and in most cases quantitatively similar results
obtained regardless of the probability density describ
placements of the sparks or grains. In the BTW mode
system which is driven at a single point produces a distri
tion of events which is essentially identical to the resu
obtained when the system is driven uniformly. In contra
the HOT state is much more sensitive. The optimal des
depends intrinsically onp( i , j ). Furthermore, if a system is
designed for a particular choice ofp( i , j ), and then is subjec
to a different density, the results for the event size distrib
tion change dramatically.

This is illustrated in Fig. 6, where we initialize the syste
in the optimal grid designed state for a Gaussianp( i , j ) cen-
tered at the origin, but then subject the system to a spati
uniform distribution of hits. The resulting event size dist
bution increaseswith the size of the event, where for th
largest eventsP(A);A. In this sense, random critical sys
tems are much more generically robust than HOT syste
with respect to unanticipated changes in the external co
tions.

Another sense in which the HOT state exhibits stro
sensitivity relative to SOC is in terms of vulnerability t
design flaws. A single flaw may allow an event to leak p
the designed barrier. Furthermore, without incorporating
mechanism for repairing the system, repeated events gr
ally erode the barriers which leads to an overfrequency
large events that ultimately reduces the density to the crit
point. This is illustrated in Fig. 7~a! for the case of a sand

FIG. 6. The HOT state is highly sensitive to the distribution
hitting probabilitiesp( i , j ). Here we illustrate the probabilityP(A)
of an event of sizeA for the configuration designed for a Gaussi
p( i , j ) in Fig. 4~d!. The points marked* correspond to the result
when the system is subject to the distribution of hits it was desig
for @the results shown in Fig. 4~d! are obtained from these results b
computing the cumulative number of events greater than or equ
A for eachA#. In contrast,1’s correspond to the case when th
system is subject to a uniform distribution of hits. In this case
probability of large events exceeds the likelihood of small even
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pile model with an initially uniform grid~similar results are
obtained when the initial state is optimized for, e.g., a Gau
ian!.

While the HOT state is highly sensitive to unanticipat
perturbations or flaws, additional constraints can be impo
on HOT designs to increase their robustness to any des
level, but at the cost of reduced performance. At the criti

FIG. 7. If the grid is not repaired between hits, the design
sand pile evolves back to the SOC state. In~a! we illustrate the
density as a function of time for the discrete system with the ini
state taken to be a uniform grid.@Similar results are obtained whe
the initial state is optimized as in Fig. 3~c!.# The system is subject to
repeated hits selected from a Gaussian distribution. With time,
system evolves back to the SOC state. Initially the density exhi
oscillations, which arise as mass accumulates in the center~the
Gaussian is centered in the middle of the lattice!, but before the
boundaries surrounding the center region have fully disintegra
In ~b! we illustrate the corresponding mean event size vs time.
mean event size initially decreases as the grid contracts aroun
more probably initiation sites~shown on an expanded scale in th
inset!. These results are obtained on the discrete lattice forN564,
initialized with seven equally spaced vertical and horizontal cu
The Gaussian distribution of hits is centered in the middle of
lattice, withs54, and is computed as the average over 105 realiza-
tions. Results at small times converge rapidly, since each realiza
begins with the same initial state. We plot the mean over a la
ensemble to obtain smoother results at long times.
s-

d
ed
l

density, for example, it would be easy to design HOT sta
with small isolated clusters that would be highly robust
changes in probability distributions or flaws. Common str
egies employed in biology and engineering to improve
system lifetime incorporate backup boundaries at additio
cost ~e.g., cuts which are more than one grid spacing
width! or mechanisms for the system to be repaired w
regular maintenance. Engineers routinely add generic sa
margins to protect against unanticipated uncertainties.

It is interesting to note that even large events on the
signed sand pile do not immediately destroy the design st
ture when it is subject to repeated hits. When a grain
dropped directly on a cut, the height at that site increases
no avalanche occurs. When an avalanche is initiated with
rectangular domain, the net effect is that the boundaries
all four sides step one site in toward the center of the b
and leave a residual site of reduced height at the prev
corner points. All other sites return to their original heigh
Thus implementation of an elementary algorithm for repa
ing damage to the system should be straightforward.

