Experimental realization of catalytic CH$_4$ hydroxylation predicted for an iridium NNC pincer complex, demonstrating thermal, protonic, and oxidant stability

Kenneth J. H. Young,a Jonas Oxaard,ab Daniel H. Ess,bc Steven K. Meier,a
Timothy Stewart,a William A. Goddard, IIIb,c and Roy A. Perianaa,c

Received (in Cambridge, UK) 5th January 2009, Accepted 12th March 2009
First published as an Advance Article on the web 23rd April 2009
DOI: 10.1039/b823303a

A discrete, air, protic, and thermally stable (NNC)Ir(m) pincer complex was synthesized that catalytically activates the CH bond of methane in trifluoroacetic acid; functionalization using NaIO$_4$ and KIO$_3$ gives the oxy-ester.

The most efficient methane hydroxylation catalysts utilize PdII, PtII, HgII, or AuIII cations that operate by a sequence of electrophilic CH bond activation (CHA) followed by reductive oxy-functionalization (ROF). Because of their electrophilic character, these catalysts are highly susceptible to poisoning by water or methanol, requiring strong acid solvents to minimize this inhibition. To minimize this inhibition we are modifying the highly effective Pt(bipyridine)Cl$_2$ motif1,3 to reduce its electrophilicity by increasing the electron density at the metal center.

In 2003 Goddard and co-workersab used the mechanism that they had establishedab for the (bpym)PtCl$_2$ system to set up a quantum mechanical rapid prototyping (QMRP) strategy enabling 1000s of ligand–metal oxidation state and solvent conditions to be sampled rapidly. This study showed that IrIII complexed to an NNC ligand motif (a simplified version of 1-TFA) should react with methane by CHA with an activation barrier $<$ 30 kcal mol$^{-1}$, should not be poisoned by H$_2$O, and could undergo reductive functionalization through an IrV intermediate to generate a functionalized product.

We report here the experimental realization of this predicted system. This study provides a lesson in using QM theory to examine a large number of systems to quickly narrow the candidates down to a select few, and shows the experimental processes required to develop a stable functional catalyst.

The first step was to extend the functional groups in the simplified NNC ligand to form a stable framework using donating C-ligands.3d However, the key challenges are ensuring catalyst stability, maintaining efficient CHA,5,7 and developing compatible oxy-functionalization reactions.3a,8,9

Because Ir(i) to Ir(m) conversion is likely with electron-donating ligands under protic and oxidizing conditions (e.g. Scheme 1A),8 we focused our efforts on catalytic systems based on CHA with Ir(m) followed by either direct O-atom insertion10 from YO and then hydrolysis (Scheme 1B) or oxidation by YO to an IrV-CH$_3$ species, followed by ROF (Scheme 1C).9 We observed that treatment of (NN)(NC)Ir(m)(Me)OTf (NN = η^3-(V,C-3)-6-phenyl-2,2'-bipyridine) with Ph$_2$I(TFA)$_2$ (PITFA)9 leads to efficient ROF to generate methyl oxy-esters, presumably via an IrV–CH$_3$ intermediate, we designed a catalyst that would activate the methane CH bond with an Ir(m) motif and then utilize a similar ROF route.

We report an (NNC)IrIII pincer complex (NN = η^3-6-phenyl-2,2'-bipyridine) that catalytically activates and functionalizes methane. Scheme 2 shows the synthetic route to the trans(Et,TFA)-(NNC)BuIr(TFA)(C$_2$H$_4$)Et, 1-TFA (TFA = trifluoroacetate). Treatment of 6-phenyl-4,4'-di-tert-butyl-2,2'-bipyridine (NNCBu) with [Ir(C$_2$H$_4$)$_2$Cl]$_2$ led to the corresponding tridentate trans((E)L-E)-(NNCBu)IrCl(C$_2$H$_4$)Et complex (1-Cl) in ~ 66% yield as an air-stable solid. 1-Cl has been fully characterized. Treatment of 1-Cl with AgTFA in CH$_2$Cl$_2$ replaces the Cl$^-$ with the less coordinating trifluoroacetate, CF$_3$CO$_2^-$, group to generate (NNCBu)Ir(C$_2$H$_4$)$_2$, 1-TFA, which has been fully characterized. Fig. 1 shows the X-ray crystal structure. Formation of 1-TFA is also supported by appearance of a new resonance at $-$78.99 ppm in the 19F spectra.

