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The ~ine~ics of evaporation of liquids has J:een reconsid~red from the point of view of classical react.ion kinetics and also 
b.¥thPphcatlOn of th~ theory of absolute reactIOn rates. It IS shown that evaporation treated as a unimolecular rate process 
WI I a {ate pr?l1odrtlOnal to the surface .concentration of energetic molecules, leads to the Knudsen equation for sphericai 
mo ecu es provI e 6 sq~are terms contnbute to the energy of activation. As was pointed out in an earlier publication the 
t~eorr of absolute reactlOn rates, after correction for lack of equilibrium between normal molecules and the activated ~om 
p ~x, ea1s ~o the. Knudsen equation f?r sphe.rically symn:etric molecules if reasonable assumptions are made concerning th~ 
~a ure 0 ~ e act1Vat~d comp!ex. EVIdence IS presented m support of the idea that the equilibrium theory of absolute reac­
tlOn rates IS not consIste,nt :n1th ~he mod~1 of the liquid used to determine evaporation rates. The theoretical treatment is 
n~~ eh:tenf ded to polar. hqUlds Wlt~ restn?ted rotation and it is shown that the evaporation coefficient should be identified 
WIt t e ree-angle ratlO, a conclusIOn WhICh has been verified quantitatively by Wyllie. 1 

I. Introduction 
The theory of absolute reaction rates 2 has been 

applie.d i~ previous publications to an analysis of 
the kInetICs of evaporation of liquids,3 which has 
also.bee~ examined by straightforward applications 
of kInetIC theory4 and elementary reaction kinetics. 5 

The analysis using the theory of absolute reaction 
rates has been based on the free-volume model of 
th~ li9uid rather ~ha.n on the more adequate de­
scnptIOn of the lIqUId state developed by Kirk­
wood6 and by Born and Green. 7 By introducing 
the hypothesis that the activated state formed dur­
ing ev~poration corresponds to a molecule moving 
freely In an area equal to the two-thirds power of 
the volume per molecule in the liquid it was shown 
that a relation of the same form as' the Knudsen 
equation is ?btained for the specific evaporation 
rate. Here It was assumed that the rotational and 
vibrational partition functions of the liquid mole­
cules and of the activated complex are the same.3 
Furthermore, the specific evaporation rate was 
shown to be practically identical with the Knudsen 
equation. (with a transmission coefficient replacing 
the empIrIcally observed evaporation coefficient8) 

afte!. a .suitable correction, suggested by the non­
eqUllIbrIum theory of absolute reaction rates 9 had 
been introduced. Thus it has been shown th~t ab­
solute reaction rat.e t~eory, together with a simpli­
fied model of the bqUId state, can be used to derive 
a relation for the evaporation rate which is known 
to have the correct functional form. 
. T~e tre~tment giyen previously applies only to 

bqUIds WIth spherIcally symmetric force fields 
which allow free rotation. For pure liquids of this 
type the evaporation coefficient is known to be 

(1) G. Wyllie. Proc. Roy. Soc. (London), 197A, 383 (1949). 
(2) S. Glasstone, K. J. Laidler. and H. Eyring, "The Theory of 

Rate Processes," McGraw-Hill Book Co., Inc., New York, N. Y., 
1941. 

(3) S. S. Penner, THIS JOURNAL, 52, 950 (1948); ibid., 52, 1262 
(1948). 

(4) J. Frenkel, "Kinetic Theory of Liquids," Clarendon Press, Ox­
ford, 1946, Chap. I; Z Physik, 26, 117 (1924). 

(5) S. S. Penner, THIS JOURNAL, 52, 368 (1948). 
(6) J. G. Kirkwood, et al., J. Chern. Phy8., 18, 1040 (1950), and 

earlier publications. 
(7) M. Born and H. S. Green, "A General Kinetic Theory of Liq­

uids," Cambridge University Press, Cambridge, 1949; also Proc. 
Roy. Soc. (London), Volumes lS8A to 194A. 

(8) The evaporation coefficient is defined as the ratio of the observed 
rate of evaporation to the ev-aporation rate calculated from the Knud~ 
sen equation. 

(9) J. O. Hirschfelder. J. Chem. Phys., 16, 22 (1948) 

close to unity,1O whence it follows that the trans­
mission coeffic}ent must also be equal to unity in 
order to obtam agreement between experimental 
data and the result derived from the theory of 
absolute reaction rates. 

