Nonsmoothable, locally indicable group actions on the interval

Danny Calegari

By the Thurston Stability Theorem, a group of C^1 orientation-preserving diffeomorphisms of the closed unit interval is locally indicable. We show that the local order structure of orbits gives a stronger criterion for nonsmoothability that can be used to produce new examples of locally indicable groups of homeomorphisms of the interval that are not conjugate to groups of C^1 diffeomorphisms.

This note was inspired by a comment in a lecture by Andrés Navas. I would like to thank Andrés for his encouragement to write it up. I would also like to thank the referee, whose many excellent comments have been incorporated into this paper.

1 Non-smoothable actions

1.1 Thurston Stability Theorem

A simple, but important case of the Thurston Stability Theorem is usually stated in the following way:

Theorem 1.1 (Thurston Stability Theorem [8]) Let G be a group of orientation-preserving C^1 diffeomorphisms of the closed interval I. Then G is locally indicable; i.e. every nontrivial finitely generated subgroup H of G admits a surjective homomorphism to \mathbb{Z}.

The proof is nonconstructive, and uses the axiom of choice. The idea is to “blow up” the action of H near one of the endpoints at a sequence of points that are moved a definite distance, but not too far. Some subsequence of blow-ups converges to an action by translations.

Note that it is only finitely generated subgroups that admit surjective homomorphisms to \mathbb{Z}, as the following example of Sergeraert shows.
Example 1.2 (Sergeraert [7]) Let G be the group of C^∞ orientation-preserving diffeomorphisms of I that are infinitely tangent to the identity at the endpoints. Then G is perfect.

Another countable example comes from Thompson’s group.

Example 1.3 (Navas [6], Ghys–Sergiescu [3]) Thompson’s group F of dyadic rational piecewise linear homeomorphisms of I is known to be conjugate to a group of C^∞ diffeomorphisms. On the other hand, the commutator subgroup $[F, F]$ is simple; since it is non-Abelian, it is perfect.

Given a group $G \subset \text{Homeo}_+(I)$. Theorem 1.1 gives a criterion to show that the action of G is not conjugate into $\text{Diff}^1_+(I)$. It is natural to ask whether Thurston’s criterion is sharp. That is, suppose G is locally indicable. Is it true that every homomorphism from G into $\text{Homeo}_+(I)$ is conjugate into $\text{Diff}^1_+(I)$? It turns out that the answer to this question is no. However, apart from Thurston’s criterion, very few obstructions to conjugating a subgroup of $\text{Homeo}_+(I)$ into $\text{Diff}^1_+(I)$ are known. Most significant are dynamical obstructions concerning the existence of elements with hyperbolic fixed points when the action has positive topological entropy by Hurder [4], or when there is no invariant probability measure for some sub-pseudogroup by Deroin, Kleptsyn and Navas [2] (also, see Cantwell and Conlon [1]).

In this note we give some new examples of actions of locally indicable groups on I that are not conjugate to C^1 actions.

Example 1.4 ($\mathbb{Z}^\mathbb{Z}$) Let $T: I \to I$ act freely on the interior, so that T is conjugate to a translation. Let $I_0 \subset \text{int}(I)$ be a closed fundamental domain for T, and let $S: I_0 \to I_0$ act freely on the interior. Extend S by the identity outside I_0 to an element of $\text{Homeo}_+(I)$. For each $i \in \mathbb{Z}$ let $I_i = T^i(I_0)$ and let $S_i: I_i \to I_i$ be the conjugate T^iST^{-i}. For each $f \in \mathbb{Z}^\mathbb{Z}$ define Z_f to be the product:

$$Z_f = \prod_{i \in \mathbb{Z}} S_i^{f(i)}$$

Let G be the group consisting of all elements of the form Z_f. Then G is isomorphic to $\mathbb{Z}^\mathbb{Z}$ and is therefore abelian.

However, G is not conjugate into $\text{Diff}^1_+(I)$. For, suppose otherwise, so that there is some homeomorphism $\varphi: I \to I$ so that the conjugate $G^\varphi \subset \text{Diff}^1_+(I)$. We suppose by abuse of notation that S_i denotes the conjugate S_i^φ. For each i, let p_i be the midpoint of I_i. Since for each fixed i the sequence $S_i^\varphi(p_i)$ converges to an endpoint of I_i.
n goes to infinity, it follows that for each \(i \) there is some \(n_i \) so that \(dS_i^{n_i}(p_i) < 1/2 \). Let \(F \in \mathbb{Z}^Z \) satisfy \(F(i) = n_i \). Then \(dZ_F(p_i) < 1/2 \) for all \(i \). However, \(Z_F \) fixes the endpoints of \(I_i \) for all \(i \), so \(Z_F \) has a sequence of fixed points converging to 1. It follows that \(dZ_F(1) = 1 \). But \(p_i \rightarrow 1 \), so if \(Z_F \) is \(C^1 \) we must have \(dZ_F(1) \leq 1/2 \). This contradiction shows that no such conjugacy exists.

Remark 1.5 The group \(\mathbb{Z}^Z \) is locally indicable, but uncountable. Note in fact that this group action is not even conjugate to a bi-Lipschitz action. On the other hand, Theorem D from [2] says that every countable group of homeomorphisms of the circle or interval is conjugate to a group of bi-Lipschitz homeomorphisms.

1.2 Order structure of orbits

In this section we describe a new criterion for nonsmoothability, depending on the local order structure of orbits.

Definition 1.6 Let \(G \) act on \(I \) by \(\rho: G \rightarrow \text{Homeo}_+ (I) \). A point \(p \in I \) determines an order \(\prec_p \) on \(G \) by

\[
a \prec_p b \iff a(p) < b(p) \text{ in } I.
\]

Note that with this definition, \(\prec_p \) is really an order on the left \(G \)-space \(G/G_p \), where \(G_p \) denotes the stabilizer of \(p \).