Dissolution of 1-TFA in trifluoroacetic acid (HTFA) releases ethane with formation of (NNCBu)Ir(TFA)$_2$(C$_2$H$_4$) (1-TFA$_2$), which has been fully characterized.11 Heating 1-TFA$_2$ in HTFA solvent leads to loss of ethylene with formation of a solution of the solvent complex,
GC-MS indicated that for 2 h at 180 °C expected pyridine complex, (NNC)Pt(II), and Pt(bpym)Cl₂ show no H/D exchange. In situ trapping with pyridine leads to quantitative formation of the stable in HTFA after heating at 180 °C. However, consistent with the formation of these complexes, (NN)(NC)Ir(III), and Pt(bpym)Cl₂–H₂SO₄ system, the most efficient CH activation system that catalyzes methane hydroxylation.

This journal is © The Royal Society of Chemistry 2009

Heating a stirred solution of DTFA–CH₄ with NaIO₄ and CH₄ in DTFA but the rate of formation of MeTFA was confirmed by ¹H, ¹³C, and ¹⁹F NMR and by GC-MS and HPLC. The catalyst activity is noted that under identical conditions, related complexes such as (NN)(NC)Ir(III), (NN)Pt(II), and Pt(bpym)Cl₂ show no H/D exchange. The rate of methane CH activation is comparable to the Pt(bpym)Cl₂–H₂SO₄ system, the most efficient CH activation system that catalyzes methane hydroxylation.

Kinetic analysis shows that the rate of formation of the various isotopologs is consistent with a Schultz–Flory type of reaction sequence for a reaction mechanism where each encounter methane molecule with the catalyst leads to a single H/D exchange. This contrasts with our results on (bpym)PtCl₂ where each encounter can lead to more than one exchange and simultaneous generation of all the methane isotopologs. Rate data obtained between 105 °C and 135 °C give ΔH = 24 ± 3 kcal mol⁻¹ for H/D exchange between CH₄ and DTFA.

Analysis of the reaction mixture by ¹H NMR revealed that multiple Ir complexes were present but that the NNC-ligand remained coordinated (at least through an NN binding mode) to the Ir center. However, extensive deuterium incorporation into the phenyl ring is observed (see B3LYP calculations). At temperatures above 150 °C, slow loss of catalytic activity is observed with 1-TFA and at 180 °C catalysis stops after ~6 h. However, 1A and 1B are still present in small amounts but the majority of the solution is composed of two new species. The catalyst is more stable at lower temperatures and at 105 °C ~62 turnovers were observed after 45 h without any loss in activity.

H/D exchange does not occur in weaker, more coordinating acids, such as acetic acid at 180 °C. Consistent with the CHA reaction proceeding via reversible substrate coordination, followed by CH cleavage, the addition of DMSO, a strongly coordinating ligand, leads to complete reaction inhibition. Further support for a CH activation mechanism is the observation that methane H/D exchange is also observed in non-acidic media. Thus, heating a solution of 1-TFA in neat C₆D₆ with CH₄ (514.7 psi) at 140 °C for 6 h led to methane H/D exchange (~60 turnovers, 5.3% CH₂D, 0.7% CH₂D₂). In addition to methane, 1-TFA also catalyzes H/D exchange with linear and cyclic alkanes such as octane, cyclohexane, and cyclooctane in trifluoroacetic acid. With octane we observed primarily C-1 and C-2 CHΑ on the basis of ²H and ¹³C NMR analyses.

