are more stabilized energetically. Consequently, the electric resistivity of the specimen, including the preheated at lower temperatures, is smaller than the preheated at higher temperatures. The specimen including the coke preheated at 1700°C has larger electric resistivity than that preheated at 1300°C in the carbonization process under 950°C, although in the coke grain itself the resistivity of the coke preheated at 1700°C is a little smaller than that of the coke preheated at 1300°C. From this fact, it is probable that the larger resistive structures are formed at the boundaries between coke grains and carbonized pitches in the early stages of carbonization process.

It is improbable in this case that the growth of the crystallities depends on the quantity of the stress induced by the thermal expansion of the coke grains so that the resistivities of the specimens differ from each other.

It is important in industry that the boundaries between the coke grains and the neighboring carbonized pitches have considerable effects on the electric resistivity.

Emissivity for CO₂ at Elevated Pressures

R. J. Holm,† D. Weber, and S. S. Penner

Guggenheim Jet Propulsion Center and Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

(Received August 26, 1952)

Total absorptivity measurements have been carried out at room temperature as a function of partial pressure of CO₂ and of total pressure using nitrogen as pressurizing gas. The results of these investigations are summarized in Fig. 1. Appropriate values at a total pressure of one atmosphere are compared with emissivity data published by Hottel and Mangelsdorf (1935) in Figs. 2 and 3.

The principal conclusions reached as the result of the present investigations are:

(a) At atmospheric pressure and room temperature, the results of total absorptivity measurements are in reasonably good agreement with the emissivity data of Hottel and Mangelsdorf, the difference increasing somewhat as the optical density is raised.

(b) At pressures in excess of one atmosphere, the absorptivity (and hence the emissivity) is quite insensitive to changes in total pressure. Thus, between 1.0 and 21 atmospheres total pressure, the measured values of total absorptivity at fixed optical density are equal within the rather wide limits of error (±15 percent) of the present preliminary investigations. This result can be understood in terms of the ratio of rotational line width to rotational line spacing, which is relatively large for diatomic molecules such as CO₂. There are no apparent reasons why the observed insensitivity of emissivity to total pressure cannot be extrapolated to elevated temperatures. Thus, although the collision half-width of the rotational lines decreases roughly inversely as the square root of the absolute temperature, it also increases linearly with total pressure. Hence the ratio of half-width to line spacing at 3000°K and 20 atmospheres should be comparable to conditions at 300°K and 11 atmospheres. Therefore, it appears unlikely that a large error is made if radiant heat transfer calculations involving CO₂ at elevated pressures are based on emissivity data for CO₂ determined at atmospheric pressure. The preceding statement should not be extrapolated indiscriminately to other molecules.†

* This paper presents, in part, the results of a phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. DA-19-023-ORD 18, sponsored by the U. S. Army Ordnance Department. Supported, in part, by the ONR under Contract Nonr-2200(03), NR 001 210.
† This article is based, in part, on a thesis submitted by R. J. Holm to the graduate school of the California Institute of Technology, in partial fulfillment of requirements for the degree of Aeronautical Engineer, June, 1952.