Figure S1
Experimental outline for applying the ELFCAR methodology introduced here to identify mutations that affect the gating pathway.

ELFCAR Methodology

<table>
<thead>
<tr>
<th>EC<sub>50</sub> for Target Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significantly increased from wild type</td>
</tr>
<tr>
<td>Insignificant or small shift from wild type</td>
</tr>
</tbody>
</table>

- **Reporter mutation**
 - $\Omega \sim 1$ and no recovery of I_{max}
 - The target mutation may affect binding

- **Reporter mutation**
 - $\Omega > 2$ and recovery of I_{max}
 - The target mutation affects the gating pathway

- **Reporter mutation**
 - $\Omega > 2$ and recovery of I_{max}
 - The target mutation affects the gating pathway

- **Reporter mutation**
 - $\Omega \sim 1$ and no recovery of I_{max}
 - The target mutation does not significantly affect receptor function

For more detailed information regarding binding, systematic structural and/or electronic perturbations of the residue using unnatural amino acid mutagenesis could be performed.

Other possible experiments include blockage of reporter recovery of a partial agonist by the target mutation and single-channel recording to quantitatively determine the impact on gating (Θ).
Supporting Text

The relationship between Ω, I_{max}, and $N_{\text{P,open}}$

In $< 10\%$ (2 of > 20) of patches obtained for single-channel recordings of the three target mutations shown in Table 2, a higher P_{open} mode was seen as part of the channel activity. Since this mode accounted for $<< 50\%$ of events even when it was present, it accounts for a small minority ($<<10\%$) of total events. Moreover, its rare occurrence indicates that this P_{open} is clearly not representative of the functional behavior of these mutations. Rather, it appears to be an infrequently visited mode of the channel. We thus report $N_{\text{P,open}}$ values ignoring this rare mode.

The macroscopic and microscopic data display correlating shifts for the target mutations versus target + reporter mutations. However, there are apparent quantitative differences between the following comparisons (in the background of a target mutation): $I_{\text{max}}{9'/I_{\text{max}}}$ wild type (11-17) and $N_{\text{P,open}}{9'/N_{\text{P,open}}}$ wild type (14-116, reflecting a similar shift in Θ over the range of our measured $N_{\text{P,open}}$ values). These differences are accounted for by our observation of a high P_{open} mode. If channels are in this mode $\sim1\%$ of time, then that effectively limits the range over which I_{max} can shift—adding a fixed ~0.01 to each $N_{\text{P,open}}$ value would limit the maximal possible I_{max} shift to 50 since $P_{\text{open,max}}$ at EC_{50} is 0.5. The present results for I_{max} shifts accord with this observation well: the drastic gating pathway mutations that ELFCAR identifies display a near-maximal 11-17-fold increase in I_{max} when a reporter mutation is added. On the other hand, EC_{50} increases are 4-26-fold, corresponding to Θ decreases of 15-680-fold which are quantitatively similar to the microscopic $N_{\text{P,open}}$ results. Since the high P_{open} mode would account for, at most, a small minority of the total open conductance, it is not reflected in the EC_{50} shifts. Thus, the macroscopic (I_{max} and EC_{50}) data are in accordance with the drastic change in function obvious in microscopic data (Fig. 5).
Figure S2
Agonist-induced voltage-clamp currents. Each panel shows the inward macroscopic current elicited near EC$_{50}$ (Table 1) and at a saturating concentration as downward deflections for one of 4 receptors: A) $\alpha\beta\gamma\delta$, B) $\alpha\beta\delta''\gamma\delta$, C) $\alpha\beta\gamma$D174NδD180N, D) $\alpha\beta\delta''\gamma$D174N$\delta$D180N. Note that I_{max} is similar for $\alpha\beta\gamma\delta$ and $\alpha\beta\delta''\gamma\delta$, but that I_{max} increases significantly when the L9’S mutation is introduced in the background of the target mutation (γD174NδD180N).
Figure S3
For extracellular domain mutations with $\Omega > 2$, the normal recovery of SuCh towards full agonism in the presence of an L9’S reporter mutation is blocked. The gray bars represent receptors with a wild type pore domain, while the white bars represent receptors with a βL9’S mutation. The wild type receptor and four mutations to the right all show the characteristic increase in efficacy in the presence of the L9’S pore mutation, while the three mutations on the far left do not.