Our observation that the net change associated with
avalanche in the grid design is simply to displace the bou
aries one step towards the site that was hit suggests s
degree of evolution toward the optimal state is intrinsic
the BTW algorithm. In Fig. 7 we illustrate what happe
when we begin with a regular grid of equally spaced cu
and subject the system to repeated events using the B
algorithm with hitting probabilities chosen from a Gaussi
p( i , j ) centered in the middle of the lattice. We run a lon
sequence of repeated events without making repairs, and
that the mean event size initially decreases during a perio
which the density is actually increasing@Fig. 7~a!#, as the
boundaries contract around the center of the lattice as il
trated in Fig. 7~b!. However, the designed sand pile nev
reaches the HOT state by this method. Repeated hits cr
sufficient flaws in the boundary that large events eventu
return the system to the SOC state. However, as illustrate
the density plot@Fig. 7~a!#, the transient period is extremel
long.

VII. CONCLUSION

In summary, we have described a mechanism wher
design optimization in the presence of constraints and un
tainty naturally leads to heavy tailed distributions. Comm
features of the HOT state include~1! high efficiency, perfor-
mance, and robustness to designed-for uncertainties;~2! hy-
persensitivity to design flaws and unanticipated pertur
tions; ~3! nongeneric, specialized, structured configuratio
and ~4! power laws. We are not suggesting that HOT is t
only alternative to SOC which yields power laws. In ma
cases, statistics alone may be responsible@28#. Furthermore,
it seems likely that in some cases real systems may com
SOC or some other randomizing phenomenon with desig
the process of mutation and selection as they evolve tow
complex and efficient operating states.

An important consequence of the special features of
HOT state is the development of new sensitivities at e
step along the path toward increasingly realistic models. U
like criticality, where systems fall into broad universali
classes which depend only on very general features, for H
systems the details matter.
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From a technological and environmental viewpoint, p
haps the most important feature of HOT states is the fact
the high performance and robustness of optimized des
with respect to the uncertainty for which they were design
is accompanied by extreme sensitivity to additional unc
tainty that is not included in the design. We consider
changes to the hitting probabilities and flaws in the init
conditions, but other changes in the ‘‘rules’’ would ha
similar effects. In contrast, the SOC state performed re
tively poorly, but was much less sensitive to changes in
rules.

This is one of the most important properties of comp
biological and engineering systems that has no counterpa
physics, that complexity is driven by profound tradeoffs
robustness and uncertainty. Indeed, there are fundam
limitations that can be viewed as ‘‘conservation principle
that may turn out to be as important as those due to ma
energy, entropy, and information have been in the past@29#.

We conclude with a brief discussion of two examples, o
~the Internet! chosen from engineering, and one~ecosystems!
chosen from biology. While both have been considered p
viously in the context of SOC and EOC, they clearly exhi
all the features associated with the HOT state. In discus
these examples, we will not attempt to provide a compreh
sive review of the relevant literature, which is extensive
each case. We will simply illustrate~for an audience which is
at least somewhat familiar with these disciplines! why these
systems are good candidates for further investigations in
context of HOT. It is important to emphasize that our high
simplified models should not be taken seriously as pro
types for these particular systems. Instead, it is our inten
to use toy models to illustrate several essential ingredien
‘‘how nature works’’ which are absent in SOC. It is th
general properties of HOT states, rather than the specific
the percolation and sand pile models on the one hand
internets or ecosystems on the other, which are common
wide range of applications, and which therefore should
taken into account in the development of domain spec
models.

A. HOT features of the Internet

We begin with the Internet which, as mentioned in Sec
is an astonishingly complex system. Here we highlight a f
issues that underscore the HOT features, including ubi
tous power law statistics. Computer networks are particula
attractive as a prototype system, since a great deal of st
tical data are available and experiments are relatively eas
perform, certainly compared with ecosystems. The history
the various types of networks that have been implemen
also yields a rich source of examples. For example, a fam
broadcast ethernet, but without collision and congestion c
trol, would correspond to a~purely! hypothetical ‘‘random’’
network and would indeed exhibit congestion induced ph
transitions at extremely low traffic densities. It is not hard
imagine that such a primitive and inefficient network cou
be made to operate in a state that might resemble SOC
EOC.