Recently Wyllie! has called attention to an in­
teresting quantitative correlation between the 
evaporation coefficient for polar liquids and the 
free-angle ratio introduced by Kincaid and Eyringll 

to allow for restricted rotation in the liquid. We 
shall show that this result is a direct consequence of 
our simplified rate theory when applied to polar 
liquids. 

Before presenting the extension of the simplified 
theory for the kinetics of evaporation to polar liq­
u,ids, we shall reconsider the problems of evapora­
tIOn rates from the point of view of classical reac­
tion kinetics in order to amplify some of the nu­
n;erical ?alc~lations described previously.5 In par­
tICular, It wIll be shown that evaporation treated as 
a unimolecular process, with the evaporation rate 
proportional to the concentration of energetic mole­
c~les. a~ t~e surface, will lead to the Knudsen equa­
tIOn If It IS assumed that 6 square terms contribute 
to the activation energy.12 Finally, the problem of 
applicability of the non-equilibrium theory of abso­
lute reaction rates is reconsidered. It is shown 
that the assumption of equilibrium between normal 
molecules and the activated complex leads to the. 
requirement of an abnormally long energy barrier, 
thereby suggesting that equilibrium rate theory is 
not applicable to the problem at hand. Compell­
ing reasons for u.sing the part;cular non-equilibrium 
model considered by Hirschfelder9 are, however, 
not apparent. 

II. Evaporation Rates as a Problem in Classical 
Chemical Kinetics 

A treatment of evaporation rates based on classi­
cal reaction kinetics requires the assumption of a 
specific mechanism for evaporation. Since vapori­
zation is a surface phenomenon, it seems reasonable 
to suppose that the rate of loss of molecules -dnv/ 
dt from a given volume V is proportional to the 
number of molecules ns exposed at the surfacQ, i.e. 

(10) E. H. Kennard, "Kinetic Theory of Gases," McGraw-Hill 
Book Co., Inc., New York, N. Y., 1938, pp. 68-71. 

(11) .J. F. Kincaid and H. Eyring, J. Chern. Phys .• 6, 620 (1938). 
(12) L. KaEisel, "Kinetics of Homogeneous Gas Reaction," Chemical 

Catalog Company, (Reinhold Pubt. Corp.), New York, N. Y., 1932. 
Chapter V. 
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-dnv/dt = jens (1) 

where je is a rate constant for evaporation. Since 
nv = n V and ns = n'laS, where n is the number of 
molecules per unit volume and S is the surface area 
of the evaporating compound, it follows that 

-pn dV /dt = iJj.n',.S 

or 

G = -p(l/S) (dV/dt) = j.p/n'h (2) 

Here p is the density of the evaporating compound 
and G, the specific evaporation rate, represents the 
rate at which mass is lost by evaporation per unit 
time per unit surface area. 

On the basis of elementary considerations in 
chemical reaction kinetics it seems intuitively obvi­
ous to equateje to the product of a frequency factor 
whose dimensions are sec. -1 and an exponential 
factor involving an appropriate activation energy 
to single out the fraction of molecules with sufficient 
energy for evaporation. Therefore we may write 

j. = B exp( -t:.Ev/RT) (3) 

where !1Ev is the molar activation energy for evap­
oration, R is the molar gas constant, T is the abso­
lute temperature, and B is the as yet undetermined 
frequency factor. The term exp( -!1Ev/RT) in 
equation 3 arises because only the molecules with 
energy in excess of b.Ev per mole can evaporate, 
and the fraction of molecules possessing the re­
quired energy at any given time is exp( - !1Ev/RT). 
The molar activation energy for evaporation is re­
lated to the heat of evaporation !1Hv according to 
the well-known relation2 

t:.Hv = t:.Ev + Np.(vg - vr) (4) 

since the external work done during the expansion 
of one mole from the free volume per molecule Vr 
in the condensed state to the volume per molecule 
Vg in the gaseous state at the vapor pressure Ps is 
Nps(vg - vr) where N represents the Avogadro 
number. But VI is negligibly small compared to Vg 

whence N Ps(vg - VI) ~ RT if the vapor behaves as a 
perfect gas. It therefore follows that, to a close 
approximation 

j. = eB exp( -t:.Hv/RT) (5) 

