Deep-Sea Archaea Fix and Share Nitrogen in Methane-Consuming Microbial Consortia

Anne E. Dekas,* Rachel S. Poretsky, Victoria J. Orphan*

Nitrogen-fixing (diazotrophic) microorganisms regulate productivity in diverse ecosystems; however, the identities of diazotrophs are unknown in many oceanic environments. Using single-cell–resolution nanometer secondary ion mass spectrometry images of 15N incorporation, we showed that deep-sea anaerobic methane-oxidizing archaea fix N2 as well as structurally similar CN−, and share the products with sulfate-reducing bacterial symbionts. These archaeal/bacterial consortia are already recognized as the major sink of methane in benthic ecosystems, and we now identify them as a source of bioavailable nitrogen as well. The archaea maintain their methane oxidation rates while fixing N2, but reduce their growth, probably in compensation for the energetic burden of diazotrophy. This finding extends the demonstrated lower limits of respiratory energy capable of fueling N2 fixation and reveals a link between the global carbon, nitrogen, and sulfur cycles.

Nitrogen-fixing (diazotrophic) bacteria and archaea convert dinitrogen (N2) into ammonia (NH3) for assimilation. Biological N2 fixation counters the removal of bioavailable N by microbial processes such as denitrification and anaerobic ammonium oxidation (anammox) and provides a source of N to the majority of the biosphere that cannot directly assimilate N2. Many photosynthetic cyanobacteria fix N2 in ocean surface waters and have been the primary focus of studies on marine diazotrophy. Recently, a discrepancy between the calculated rates of oceanic denitrification and N2 fixation has suggested that other less well-studied or currently unknown diazotrophic microorganisms may exist and fix substantial amounts of N2 (1–5). Indeed, recent discoveries of new phylogenetically and physiologically diverse diazotrophs, including hyperthermophilic methanogens from hydrothermal vents (6), have shown that N2 fixation can occur in extreme environments and localized habitats of enhanced productivity in the deep sea (5, 7, 8).

Here we show that syntrophic aggregates of archaea (of the ANME-2 group) and bacteria [Desulfosarcina/Desulfococcus (DSS)] mediating sulfate-dependent anaerobic oxidation of methane (CH4) (AOM) in deep-sea sediments are capable of N2 fixation. The ANME-2/DSS consortia have been studied in recent years both because of their potentially critical role in marine carbon cycling and their enigmatic obligate symbiosis (9, 10). These consortia are most abundant in areas of high CH4 concentration, such as cold seeps, but are present throughout continental margin sediments [9 (and references therein)]. They currently represent the main filter for oceanic CH4 release to the atmosphere, consuming up to 80% of naturally released CH4 in marine sediments (9); however, the specific mechanism(s) coupling the ANME-2 and DSS cells remains unclear. Recent metagenomic sequencing of the ANME-2/DSS consortia identified the presence of nitrogenase genes required for N2 fixation (nif genes) (11). This result, along with preliminary N isotope data, suggests that microbes within the consortia are able to fix N (11). We used submicron-scale ion imaging by nanometer secondary ion mass spectrometry (nanoSIMS) coupled to fluorescence in situ hybridization (FISH) to specifically identify the ANME-2 species as diazotrophs while detailing and quantifying patterns of N assimilation within the individual members of these metabolically interdependent consortia.