Lemma 1.7 Suppose \(\rho: G \rightarrow \text{Diff}^1_+ (I) \) is injective. Let \(H \) be a finitely generated subgroup of \(G \), with generators \(S = \{ h_1, \ldots, h_n \} \). Let \(p \in I \) be in the frontier of \(\text{fix}(H) \) (ie the set of common fixed points of all elements of \(H \)) and let \(p_i \rightarrow p \) be a sequence contained in \(I - \text{fix}(H) \). Then there is a sequence \(k_m \in \{ 1, \ldots, n \} \) and \(e_m \in \{ -1, 1 \} \) such that for any \(h \in [H, H] \), and for all sufficiently large \(m \) (depending on \(h \)), there is an inequality:

\[
h \prec_{p_m} h_{k_m}^{e_m}
\]

Proof There is a homomorphism \(\rho: H \rightarrow \mathbb{R} \) defined by the formula \(\rho(h) = \log h'(p) \). Of course this homomorphism vanishes on \([H, H] \). If \(h_i \) is such that \(\rho(h_i) \neq 0 \) then (after replacing \(h_i \) by \(h_i^{-1} \) if necessary) it is clear that for any \(h \in [H, H] \), there is an inequality \(h \prec_{p_m} h_i \) for all \(p_m \) sufficiently close to \(p \). Therefore in the sequel we assume \(\rho \) is trivial.

For each \(i \), let \(U_i \) be the smallest (closed) interval containing \(p_i \cup Sp_i \). Given a bigger open interval \(V_i \) containing \(U_i \), one can rescale \(V_i \) linearly by \(1/\text{length}(U_i) \) and move...
Danny Calegari

\(p_i \) to the origin thereby obtaining an interval \(\widetilde{V}_i \) on which \(H \) has a partially defined action as a pseudogroup.

The argument of the Thurston Stability Theorem implies that one can choose a sequence \(V_i \) such that any sequence of indices \(\to \infty \) contains a subsequence for which \(\widetilde{V}_i \to \mathbb{R} \), and the pseudogroup actions converge, in the compact-open topology, to a (nontrivial) action of \(H \) on \(\mathbb{R} \) by translations. In an action by translations, some generator or its inverse moves 0 a positive distance, but every element of \([H, H]\) acts trivially. The proof follows.

\[\square \]

Example 1.8 Let \(T \) be a hyperbolic once-punctured torus with a cusp. The hyperbolic structure determines up to conjugacy a faithful homomorphism \(\rho: \pi_1(T) \to \text{PSL}(2, \mathbb{R}) \).

The group \(\text{PSL}(2, \mathbb{R}) \) acts by real analytic homeomorphisms on \(\mathbb{RP}^1 = S^1 \). Since \(\pi_1(T) \) is free on two generators (say \(a, b \)) the homomorphism \(\rho \) lifts to an action \(\tilde{\rho} \) on the universal cover \(\mathbb{R} \). We choose a lift so that both \(a \) and \(b \) have fixed points. If we choose coordinates on \(\mathbb{R} \) so that \(a \) fixes \(x \), then \(a \) also fixes \(x + n \) for every integer \(n \). Similarly, if \(b \) fixes \(y \), then \(b \) fixes \(y + n \) for every \(n \). On the other hand, if \(p \in S^1 \) is the parabolic fixed point of \([a, b]\), and \(\tilde{p} \) is a lift of \(p \) to \(\mathbb{R} \), then the commutator \([a, b]\) takes \(\tilde{p} \) to \(\tilde{p} + 1 \). Since the action of every element on \(\mathbb{R} \) commutes with the generator of the deck group \(x \to x + 1 \), the element \([a, b]\) acts on \(\mathbb{R} \) without fixed points, and moves every point in the positive direction, satisfying \([a, b]^n(z) > z + n - 1\) for every \(z \in \mathbb{R} \) and every positive integer \(n \). See Figure 1.

![Figure 1](attachment:image.png)

Figure 1: In the lifted action, \(a \) and \(b \) have fixed points, but \([a, b]\) takes \(\tilde{p} \) to \(\tilde{p} + 1 \).

This action on \(\mathbb{R} \) can be made into an action on \(I \) by homeomorphisms, by including \(\mathbb{R} \) in \(I \) as the interior. Then the points \(\tilde{p} + n \to \infty \) in \(\mathbb{R} \) map to points \(p_n \to 1 \) in \(I \). Note that for each \(n \), the elements \(a \) and \(b \) have fixed points \(q_n, r_n \) respectively.
Nonsmoothable, locally indicable group actions on the interval 613

satisfying \(p_n < q_n < p_{n+1} \) and \(p_n < r_n < p_{n+1} \). Moreover, \([a, b](p_n) = p_{n+1}\) for all \(n \). It follows that

\[
a, a^{-1} < p_n [a, b]^2, \quad b, b^{-1} < p_n [a, b]^2
\]

for every \(n \), so by Lemma 1.7, this action is not topologically conjugate into \(\text{Diff}_+^1(I) \).

On the other hand, this is a faithful action of the free group on two generators. A free group is locally indicable, since every subgroup of a free group is free.

\textbf{Remark 1.9} The relationship between order structures and dynamics of subgroups of homeomorphisms of the interval is subtle and deep. For an introduction to this subject, see e.g. Navas [5].

\section*{References}

\textit{Department of Mathematics, California Institute of Technology}
\textit{Pasadena CA 91125, USA}
danny@its.caltech.edu
http://www.its.caltech.edu/~danny

Received: 3 December 2007 Revised: 1 March 2008