In contrast, modern networks use routers and switc
together with sophisticated control protocols to produce n
works which are many orders of magnitude more effici
than if those routers, switches, and protocols were remo
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Thus the internal configuration is highly structured and s
cialized, and extremely robust to the main sources of unc
tainty, which are due to user behavior and network com
nent failure. The network is also hypersensitive to comm
mode software bugs for which it is not designed, and th
has all the HOT features.

While the Internet, and computer systems more genera
have self-similar network traffic and ubiquitous power la
statistics for everything from ftp and web file transfers
CPU usage@15,30#, it remains somewhat controversial as
the origins of these effects and their significance for netw
design@31#. It is widely agreed, however, that the ‘‘bursty
nature of network traffic requires, say, much larger rou
buffers than would result from a more traditional queuei
theory analysis@15#. A popular theory claims that ‘‘bursty’’
Internet traffic can be traced to power law distributions
web files@15,32#. Roughly speaking, this theory argues th
large web file transfers due to heavy tails are streamed o
the network by TCP to produce long-term correlations, a
thus burstiness and self-similarity in network traffic. Th
mechanisms seems to explain the burstiness on time scal
seconds to hours, that is, long compared to the round-
packet times.

Tracing the origins of network burstiness to heavy-tail
web file distributions is an attractive starting point for unde
standing the power laws in a wide variety of measureme
since it is consistent with the observation that the~long-time!
burstiness is independent of congestion level. Recall t
based on the evolutionary model~Sec. V!, we have identified
power laws at all densities above criticality as a distincti
between HOT and criticality. While this theory explains ne
work burstiness in terms of heavy tails in web files, so
there is no accepted explanation for the heavy tailed web
distributions, despite enormous statistical evidence for th
@32–35#.

We suspect that the power laws in web file distributio
may arise via HOT. That is, HOT features may extend
only to the network but to the web sites themselves. Hig
volume commercial web sites are constantly tuned for h
throughput, and thus we can explore what properties m
be consequences of such design. A simple model for
would be to assume that the ‘‘document’’ making up a w
site is partitioned into files to minimize the expected sizes
file transmissions. Users exhibit widely varying levels of i
terest in the document, so that an ‘‘optimized’’ web s
would have smaller files for high hit portions of the doc
ment. To make the connection more precise, suppose tha
model user interest as a probability distributionpu(x), where
x is the location within the document that the user would li
to examine. Real web documents, of course, have a g
deal of a priori structure, but we will make the highly ide
alized assumption that the document itself is just a sin
contiguous object. Also, real users interact in complex w
with the structure of the document. Thus a model that
sumes the user is interested in a single location in an unst
tured document is extremely simplified, but allows us to u
the results in Sec. IV.

An abstract web design problem would then correspond
partitioning the document intoN files such that the expecte
file transfer is minimized. Because a hit on a file causes
entire file to be transferred, the expected transfer sizeE(S) is
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given by a sum over the filesi of the product of the prob-
ability of the fileP( i ), obtained from the probabilitypu(x)
that x will be in file i, and the size of the fileS( i ):

E~S!5(
i
P~ i !S~ i !. ~23!

Minimizing E(S) corresponds to exactly the optimizatio
problem we solved in Sec. IV for the grid design. In that ca
variational methods led to Eq.~20! for the positions of the
cuts in one dimension, which in this case correspond to c
in the document, breaking it up into a set of individual file
Asymptotically in Sec. IV we found that for a broad class
probability distributions for the hits we indeed obtain hea
tails. Superficially, the plots in Fig. 4~c! for the resulting
cumulative distributions do resemble those for web sites,
this should not be taken too seriously, as it is not a stat
cally precise comparison.