Sediment samples from an active CH4 seep in the Eel River Basin, California, USA, were collected and anaerobically incubated with CH4 and one of several 15N-labeled N sources (12) (table S1). Nitrogen fixation, as demonstrated by the assimilation of 15N into 15N2 in coaggregated ANME-2 and DSS cells, occurred in all AOM consortia measured after 6 months of incubation with CH4 (12) (Fig. 1A and B, and Fig. 2A). 15N enrichment within the consortia was as high as 10.5 15N atom %, which is 26 times the highest value observed in unlabeled ANME-2/DSS consortia.
consortia (ranging from 0.35 to 0.4 \(^{15} \text{N} \) atom %). Inhibition of either \(\text{CH}_4 \) oxidation (incubations lacking \(\text{CH}_4 \)) or sulfate reduction \[\text{incubations treated with the inhibitor sodium molybdate (Na}_3\text{MoO}_4 \] prevented \(^{15} \text{N} \) incorporation (Fig. 2), implying that \(\text{N}_2 \) fixation requires a functioning symbiosis between the \(\text{CH}_4 \)-oxidizing ANME-2 and sulfate-reducing DSS partners. Other microbial cells from the \(^{15} \text{N}_2 \) incubation were not enriched in \(^{15} \text{N} \) (maximum 0.38 \(^{15} \text{N} \) atom %, \(n = 10 \) cells), suggesting that \(^{15} \text{N}_2 \) incorporation was specific to the ANME-2/DSS consortia over the incubation period and not due to nonspecific cycling of reduced \(^{15} \text{N} \) after fixation by an unrelated group of organisms. \(^{15} \text{N} \) was also incorporated from \(^{15} \text{N} \)-labeled cyanide \((\text{C}^{15} \text{N}) \), a toxic molecule structurally similar to \(\text{N}_2 \) and known to be detoxified and assimilated by some, but not all, diazotrophs \((I) \) (Figs. 1D and 2A). The broad substrate recognition by nitrogenase is hypothesized to be a relict ability from when the protein first evolved, when \(\text{N}_2 \) fixation appears to be primarily mediated by ANME-2, based on the distribution of \(^{15} \text{N} \) within the consortia. In aggregates of shelled morphology \((\text{an inner sphere of archaeal cells surrounded by an outer layer of bacterial cells, approximately 500 cells total; } n = 5 \text{ aggregates}) \), the \(^{15} \text{N} \) label was concentrated in the center of the aggregate, where the ANME-2 biomass was concentrated \((\text{Figs. 1A and 3}) \). Additionally, ANME-2/DSS aggregates showed \(^{15} \text{N} \) enrichment colocalized with light \(^{13} \text{C} \) biomass, a signal diagnostic of methanotrophic ANME-2 consortia \((I) \) \(n = 6 \) aggregates; fig. S1). This differs from the variable pattern of \(^{15} \text{N} \) incorporation observed in the majority of aggregates from incubations amended with \(^{15} \text{N} \)-labeled ammonium \((\text{NH}_4^+ \) and nitrate \((\text{NO}_3^- \) and indicates that the elevated enrichment from \(^{15} \text{N}_2 \) within the ANME-2 archaea is attributable to diazotrophic activity, not simply a varying rate of protein synthesis between species \(\text{Fig. 1} \). Serial FISH and SIMS images collected through individual aggregates reveal the three-dimensional distribution of \(^{15} \text{N} \) assimilation from \(^{15} \text{N}_2 \) within AOM consortia \(\text{Fig. 3} \). The difference in \(^{15} \text{N} \) atom % between the group of cells on the aggregate exterior (DSS-dominated) and the group in the interior \((\text{ANME-dominated}) \) became greater with increasing penetration into the core of the aggregate, corresponding to an increasingly pure population of ANME in the interior \(\text{Fig. 3} \). Although the aggregate exterior averaged 31% less \(^{15} \text{N} \) enrichment than the interior, all of the DSS cells on the periphery of the aggregate were enriched in \(^{15} \text{N} \) relative to natural abundance \(\text{average } ^{15} \text{N} \text{ atom } \% = 3.47 \text{ exterior } [n = 313 \text{ regions of interest (ROIs)}] \) and 5.01% interior \([n = 297 \text{ ROIs} \text{, fig. 3} \), suggesting a passage of reduced \(\text{N} \) from the ANME cells in the interior to the DSS-dominated exterior. The reduced \(^{15} \text{N} \) enrichment in the DSS cells relative to the ANME cells is consistent with the trend observed in \(^{15} \text{N} \) labeling studies of other symbioses, in which reduced \(\text{N} \) is shared between a diazotrophic and a nondiazotrophic partner \((18, 19) \). Transfer of reduced \(\text{N} \) species between symbionts is common, often in exchange for energy-rich metabolites or structural protection \((20) \). It is possible that inherent variations in metabolism and growth between the two partners may also lead to an offset in \(^{15} \text{N} \) enrichment \((21) \), and the possibility of concurrent fixation by both syntrophic partners differing rates cannot be excluded at this time. However, in the context of molecular data acquired in parallel, this scenario appears less likely.