The evaluation of the frequency factor B corre­
sponding to an upper limit for the rate of evapora­
tion can be carried out intuitively by noting that B 
should represent some sort of an upper limit for the 
oscillation or collision frequency. An upper limit 
for the collision frequency of the evaporating mole­
cules is given by the root mean square velocity 
of activated molecules divided by the mean free 
path. But the mean square velocity of activated 
molecules C2 is simply the mean square velocity of 
molecules with energy in excess of !1Ev per mole.· 
A simple calculation utilizing the Maxwell-Boltz­
mann law in two dimensions :.;hows that C2 is given 
by the relation 

C2 = --.!-i. (00 _n." e- E / RT X 2E dE 
n,e-LlEv,RT JLlEvRT M 

or 
C2 = (2/M) (t:.Ev + R7') = (2t:.Hv /M) 

where M represents the molecular weight of the 

evaporating compound. Hence the frequency fac­
tor B is 

B = VC2/VI'/' = (2t:.lIv /M)lh/v l ' h 

and, therefore, 
G = ep[(2t:.Hv/M)I/2/vl

l/an '/aj exp( -t:.Hv/RT) (6) 

where the mean free path in the liquid has been set 
equal to the cube root of the free volume per mole­
cule VI in the condensed state. The free volume Vr 
for liquids can be calculated, for example, from the 
Kincaid-Eyring expression 11 

VI = V (I/U)3 (RT-y/M)'/2 (7) 

where V is the volume per molecule in the liquid 
state, M is the molecular weight of the evaporating 
liquid, U is the sound velocity in the liquid, and 'Y 
is the ratio of the specific heat at constant pressure 
to the specific heat at constant volume. It has 
been shown that the use of equations 6 and 7 actu­
ally leads to results· which are in some cases in 
good agreement with numerical values calculated 
from the Knudsen equation, i.e., with results calcu­
lated from the relation 

G = .ps(M /27rRT)';' (8) 

where the evaporation coefficient E has been set 
equal to unity and Ps is the saturated vapor pressure 
of the evaporating compo\lnd. The numerical 
results calculated from equations 6 and 7 and from 
equation 8, respectively, are in fairly good agree­
ment for compounds such as CCI4, CHCla, CaHa, 
etc., for which the free volume model is a satisfac­
tory description of the liquid state. For associated 
liquids such as water or alcohol Vf is not adequately 
represented by equation 7 and failure to obtain 
satisfactory agreement between the theoretical 
equations is therefore not surprising. 

The equivalence of equations 6 and 8 can be 
demonstrated more explicitly by proceeding as 
follows. At room temperature b.Ev > > RT for 
ordinary liquids. Therefore (2b.Hv/M) 1/2 ~ 
(2b.Ev/M) '/o. Hence equation 6 can be written as 

G ~ (2t:.Ev/M)I/2(I/vr)I/a(p/n'/a)e exp( -t:.Hv/RT) 

But it has been shown2 that (b.Ev/RT) '/, ~ (2)'/2 
(V/VI)'/6 and, therefore 

(
2kT) I;' _ VI'h pv'/a 

G ~ - v2(V/Vr)'/6 - --.-----/ 1/ e exp (-t:.Hv/RT) 
m VI n 'v I 

where k is the Boltzmann constant and m repre­
sents the mass per molecule. But pv = m, n'/Iv'/a = 1 
and 

l/vf = (ps/kT)eLlHv/RT (9) 

whence 
G ~ ps(m/27rkT)I;'[2 V27r e(vdv)'/'] (10) 

In equation 9 Ps represents the saturated vapor 
pressure of the evaporating compound whose vapor 
is assumed to behave as a perfect gas. Equation 9 
was obtained by Eyring and Hirschfelder13 who 
noted that the Gibbs free energy of the evaporating 
substance and of the gas with which it is in equilib­
rium must be equal to each other.14 Equation 10 
is seen to be identical with the Knudsen equation 8 

(13) H. Eyring and J. O. Hirschfelder, THIS JOURNAL, 41, 249 
(1937). 