This view of web site design is so idealized that it m
not explain in any detail why real web sites have power l
distributions. The assumption of a homogeneous docume
particularly suspect, and intrinsic heterogeneity and hie
chy in the original document itself may be more important
the web site layout than user interest. Also, users typic
browse a web site in a sequence that reflects the web s
structure, and thus we are exploring models with more re
istic structure. However, given how robust the HOT mec
nism for producing heavy tails is, we expect that many d
ferent design elements could contribute in different settin
but all would yield the same effective network behavior. W
hope that this approach may begin to demystify some of
discussion, since it shows that the observed power laws
cluding even~roughly! the exponents, are at least consiste
with the web sites being designed. The constant tweekin
high volume commercial web sites to maximize through
might yield an adaptive process which is a reasonable
proximation to HOT. Further research in this direction, p
ticularly with richer models for web documents and user
terest, will be needed to evaluate the significance of
speculations.

B. HOT features of ecological systems

Finally, we move to ecosystems. In comparison to
Internet, here the analogy while suggestive is much less
cise. For the Internet, we have access to a great deal of
tistical information as well as all the details of how the sy
tem is designed. From this we are beginning to develo
case for HOT at the level of the file distributions on w
sites, as discussed above, as well as the network as a w
We are suspicious that a similar story may apply to ecos
tems, but it is necessarily more speculative because we
a less complete understanding of the details. In the envi
mental literature, the definition of what is meant by ‘‘ecosy
tem’’ is in itself a topic of debate, and determining precise
how concepts such as ‘‘optimization,’’ ‘‘yield,’’ and
‘‘events’’ might play a role in the interactions between sp
cies is much more ambiguous. Nonetheless, modeling po
lation dynamics@36# play a central role in environmenta
science. Furthermore, there is increasing evidence that
widespread observations of heavy tailed distributions ar
e
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as a consequence of the dynamical response of cou
populations to external disturbances@37#. In the case of en-
vironmental policy, there are fundamental distinctions b
tween the implications of SOC and EOC and HOT.

It has been argued, principally by physicists, that ecos
tems are in a critical state because the distribution of size
extinction events, as deduced from the fossil record, is ch
acterized by a power law@38#. This fact has motivated the
EOC based Kauffman-Johnsen model@39#, which describes
the evolution of coupled fitness landscapes, and the B
Sneppen model@40#, which is a simple SOC model of a se
of species evolving on a fitness landscape. However, the
an ongoing debate as to whether the SOC and EOC mo
capture the essential features of real environmental syste
The alternative perspective offered more typically by bio
gists and ecosystem specialists exhibits many feature
HOT. Below we summarize a few key results in enviro
mental studies which support this point of view.

Our investigation of the primitive~random! and sophisti-
cated designs in percolation and sand pile models has d
parallels in studies of the role of increased complexity a
structure in ecosystems. For ecosystems, the analog of m
ing toward higher densities is associated with increasing
number of organisms and/or increasing the number of s
cies, which is referred to ‘‘increasing complexity’’ in th
ecology literature. The early and influential work of Ma
@41# suggested that high density states~high levels of com-
plexity in ecosystems! are not stable—in simple models in
creased population and differentiation eventually leads t
bifurcation analogous to the percolation transition in the r
dom system. However, according to a recent review by P
@42#, ‘‘it was clear to empiricists and some theoreticians th
natural systems are quite complex. In any one system, a g
diversity of species is connected through many different
teractions.’’ This was contradiction to May’s conclusion
that increasing complexity will eventually cause ecologic
systems to exhibit strong fluctuations and ‘‘fall apart.’’

More recent work by McCann, Hastings, and Huxel@43#
showed that increased density~i.e., complexity! tends to sta-
bilize an ecosystem, damping out fluctuations and preven
the loss of species. Their work was based on models wi
more accurate representation of the biology, and lead
systems which stabilize at higher densities, in a man
which is qualitatively similar to the way in which our sophi
ticated design in the evolutionary model~Sec. V! passes un-
obstructed through the critical point associated with a r
dom system to reach a structured high density state.