Having established rapid H/D exchange with 1-TFA, we examined if added oxidants would facilitate overall catalytic, selective, oxidation of methane to methyl trifluoracetate (MeTFA). Initial attempts to form MeTFA with the hypervalent iodine oxidant, PITFA, used with the (NN)(NC)Ir(III)–CH₃ system were unsuccessful. However, when a solution of 1-TFA in DTFA is heated with methane (514.7 psi) at 180 °C for 3 h with NaIO₄ as the oxidant, MeTFA is produced (TON = 6.3). There is a background reaction between NaIO₄ and CH₄ in DTFA but the rate of formation of MeTFA with 1-TFA is faster (see ESI†). Formation of MeTFA was confirmed by ¹H, ¹³C, and ¹⁹F NMR and by GC-MS and HPLC. When the reaction was carried out with 100% ¹³CH₄, only ¹³CH₃OC(O)CF₃ was observed by ¹³C NMR and GC-MS. The catalyst activity is <6 h and the maximum yields of MeTFA based on methane, were <5%. At 160 °C the reaction is slower, and after 5 h, 2.0 turnovers of MeTFA were observed with 1-TFA. KIO₃, a weaker oxidant, also generated MeTFA but at lower rates than KIO₄. Such oxidants as nitrous oxide, urea hydrogen peroxide, and pyridine oxide, did not generate MeTFA. Oxidants such as Na₂S₂O₈, OsO₄, or K₂Os(O)₂(OH)₄ did generate MeTFA, but with less than 1 turnover.

Several CHΑ mechanisms were explored using B3LYP DFT. Fig. 2 outlines the three lowest energy reaction pathways leading to methane C–H bond cleavage by a model 1-TFA complex. We find spontaneous loss of ethane and ethylene from 1-TFA to give an equilibrium between 1A

This journal is © The Royal Society of Chemistry 2009

acetic acid. Functionalization of catalytically activates the CH bond of methane in trifluoro-
cyclometalated phenyl group to give deuterated cis-methane coordination structures, not trans.
(3.4 kcal mol⁻¹) and 1B (0.0 kcal mol⁻¹). From 1B, the κ²-bond acetate can rearrange to either of two η¹ configurations, allowing two different methane coordination sites. Because of the σ-electron-donating capacity of the NNC ligand, the breaking the Ir–O bond trans to this ligand, giving trans, is only 3.9 kcal mol⁻¹ above 1B, while cis-2 requires 14.9 kcal mol⁻¹ to generate the cis open coordination site. The methane complexes with trans and cis have enthalpies of 4.1 and 6.5 kcal mol⁻¹, respectively.

The lowest energy transition states for C–H bond cleavage are via a six-membered substitution mechanism, cis-2TS with a barrier of 22.1 kcal mol⁻¹ and the trans-2TS that is 1.1 kcal mol⁻¹ higher (see ESi for M06 and M06-2X energies).¹⁴

In these six-membered TSs, the CF₃CO₂⁻ group assists in the cleavage of the C–H bond, simultaneously forming Ir–C and O–H bonds. Intermediate cis-3, generated from cis-2TS, is endothermic by 16.8 kcal mol⁻¹ revealing why no Ir–CH₃ species was detected.

From cis-2, the TS for methane activation by the cyclometalated phenyl group, OHM-2TS (24.1 kcal mol⁻¹), is only 2 kcal mol⁻¹ higher in energy than cis-2TS. This oxidative hydrogen migration (OHM) transition state has a characteristic short Ir–H distance (1.56 Å) and no intervening iridium hydride intermediate between cis-2 and cis-4. The intermediate formed from OHM-2TS is cis-4, and is ~9 kcal mol⁻¹ more stable than cis-3. Therefore, deuterium incorporation into the phenyl ring may occur because of OHM-2TS or cis-3 exchanges of HTFA for DTFA followed by deuterium transfer to the cyclometalated phenyl group to give deuterated cis-4.

In summary, we have synthesized a discrete, air, protic, and thermally stable (NNC)Ir(m) pincer motif, 1-TFA, that catalytically activates the CH bond of methane in trifluoro-acetic acid. Functionalization of 1-TFA using NaIO₄ and KIO₃ gives MeTFA.

We thank Chevron Energy Technology Company and Scripps Florida for financial support.

Notes and references

2) Functionalization is defined as conversion of M–R intermediates to R-heteroatom products.

11) Small amounts of 1A were also observed. However, during isolation the bound HTFA was replaced with water. The formation of the aquo complex is supported by ⁴⁰NMR, see ESi.