(14) It should be noted that equation 9 holds only lor spherically 
symmetric liquid molecules. 
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with E = 1 except for the term in square brackets. 
Since Vf/V ~ 3 X 10-3 at room temperature for 
many liquids, the term in square brackets is of the 
order of unity. This result accounts for the agree­
ment observed at room temperature between the 
numerical values calculated from equations 6 and 8, 
respectively. However, since Vf/V varies with 
temperature, it is obvious that equations 8 and 10 
do not have the same temperature dependence. 
This conclusion was reached previously as the re­
sult of empirical calculation. 6 

An equation equivalent to the Knudsen equation 
can be obtained by using some of the methods in­
troduced into the classical theory of unimolecular 
decompositions12,16-17 in a rather arbitrary manner. 
On the basis of a simple collision mechanism it 
might be expected that the frequency factor in the 
rate expression for evaporation is of the same order 
of magnitude as the mean collision frequency, i.e. 

B = I/Vf1/a = (kT /27rm) l/2/Vf l/a (11) 

where x is the mean translational velocity in a 
given direction of a molecule of mass m at the 
temperature T. On the basis of the preceding dis­
cussion it is, of course, obvious that the use of equa­
tion 11 with the exponential factor exp( -t:.Ev/RT) 
will lead to low values for G. In order to obtain 
the Knudsen equation it is evidently necessary to 
increase the rate of production of energetic mole­
cules. The desired result can be attained either by 
the arbitrary introduction of an entropy term or else 
by the equally arbitrary assumption that more than 
two square terms can contribute to the energy of 
activation, thus increasing the probability of the 
occurrence of energetic molecules. 

It was pointed out a number of years ago that 
agreement with experimental results could be ob­
tained for unimolecular decomposition if n square 
terms can contribute to the energy of activation 
where n appears to be related to the complexity of 
the decomposing molecule. H ,16 If a number of 
restrictive conditions are met, the effective fre­
quency factor is found to be larger than the colli­
sion number by the factor 

(~Ev/RT)<'12)n-1/[(1/2)n - III (12) 

If the arbitrary assumption is made that 6 square 
terms can contribute to the energy of activation, 
then it can be seen that the effective frequency fac­
.tor is 

since 
~Ev/RT ~ 2(V/VC)1/a 

Equations 2,3 and 13 lead to the relation 
G = 2(I/vf) (kT/27rm)1/2(pv/n1/.v1h) exp( -~Ev/RT) 

or 
G = 2ep, (m/27rkT)1j, (14) 

where use has been made of equation 9 as well as of 
the relations pv = m and nlj,v1

j, = 1. Equation 
14 is the Knudsen equation with an evaporation co­
efficient of unity and multiplied by the factor 2e. 

(15) R. H. Fowler and E. K. Rideal. Proc. Roy. Soc. (London), 
llSA, 570 (1927). 

(16) C. N Hinshelwood, ibid., 113A, 230 (1927). 
(17) o. K. Rice and H. C. Ramsperger, J. Am. Chern. Soc., 49, 617 

(1927); 110,617 (1928). 

On the basis of classical considerations it has thus 
proved to be possible to obtain a relation of the 
same form as the Knudsen equation by making use 
of an artifice which was introduced into the theoret­
ical discussion of unimolecular decomposition prior 
to the advent of the theory of absolute reaction 
rates. The physical significance of the need for 
the assumption that 6 square terms can contribute 
to the energy of activation is obscure. 

The classical considerations reviewed in the pre­
ceding discussion are not particularly convincing 
since they were designed to fit the desired results 
rather than the physical processes. A significant 
improvement over this type of argument can be re­
gistered through the application of the theory of ab­
solute reaction rates as discussed in the following 
section. 

III. Rates of Evaporation from the Point of View of 
the Theory of Absolute Reaction Rates 

According to the statistical theory of reaction 
rates2 the rate constant for evaporationje is given by 
the relation 

je = K(kT/h) (Q*/Q) exp( -~Ev/RT) (15) 

where K is the transmission coefficient, h represents 
Planck's constant, Q* is the partition function of 
the activated complex with the energy zero referred 
to the zero-point energy of the activated state and 
the translational partition function along the co­
ordinate of decomposition removed and Q is the 
complete partition function of the normal mole­
cules with energy zero referred to the zero-point 
energy of the normal molecules. The specific rate 
of evaporation is then given by introducing the 
value of je from equation 15 into equation 2. In 
order to obtain useful results from equation 15 it is 
necessary to write explicit relations for the parti­
tion functions, which can only be done after making 
definite assumptions concerning the structure of 
the normal molecules in the condensed state as well 
as of the structure of the activated molecules 
formed during evaporation 

