A Caltech Library Service

Spitzer Space Telescope Observations of the Nucleus of Comet 103P/Hartley 2

Lisse, C. M. and Fernandez, Y. R. and Reach, W. T. and Bauer, J. M. and A'Hearn, M. F. and Farnham, T. L. and Groussin, O. and Belton, M. J. and Meech, K. J. and Snodgrass, C. D. (2009) Spitzer Space Telescope Observations of the Nucleus of Comet 103P/Hartley 2. Publications of the Astronomical Society of the Pacific, 121 (883). pp. 968-975. ISSN 0004-6280.

PDF - Published Version
See Usage Policy.


Use this Persistent URL to link to this item:


We have used the Spitzer Space Telescope InfraRed Spectrograph (IRS) 22-μm peakup array to observe thermal emission from the nucleus and trail of comet 103P/Hartley 2, the target of NASA’s Deep Impact Extended Investigation (DIXI). The comet was observed on UT 2008 August 12 and 13, while 5.5 AU from the Sun. We obtained two 200 frame sets of photometric imaging over a 2.7 hr period. To within the errors of the measurement, we find no detection of any temporal variation between the two images. The comet showed extended emission beyond a point source in the form of a faint trail directed along the comet’s antivelocity vector. After modeling and removing the trail emission, a NEATM model for the nuclear emission with beaming parameter of 0.95 ± 0.20 indicates a small effective radius for the nucleus of 0.57 ± 0.08 km and low geometric albedo 0.028 ± 0.009 (1σ). With this nucleus size and a water production rate of 3 × 10^(28) molecules s^(-1) at perihelion, we estimate that ~100% of the surface area is actively emitting volatile material at perihelion. Reports of emission activity out to ~5 AU support our finding of a highly active nuclear surface. Compared to Deep Impact’s first target, comet 9P/Tempel 1, Hartley 2’s nucleus is one-fifth as wide (and about one-hundredth the mass) while producing a similar amount of outgassing at perihelion with about 13 times the active surface fraction. Unlike Tempel 1, comet Hartley 2 should be highly susceptible to jet driven spin-up torques, and so could be rotating at a much higher frequency. Since the amplitude of nongravitational forces are surprisingly similar for both comets, close to the ensemble average for ecliptic comets, we conclude that comet Hartley 2 must have a much more isotropic pattern of time-averaged outgassing from its nuclear surface. Barring a catastrophic breakup or major fragmentation event, the comet should be able to survive up to another 100 apparitions (~700 yr) at its current rate of mass loss.

Item Type:Article
Related URLs:
URLURL TypeDescription
Reach, W. T.0000-0001-8362-4094
Additional Information:© 2009 Astronomical Society of the Pacific. Received 2009 May 11; accepted 2009 June 24; published 2009 August 20. This work is based on observations taken with the Spitzer Space Telescope, which is operated by JPL/Caltech under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. This research made use of Tiny Tim/Spitzer, developed by J. E. Krist for the Spitzer Space Center. The authors would like to thank D. K. Yeomans for valuable discussions concerning the effects of nongravitational forces on comets, and H. A. Weaver, for results from the latest optical observations of comet Hartley 2.
Funding AgencyGrant Number
Record Number:CaltechAUTHORS:20090916-122437821
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:15882
Deposited By: Jason Perez
Deposited On:16 Sep 2009 21:40
Last Modified:02 Mar 2017 04:30

Repository Staff Only: item control page