The analysis of \(\text{nif} \) sequences recovered from the \(^{15} \text{N}_2 \) sediment incubation was consistent with previous reports of a \(\text{CH}_4 \) seep–specific \(\text{nif}/\text{H} \) clade \(\text{fig. S2} \). The diverse \(\text{nif}/\text{H} \) genes recovered clustered primarily within a divergent clade of sequences reported from geographically distant deep-sea \(\text{CH}_4 \) seeps and whole-cell enrichments of ANME-2/DSS consortia from the Eel River Basin \((I) \) \(\text{fig. S2} \). The existence of this \(\text{nif}/\text{H} \) clade highlights the strong similarities between putative diazotrophs at geographically distant \(\text{CH}_4 \) seeps; however, its divergence from known diazotrophs has made previous attempts to assign the clade to either the Bacteria or Archaea speculative \((22) \). We therefore collected and analyzed partial \(\text{nif} \) operons from the incubations and found that they contained the typical gene
order (nif/H, nif/I1, nif/I2, nif/D, and nif/K) of the C-type operon in methanogenic archaea and some nonproteobacterial anaerobic diazotrophs (23) (fig. S3). Additionally, the nif/D phylotypes within these operons grouped within a well-supported clade containing sequences retrieved from other CH4 seep sediment samples, methanogenic archaea (Methanococcus, 49% similarity), and nonproteobacterial N-fixing lineages rarely found at CH4 seeps but which have been hypothesized to have undergone lateral gene transfer with archaea (such as Clostridia and Roseiflexus spp.) (23, 24) (Fig. 4). In the context of seep microorganisms, these data are most consistent with an archaeal origin for these operons. The nif/H fragments of the partial operons cluster within the putatively seep-specific nif/H clade, suggesting that this clade is archaeal, and supporting our designation of the ANME-2 archaea as the primary diazotrophic microorganism in the consortia.

N2 fixation in ANME-2/DSS consortia is intriguing from an energetic standpoint; its cost is one of the highest for any anabolic process, requiring an investment of up to 16 adenosine triphosphate molecules (equivalent to ~800 kJ) for each N2 molecule reduced (8). Moreover, AOM coupled to sulfate reduction is thought to be one of the least energetically productive metabolisms known (10). At CH4 seeps, coupled CH4 oxidation and sulfate reduction reactions yield a total of approximately 40 kJ/mol of CH4 (10) that must be shared between the two syn-
trophic partners. Although other energy-limited diazotrophic microorganisms exist (such as methanogens) none to our knowledge generate less energy per mole of substrate than the ANME-2 species. One possibility is that in unusual environments, such as the deep sea, structural or mechanistic differences in the N₂ fixation machinery may alter the energetic burden. The low sequence similarity of the recovered nif genes to those previously described suggests some deviation from characterized N₂-fixing systems (Fig. 4 and figs. S2 and S3).

Slowed growth is a common response to the energetic burden of N₂ fixation in active diazotrophs, including methanogenic archaea (25). Accordingly, using ¹⁵N incorporation as a proxy for growth, the ANME-2/DSS consortia in this study actively fixing N grew approximately 20 times slower on average than aggregates grown in parallel with ammonium (Fig. 2). Although ANME-2/DSS growth rates are substantially affected by the available N source, the rate of AOM by the consortia (estimated by CH₄-dependent sulfide production (12)) was similar during growth on either N₂ or NH₄ (Fig. 2B). Therefore, regardless of the exact amount of energy required to fix N₂ in these organisms, the consortia appear to compensate for the energetic burden of N₂ fixation by slowing growth while maintaining similar rates of respiration.

The maintenance of nif genes by the ANME-2 cells, and their consortial ability to fix N in the laboratory, imply that they do so in marine environments. Diazotrophy within deep-sea CH₄ seeps has not been detected directly, but N₂ fixation has been suggested at these locales, based on low ⁶⁴⁵N values of seep sediment and fauna (26, 27). Why N₂ fixation would occur in anoxic marine sediments, often replete with ammonium, warrants further consideration. One explanation is that the CH₄ seep environment differs from typical anoxic sediment in that the main source of C (CH₄) is unaccompanied by N, poising its consumers for N limitation, similar to photoautotrophs (8) and aerobic methanotrophs (28). Indeed, measurements of pore water ammonium from the Eel River Basin CH₄ seeps were highly variable, ranging from 101 to 16 µM over a 6-cm sediment depth profile; these concentrations would not completely inhibit N₂ fixation in cultured diazotrophic methanogens (such as Methanococcus maripaludis) (29). Even in ammonium-replete sediments, localized zones of N limitation may occur (for example, within