It will be assumed that the physical state is ade­
quately described by the free volume model. 18,19 

The partition function Q of the normal molecules is 
then given by the relation 

Q = [(27rmkT)'12vr/h 3]Qi (16) 

where Qi includes the vibrational, rotational and in­
ternal electronic contributions to the partition func­
tion, which are assumed to remain unaltered during 
evaporation. If the partition function Q* corre­
sponding to the activated complex is similarly writ­
ten as 

Q* = [(27rmkT)vc'/a/h 2]Qi (17) 

then equation 15 becomes 
je = K(kT /27rm)1/avf-1j, exp( - ~Ev /RT) (18) 

The values of je calculated from equation 18 with 
K = 1 are much smaller than the values predicted 
by the Knudsen equation. 

Since the activated complex for evaporation oc­
curs during the formation of freely moving mole-

(18) J. E. Mayer and M. G. Mayer, "Statistical Mechanics," John 
Wiley and Sons, Inc., New York, N. Y., 1940, pp. 319-326. 

(19) E. A. Guggenheim, Proc. Roy. Soc. (London), 135A, 181 (1932) 
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cules, it is not unreasonable to postulate that the 
activated complex consists of gas-like molecules 
which can move freely throughout a two-dimen­
sional plane of area v*'h where v* = v is the volume 
per molecule in the condensed state. 3 With this 
assumption equation 15 reduces to the relation 

js = eK(kT/27rm)'j,(v'h/vrl exp( -t::.Hv/RT) (19) 

where exp(-I1Ev/RT) has been replaced by e 
exp( -I1Hv/RT). 

Equation 19 with eK = 1 has been used3 to cal­
culate evaporation rates for a number of liquid 
compounds and metallic elements by determining 
the ratio v'h/Vf from the Kincaid-Eyring expres­
sion 11 for the free volume of a liquid. The use of 
the Kincaid-Eyring free volume formula for me­
tallic elements is justified by the fact that the Len­
nard-Jones free volume formula 20 for solids leads to 
results which are practically identical with numeri­
cal values calculated from the Kincaid-Eyring ex­
pression at room temperature. 21 It was found that 
equation 19 leads to results which are of the same 
order of magnitude as calculations based on the 
Knudsen equation. The agreement between the 
numerical values was observed to be best for the 
metallic elements and for non-associated spherical 
liquid molecules where the Kincaid-Eyring formula 
for the free volume is most likely to be valid. 
Equation 19 appeared to lead to evaporation rates 
with a temperature coefficient different from the 
temperature coefficient of the Knudsen equation. 

The results obtained from the theory of absolute 
reaction rates, although they are perhaps as good as 
similar applications of this theory to rate processes 
other than evaporation rates, are not entirely satis­
factory. It seems reasonable to suppose that cor­
rect application of the theory of absolute reaction 
rates should lead to an equation equivalent to the 
Knudsen equation. Failure to obtain this result 
may indicate an incomplete description of the ini­
tial state or of the activated complex as expressed 
by the respective partition functions. Thus, the 
description of the condensed state by the free volume 
model may be inadequate and may be the source of 
the discrepancies. A comparison of the results of 
the theory of absolute reaction rates with those ob­
tained from the Knudsen equation, without explicit 
introduction of partition functions calculated on 
the basis of an approximate model for the liquid 
state appears highly desirable. 

All references to the approximate description of 
the condensed state through partition functions can 
be eliminated from the theoretical relation for the 
rate of evaporation by proceeding as follows. The 
introduction of equation 19 into equation 2 leads to 
the relation 

G = eK(kT /27rm)'j, (pv/nl/3vl/3) (l/vrl exp (-t::.Hv/RT) 

Replacing pv by m in this expression for G and re­
placing 1/Vf by use of equation 9 it is found that 

G = eKps (m/27rkT)'j, (20) 

since the product (nv) 1/3 = 1 as noted earlier in this 
discussion. Equation 20 is the Knudsen equation 
for the isothermal rate of evaporation with the evap-

