Ring-Expansion Metathesis Polymerization:
Catalyst Dependent Polymerization Profiles

Yan Xia,† Andrew J. Boydston,† Yefeng Yao,‡ Julia A. Kornfield,† Irina A. Gorodetskaya,†
Hans W. Spiess,‡ and Robert H. Grubbs†,*

† Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
‡ Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
Figure S1. Kinetic plot of reactions of excess butyl vinyl ether with catalysts 1 (●), SC-5 (■), UC-5 (□), SC-6 (▲), and UC-6 (△). Conditions: [Ru]₀ = 0.004 M in C₆D₆ at 60 °C, [vinyl ether]₀/[Ru]₀ = 30:1.

Figure S2. Mₘ versus time for the polymerization of COE using catalysts SC-5 (purple), UC-5 (red), SC-6 (green), and UC-6 (blue). Conditions: [COE]₀ = 0.5 M in CH₂Cl₂ at 40 °C, [COE/Ru]₀ = 1000:1.
Figure S3. GPC traces of REMP of COE using UC-5 at different conversions. Conditions: [COE]₀ = 0.5 M in CH₂Cl₂ at 40 °C, [COE/UC-5]₀ = 1000.

Figure S4. GPC traces of REMP of COE using SC-5 at different conversions. Conditions: [COE]₀ = 0.5 M in CH₂Cl₂ at 40 °C, [COE/UC-5]₀ = 1000.

Figure S5. GPC traces of PCOE (red trace) prepared from COE oligomeric macrocycle (blue trace) using SC-5. COE oligomeric macrocycle was prepared under high dilution ([COE]₀ = 0.1 M). Conditions: [COE]₀ = 0.5 M in PhCH₃ at 40 °C, [Olefin/SC-5]₀ = 500.
Figure S6. 1H-NMR spectrum of COE oligomeric macrocycle prepared under high dilution. Conditions: [COE]₀ = 0.1 M in PhCH₃ at 40 °C, [COE/SC-5]₀ = 1000.