![Fig. 4. Unrooted neighbor-joining tree of translated nifD sequences after global alignment. Bootstrap values from 85 to 100% (solid circles) and from 70 to 85% (open circles) are indicated at the nodes. The scale bar represents changes per amino acid position. The sequences obtained in this study are shown in bold. Alternative nitrogenases are those that use V-Fe and Fe-Fe cofactors (unfD and anfD, respectively). Roman numerals represent nitrogenase clusters as originally defined in (30). Names of sequences represented by numbers can be found in table S2.](www.sciencemag.org)
d himself microbe consortia). Although the loss of nitrate and ammonium from CH$_2$H$_2$N$_2$ sediments by catabolic bacterial processes (such as denitrification or ammonium) has not yet been determined, these sinks for N$_2$ fixed may also promote enhanced diazotrophy by the in situ microbial assemblage (3). Additionally, the current discrepancy in the oceanic fixed N budget underscores the possibility of new sources of fixed N in nontraditional and potentially unexpected habitats (1–3, 7). The extent to which the ANME-2/DSS consortium contribute to the putatively missing fraction of global fixed N inputs is unknown, but their input is probably not the only missing term in the equation. N$_2$ fixation in ANME-2, combined with the diversity of nif H genes recovered from marine sediments here and previously (5, 11, 22), suggests that our inventory of marine diazotrophs is incomplete and that we are only beginning to understand the extent and importance of benthic marine N$_2$ fixation.

References and Notes
12. Information on methods and materials is available on Science Online.

Generation of Functional Ventricular Heart Muscle from Mouse Ventricular Progenitor Cells

Ibrahim J. Domian,1,2* Murali Chiravuri,† Peter van der Meer,1,3* Adam W. Feinberg,4 Xi Shi,1 Ying Shao,1 Sean M. Wu,1,2 Kevin Kit Parker,†,4,5 Kenneth R. Chien†,2,6†

The mammalian heart is formed from distinct sets of first and second heart field (FHF and SHF, respectively) progenitors. Although multipotent progenitors have previously been shown to give rise to cardiomyocytes, smooth muscle, and endothelial cells, the mechanism governing the generation of large numbers of differentiated progeny remains poorly understood. We have employed a two-colored fluorescent reporter system to isolate FHF and SHF progenitors from developing mouse embryos and embryonic stem cells. Genome-wide profiling of coding and noncoding transcripts revealed distinct molecular signatures of these progenitor populations. We further identify a committed ventricular progenitor cell in the Islet 1 lineage that is capable of limited in vitro expansion, differentiation, and assembly into functional ventricular muscle tissue, representing a combination of tissue engineering and stem cell biology.

†These authors contributed equally to this work.
‡To whom correspondence should be addressed. E-mail: krchien@partners.org

To delineate the in vivo expression of the reporters, we performed immunohistochemistry on E9.5 embryos and found that dsRed+/eGFP+ cells (R+G+) were restricted to the RV and OFT, dsRed-/eGFP+ cells (R-G+) to the left ventricle (LV) and inflow tract (IFT), and dsRed+/eGFP– cells (R-G–) to the PM (Fig. 1D).

Embryonic stem cell (ESC) lines make use of many of the in vivo developmental programs, providing an attractive model system for lineage commitment. Therefore, we generated multiple ESC lines that harbor both the Nkx2.5-eGFP and the SHF-dsRed reporters (fig. S1A). Fluorescence microscopy of chimeric embryos from these ESC lines revealed faithful recapitulation of marker expression (fig. S1, B and C). In vitro differentiation by embryoid body (EB) formation resulted in discrete populations of R+G+, R+G–, and R-G+ cells by EB day 6 (fig. S1D).

‡Cardiovascular Research Center, Massachusetts General Hospital, Charles River Plaza, CPZ2 3200, 185 Cambridge Street, Boston, MA 02114–2790, USA.1Harvard Stem Cell Institute, Cambridge, MA 02138, USA.2Department of Cardiology, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, Netherlands.3Disease Biophysics Group, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.4The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.5Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.6Harvard University, Cambridge, MA 02138, USA.

*These authors contributed equally to this work.