(20) J. E. Lennard-Jones, Proc. Roy. Soc., 52, 729 (1940). 
(21 s. S. Penner, J. Chem. Phys., 16, 745 (1948). 

oration coefficient E replaced by the product. of t.he 
base of t.he natural logarithm ,e and t.he t.ransmission 
coefficient K.3 

An alternat.e derivat.ion of equat.ion 20 can be 
given by noting2 t.hat 

js = K(kT/27rm)'j, (1/0) (Q*'/Q) (21) 

where 0 is the length of t.he energy barrier over 
which the act.ivated complex passes during evapora­
tion and Q*' is the complet.e part.it.ion function of 
the activated complex. The introduction of equa­
tion 21 into equation 2 leads t.o the result 

G = K(kT /27rm)'j, (p/n 1/ao) (Q*' /Q) 

or 
G = K(mkT/27r)1j, (1/vn 1/ao) (Q*'/Q) (22) 

From equation 9 it. can be seen t.hat. 

Psv'/3o/kT = (OV'Is/VI) exp( -t::.Hv/RT) 

But if t.he act.ivated complex behaves as a gaseous 
molecule and the vibrational, rotat.ional and inter­
nal cont.ribut.ions to t.he partit.ion function remain 
unchanged during evaporat.ion, then it is evident 
t.hat. 

Q*'/Q = e(ov'h/v£l exp(-t::.Hv/RT) = epsov'h/kT (23) 

Replacing Q*' /Q by eopsv'/a/kT in equation 22, it 
follows that 

G = eKps (m/27rkT)'j, 

It is evident. that results calculat.ed from equation 
20 wit.h eK = 1 should be ident.ical wit.h results cal­
culat.ed from the Knudsen equation wit.h the evap­
oration coefficient set. equal to unity. It is there­
fore apparent. that. t.he discrepancies observed be­
t.ween t.he results calculat.ed from equation 19 with 
eK = 1 and from equation 8 with E = 1 were intro­
duced by an incomplete description of the physical 
state through partition funct.ions calculated on the 
basis of the free volume model. 3 

IV. Application of the Non-Equilibrium Theory of 
Absolute Reaction Rates to Evaporation Kinetics 

The derivation of equation 20 
G = eKps(m/27rkT)1j, 

seems to be a st.raightforward result of the applica­
t.ion of the usual theory of absolute react.ion rates 
toget.her with t.he assumptions t.hat the act.ivated 
molecules are gas-like molecules and that t.he vibra­
tional, rotational and internal electronic contribu­
tions to the part.ition function remain unchanged 
during evaporation. Equation 20 cannot be a cor­
rect relat.ion for t.he isothermal rate of evaporation 
since t.he maximum possible rate wit.h K = 1 would 
be e times as large as the actual upper limit. for the 
isothermal evaporation rat.e given through equation 
8 with E = 1. Equations 20 and 8 do not. lead to 
t.he same maximum values for the isothermal rates 
of evaporation unless K is rest.ricted to values less 
than or equal to 1/ e. This limitation on the numer­
ical values of K seems to be quite unreasonable and 
can probably not be justified by a more detailed 
analysis of the transmission coefficient for evapora­
tion. Whatever t.he relation between K and E may 
be, it is apparent that. t.he theory of absolute reac­
t.ion rates does not lead to t.he correct. upper limit 
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for the rate of evaporation unless the factor eK can 
be replaced by the factor K. 

The derivation of equation 20, as well as most 
other applications of the theory of absolute reac­
tion rates, involves the implicit assumption that 
equilibrium exists between normal and activated 
molecules. If this equilibrium does not exist, then 
the usual theory of absolute reaction rates will lead 
to evaporation rates which are too large.9•22,23 

The existence of non-equilibrium can be established 
for the case at hand by a reductio ad absurdum 
which leads to the conclusion that the energy bar­
rier i5 must be excessively long if equilibrium does 
exist between normal and activated molecules. 