Additional evidence for the critical importance of evolve
structure in ecosystems is obtained in the study of food w
@44#. In simple randomized models, high densities~i.e., com-
plexities! destabilize food webs in a manner which aga
parallels the falloff in yield which we observe in rando
systems for densities which exceed the critical point. In n
merical and laboratory studies, randomly assembled
plausible food webs typically break down@45,46#. The re-
sults of these studies are contradictory to observations
food webs in nature, which are composed of large numb
of interacting species. However, real food webs are not r
domly constructed. In model studies, incorporating des
features such as adjusting the distribution of interact
strengths to maximize survival and introducing redundan
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1426 PRE 60J. M. CARLSON AND JOHN DOYLE
lead to the persistence of webs at more realistic densitie
well as optimized configurations which are consistent w
observed variabilities in interaction strengths in natural s
tems.

Food web studies also illustrate the hypersensitivity
ecosystems to changes that the system was not design
handle@44#. If food webs were in an SOC or EOC state, th
their complexity would be generic and robust to rearran
ments and the introduction of new species. However, in
ecosystems the introduction of one weedy species, such a
exotic plant or animal species, often leads to catastrop
consequences@47#.

Finally, returning to the extinction patterns in the fos
record, there is some controversy over whether the data
actually well described by a power law@48#. What is clear is
that there have been mass extinctions and that the dist
tion of events is at least plausibly a power law. Almost
species that have existed are extinct~0.1% of all recorded
species currently persist!, and the average lifetime of a spe
cies is of order a million years, though the distribution
lifetimes also has heavy tails.

There is a long running debate in paleontology about
relative roles of random versus deterministic effects in
tinctions. This may be a false dichotomy. If ecological sy
tems and populations are HOT states, then it is the inte
tion between the unpredictable external perturbations and
structured state of the system which is crucial.

Among paleontologists there is general consensus tha
tinction vulnerability has some systematic features, con
tent with HOT states@49#. Specifically, organisms evolve t
maximize their survival within the existing environment, a
thus become vulnerable to rare events. For example, l
size, and high specialization may yield a temporary adv
tage, but creates vulnerability to, say, meteor impacts.

Thus while extinctions may be triggered by exogeno
events, the pattern of extinctions for a given disturbance
lows a fairly structured, deterministic, and even a predicta
process. In a large event it is the most complex, terres
organisms which are at greatest risk. Island species are m
vulnerable than continental specials. Tropical species
more vulnerable than nontropical species. Within a hab
specialization offers short-term benefits. However, evolut
toward more specialized states inevitably ignores rare eve
even if they are catastrophic. As a consequence, specia
tion consistently correlates with extinction risk in large e
tinctions. This suggests that the system can be viewed
lf-
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HOT state on two interdependent levels. The fact that
overall extinction patterns are highly structured suggests
ecosystems as a whole may be viewed as a HOT state, w
the fact that the most specialized organisms are most vul
able suggests that the evolution of individual species m
lead them toward increasingly HOT states.

There is much at stake in this debate. If ecosystems ar
a SOC or EOC state, then observations of massive spe
extinctions and global warming could be attributed to t
natural behavior of the system. In this scenario, large fl
tuations emerge and recede as a natural consequence o
internal dynamics, and would not be attributed to manma
causes. This would support a policy in which humans co
be relatively cavalier about their interactions with the en
ronment, because the system would be fluctuating as
served regardless of our behavior. Alternately, if ecosyste
are in a HOT state then we expect the system to be rob
yet fragile. Heavy tailed distributions are expected, but
system is also hypersensitive to new perturbations that w
not part of the evolutionary history.

In terms of policy, this supports a strategy of cautio
environmental perturbation. Polis wrote@42#, ‘‘From a
policy point of view, the understanding that complexity
vital to the integrity and stability of natural systems allow
ecologists to argue, more coherently, why we must prese
the diverse elements and species that coexist in a hea
sustainable and well-functioning ecological community.’’
environmental systems are HOT states, then the burde
proof in the ecological debate must shift from a policy
‘‘waiting for the science’’ to confirm negative effects such
ozone depletion or global warming, to a policy which r
quires substantial scientific investigation of whether the p
turbed system is robust to proposed changes before they
introduced.
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