If equilibrium between normal and activated 
molecules did exist, then 

-kT In (Q*' /Q) = p,(v* - VI) 

Replacing Q*' and Q by their respective values 
leads to the relation 

-kT[( -t.Ev/RT) + In(lJv*'la/vd] = p, (v* - vd 

Since v* < < Vg , it follows that 
t.Hv - [t.Ev - Np, (v* - VI)] ~ RT 

or 
t.Ev - Np, (v* - VI) ~ t.Ev 

where N is the Avogadro number. Therefore 
elJv*'j, = eVI exp(t.Ev/RT) = Vr exp(t.Hv/RT) 

But from equation 9 
Vg = VI exp(t.Hv/RT) 

The existence of equilibrium between normal and 
activated molecules therefore leads to the require­
ment 

IJ/v*'/a = (l/e) (v./v*) 

i.e., the length of the energy barrier must be equal 
to about 100 molecular diameters. This result is 
certainly incorrect and it therefore seems reason­
able to conclude that equilibrium between normal 
and activated molecules cannot exist during evap­
oration if the gas-like model is a valid description of 
the activated state. 

The mechanism assumed for evaporation seems 
to be in agreement with the supposition that the 
molecules move classically in the degree of freedom 
along which the molecules decompose with an aver­
age energy change of the order of kT between suc­
cessive transfers of energy. Hirschfelder9 has 
shown that in this case the equilibrium theory of 
reaction rates gives values which are too large by a 
factor of 1/0.387. The rate treatment for evapo­
ration with Hirschfelder's correction factor there­
fore leads to the result 

G = 0.387 eKp, (m/27rkT)'j, 

or 
(24) 

A comparison of equations 8 and 24 indicates 
that the non-equilibrium theory of absolute reaction 
rates leads to a result formally identical with the 
Knudsen equation except that the evaporation co-

(22) H. A. Kramers, Physica, T, 284 (1940). 
(23) B. J. Zwolinski and H. Eyring, J. Am. Chem. Soc., 69, 270 

(1947). 

efficient ~ is replaced by the transmission coefficient 
K. Since ~ is known to be very close to unity for 
pure liquids with spherically flymmetric force fields 
(e.g., Hg, CCI4) it follows that K = 1 in order to 
obtain agreement between theory and experiment. 
There are no obvious reasons for not setting the 
transmission coefficient equal to unity. 

V. Evaporation of Associated Liquids with 
Hindered Rotation 

The preceding discussion has been restricted to 
spherically symmetric molecules because equation 
9 does not hold for liquids with hindered rotation. 
In fact, as was emphasized by Kincaid and Eyring, 11 

for liquids with hindered rotation, equation 9 
should be replaced by the relation 

1. = h exp (t.Hv/RT) (25) 
Vrcp k T 

where 'P represents the free-angle ratio, i.e., the ra­
tio of the rotational partition function in the liquid 
to the rotational partition function of the gas. 
Without introducing any additional assumptions, 
we may replace the complete internal partition 
function by the relation 

Qi = cpQrotoQvibr.Qel 

where Qrot O represents the rotational partition func 
tion of the gas, and Qvibr. and Qel are the vibrational 
and electronic partition functions, respectively, of 
the liquid molecules. After division by e to cor­
rect for the lack of equilibrium between normal and 
activated molecules, equation 19 now becomes 

je = K(kT /27rm)'j, (V'iaCP/VICP) exp( - t.Hv/RT) (26) 

After combining equations 25 and 26 and introduc­
ing the resulting expression into equation 2 it is 
found that 

G = Kcpp,(m/27rkT)'j, (27) 

where K would again be expected to be close to 
unity. Thus a comparison of equations 8 and 27 
leads to the conclusion that the evaporation coef­
ficient for polar liquids should be equal to the free­
angle ratio 'P, a result which has been amply con­
firmed by data published by Wyllie.! 

In order to emphasize the correlation between ~ 
and 'P we reproduce Wyllie's compilation in Table 1. 
References to the original literature on the experi­
mental determination of the evaporation coefficient 
may be found in Wyllie's paper.! The theoretical 
treatment of evaporation rates given by Wyllie 
does not permit a clear-cut derivation of equation 
27 for the specific evaporation rate of polar liquids. 

TABLE I 

COMPARISON BETWEEN MEASURED EVAPORATION 

COEFFICIENTS E AND FREE-ANGLE RATIOS 'P, 
AFTER WYLLIElI 

Liquid T,oK. <p 

CCI. 273 1 1 
C 6H, 279 0.90 0.85 
CHC!. 275 .16 .54 
C 2H,OH 273 .020 .018 
CHaOH 273 .045 .048 
H 2O 283 to 303 0.036 to 0.040 .04 


